You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sopmtr.f 8.7 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339
  1. *> \brief \b SOPMTR
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SOPMTR + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sopmtr.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sopmtr.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sopmtr.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SOPMTR( SIDE, UPLO, TRANS, M, N, AP, TAU, C, LDC, WORK,
  22. * INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER SIDE, TRANS, UPLO
  26. * INTEGER INFO, LDC, M, N
  27. * ..
  28. * .. Array Arguments ..
  29. * REAL AP( * ), C( LDC, * ), TAU( * ), WORK( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> SOPMTR overwrites the general real M-by-N matrix C with
  39. *>
  40. *> SIDE = 'L' SIDE = 'R'
  41. *> TRANS = 'N': Q * C C * Q
  42. *> TRANS = 'T': Q**T * C C * Q**T
  43. *>
  44. *> where Q is a real orthogonal matrix of order nq, with nq = m if
  45. *> SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
  46. *> nq-1 elementary reflectors, as returned by SSPTRD using packed
  47. *> storage:
  48. *>
  49. *> if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);
  50. *>
  51. *> if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).
  52. *> \endverbatim
  53. *
  54. * Arguments:
  55. * ==========
  56. *
  57. *> \param[in] SIDE
  58. *> \verbatim
  59. *> SIDE is CHARACTER*1
  60. *> = 'L': apply Q or Q**T from the Left;
  61. *> = 'R': apply Q or Q**T from the Right.
  62. *> \endverbatim
  63. *>
  64. *> \param[in] UPLO
  65. *> \verbatim
  66. *> UPLO is CHARACTER*1
  67. *> = 'U': Upper triangular packed storage used in previous
  68. *> call to SSPTRD;
  69. *> = 'L': Lower triangular packed storage used in previous
  70. *> call to SSPTRD.
  71. *> \endverbatim
  72. *>
  73. *> \param[in] TRANS
  74. *> \verbatim
  75. *> TRANS is CHARACTER*1
  76. *> = 'N': No transpose, apply Q;
  77. *> = 'T': Transpose, apply Q**T.
  78. *> \endverbatim
  79. *>
  80. *> \param[in] M
  81. *> \verbatim
  82. *> M is INTEGER
  83. *> The number of rows of the matrix C. M >= 0.
  84. *> \endverbatim
  85. *>
  86. *> \param[in] N
  87. *> \verbatim
  88. *> N is INTEGER
  89. *> The number of columns of the matrix C. N >= 0.
  90. *> \endverbatim
  91. *>
  92. *> \param[in] AP
  93. *> \verbatim
  94. *> AP is REAL array, dimension
  95. *> (M*(M+1)/2) if SIDE = 'L'
  96. *> (N*(N+1)/2) if SIDE = 'R'
  97. *> The vectors which define the elementary reflectors, as
  98. *> returned by SSPTRD. AP is modified by the routine but
  99. *> restored on exit.
  100. *> \endverbatim
  101. *>
  102. *> \param[in] TAU
  103. *> \verbatim
  104. *> TAU is REAL array, dimension (M-1) if SIDE = 'L'
  105. *> or (N-1) if SIDE = 'R'
  106. *> TAU(i) must contain the scalar factor of the elementary
  107. *> reflector H(i), as returned by SSPTRD.
  108. *> \endverbatim
  109. *>
  110. *> \param[in,out] C
  111. *> \verbatim
  112. *> C is REAL array, dimension (LDC,N)
  113. *> On entry, the M-by-N matrix C.
  114. *> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
  115. *> \endverbatim
  116. *>
  117. *> \param[in] LDC
  118. *> \verbatim
  119. *> LDC is INTEGER
  120. *> The leading dimension of the array C. LDC >= max(1,M).
  121. *> \endverbatim
  122. *>
  123. *> \param[out] WORK
  124. *> \verbatim
  125. *> WORK is REAL array, dimension
  126. *> (N) if SIDE = 'L'
  127. *> (M) if SIDE = 'R'
  128. *> \endverbatim
  129. *>
  130. *> \param[out] INFO
  131. *> \verbatim
  132. *> INFO is INTEGER
  133. *> = 0: successful exit
  134. *> < 0: if INFO = -i, the i-th argument had an illegal value
  135. *> \endverbatim
  136. *
  137. * Authors:
  138. * ========
  139. *
  140. *> \author Univ. of Tennessee
  141. *> \author Univ. of California Berkeley
  142. *> \author Univ. of Colorado Denver
  143. *> \author NAG Ltd.
  144. *
  145. *> \date December 2016
  146. *
  147. *> \ingroup realOTHERcomputational
  148. *
  149. * =====================================================================
  150. SUBROUTINE SOPMTR( SIDE, UPLO, TRANS, M, N, AP, TAU, C, LDC, WORK,
  151. $ INFO )
  152. *
  153. * -- LAPACK computational routine (version 3.7.0) --
  154. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  155. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  156. * December 2016
  157. *
  158. * .. Scalar Arguments ..
  159. CHARACTER SIDE, TRANS, UPLO
  160. INTEGER INFO, LDC, M, N
  161. * ..
  162. * .. Array Arguments ..
  163. REAL AP( * ), C( LDC, * ), TAU( * ), WORK( * )
  164. * ..
  165. *
  166. * =====================================================================
  167. *
  168. * .. Parameters ..
  169. REAL ONE
  170. PARAMETER ( ONE = 1.0E+0 )
  171. * ..
  172. * .. Local Scalars ..
  173. LOGICAL FORWRD, LEFT, NOTRAN, UPPER
  174. INTEGER I, I1, I2, I3, IC, II, JC, MI, NI, NQ
  175. REAL AII
  176. * ..
  177. * .. External Functions ..
  178. LOGICAL LSAME
  179. EXTERNAL LSAME
  180. * ..
  181. * .. External Subroutines ..
  182. EXTERNAL SLARF, XERBLA
  183. * ..
  184. * .. Intrinsic Functions ..
  185. INTRINSIC MAX
  186. * ..
  187. * .. Executable Statements ..
  188. *
  189. * Test the input arguments
  190. *
  191. INFO = 0
  192. LEFT = LSAME( SIDE, 'L' )
  193. NOTRAN = LSAME( TRANS, 'N' )
  194. UPPER = LSAME( UPLO, 'U' )
  195. *
  196. * NQ is the order of Q
  197. *
  198. IF( LEFT ) THEN
  199. NQ = M
  200. ELSE
  201. NQ = N
  202. END IF
  203. IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
  204. INFO = -1
  205. ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  206. INFO = -2
  207. ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
  208. INFO = -3
  209. ELSE IF( M.LT.0 ) THEN
  210. INFO = -4
  211. ELSE IF( N.LT.0 ) THEN
  212. INFO = -5
  213. ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
  214. INFO = -9
  215. END IF
  216. IF( INFO.NE.0 ) THEN
  217. CALL XERBLA( 'SOPMTR', -INFO )
  218. RETURN
  219. END IF
  220. *
  221. * Quick return if possible
  222. *
  223. IF( M.EQ.0 .OR. N.EQ.0 )
  224. $ RETURN
  225. *
  226. IF( UPPER ) THEN
  227. *
  228. * Q was determined by a call to SSPTRD with UPLO = 'U'
  229. *
  230. FORWRD = ( LEFT .AND. NOTRAN ) .OR.
  231. $ ( .NOT.LEFT .AND. .NOT.NOTRAN )
  232. *
  233. IF( FORWRD ) THEN
  234. I1 = 1
  235. I2 = NQ - 1
  236. I3 = 1
  237. II = 2
  238. ELSE
  239. I1 = NQ - 1
  240. I2 = 1
  241. I3 = -1
  242. II = NQ*( NQ+1 ) / 2 - 1
  243. END IF
  244. *
  245. IF( LEFT ) THEN
  246. NI = N
  247. ELSE
  248. MI = M
  249. END IF
  250. *
  251. DO 10 I = I1, I2, I3
  252. IF( LEFT ) THEN
  253. *
  254. * H(i) is applied to C(1:i,1:n)
  255. *
  256. MI = I
  257. ELSE
  258. *
  259. * H(i) is applied to C(1:m,1:i)
  260. *
  261. NI = I
  262. END IF
  263. *
  264. * Apply H(i)
  265. *
  266. AII = AP( II )
  267. AP( II ) = ONE
  268. CALL SLARF( SIDE, MI, NI, AP( II-I+1 ), 1, TAU( I ), C, LDC,
  269. $ WORK )
  270. AP( II ) = AII
  271. *
  272. IF( FORWRD ) THEN
  273. II = II + I + 2
  274. ELSE
  275. II = II - I - 1
  276. END IF
  277. 10 CONTINUE
  278. ELSE
  279. *
  280. * Q was determined by a call to SSPTRD with UPLO = 'L'.
  281. *
  282. FORWRD = ( LEFT .AND. .NOT.NOTRAN ) .OR.
  283. $ ( .NOT.LEFT .AND. NOTRAN )
  284. *
  285. IF( FORWRD ) THEN
  286. I1 = 1
  287. I2 = NQ - 1
  288. I3 = 1
  289. II = 2
  290. ELSE
  291. I1 = NQ - 1
  292. I2 = 1
  293. I3 = -1
  294. II = NQ*( NQ+1 ) / 2 - 1
  295. END IF
  296. *
  297. IF( LEFT ) THEN
  298. NI = N
  299. JC = 1
  300. ELSE
  301. MI = M
  302. IC = 1
  303. END IF
  304. *
  305. DO 20 I = I1, I2, I3
  306. AII = AP( II )
  307. AP( II ) = ONE
  308. IF( LEFT ) THEN
  309. *
  310. * H(i) is applied to C(i+1:m,1:n)
  311. *
  312. MI = M - I
  313. IC = I + 1
  314. ELSE
  315. *
  316. * H(i) is applied to C(1:m,i+1:n)
  317. *
  318. NI = N - I
  319. JC = I + 1
  320. END IF
  321. *
  322. * Apply H(i)
  323. *
  324. CALL SLARF( SIDE, MI, NI, AP( II ), 1, TAU( I ),
  325. $ C( IC, JC ), LDC, WORK )
  326. AP( II ) = AII
  327. *
  328. IF( FORWRD ) THEN
  329. II = II + NQ - I + 1
  330. ELSE
  331. II = II - NQ + I - 2
  332. END IF
  333. 20 CONTINUE
  334. END IF
  335. RETURN
  336. *
  337. * End of SOPMTR
  338. *
  339. END