|
- *> \brief \b DSYGVD
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DSYGVD + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsygvd.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsygvd.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsygvd.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DSYGVD( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
- * LWORK, IWORK, LIWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER JOBZ, UPLO
- * INTEGER INFO, ITYPE, LDA, LDB, LIWORK, LWORK, N
- * ..
- * .. Array Arguments ..
- * INTEGER IWORK( * )
- * DOUBLE PRECISION A( LDA, * ), B( LDB, * ), W( * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DSYGVD computes all the eigenvalues, and optionally, the eigenvectors
- *> of a real generalized symmetric-definite eigenproblem, of the form
- *> A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and
- *> B are assumed to be symmetric and B is also positive definite.
- *> If eigenvectors are desired, it uses a divide and conquer algorithm.
- *>
- *> The divide and conquer algorithm makes very mild assumptions about
- *> floating point arithmetic. It will work on machines with a guard
- *> digit in add/subtract, or on those binary machines without guard
- *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
- *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
- *> without guard digits, but we know of none.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] ITYPE
- *> \verbatim
- *> ITYPE is INTEGER
- *> Specifies the problem type to be solved:
- *> = 1: A*x = (lambda)*B*x
- *> = 2: A*B*x = (lambda)*x
- *> = 3: B*A*x = (lambda)*x
- *> \endverbatim
- *>
- *> \param[in] JOBZ
- *> \verbatim
- *> JOBZ is CHARACTER*1
- *> = 'N': Compute eigenvalues only;
- *> = 'V': Compute eigenvalues and eigenvectors.
- *> \endverbatim
- *>
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': Upper triangles of A and B are stored;
- *> = 'L': Lower triangles of A and B are stored.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrices A and B. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension (LDA, N)
- *> On entry, the symmetric matrix A. If UPLO = 'U', the
- *> leading N-by-N upper triangular part of A contains the
- *> upper triangular part of the matrix A. If UPLO = 'L',
- *> the leading N-by-N lower triangular part of A contains
- *> the lower triangular part of the matrix A.
- *>
- *> On exit, if JOBZ = 'V', then if INFO = 0, A contains the
- *> matrix Z of eigenvectors. The eigenvectors are normalized
- *> as follows:
- *> if ITYPE = 1 or 2, Z**T*B*Z = I;
- *> if ITYPE = 3, Z**T*inv(B)*Z = I.
- *> If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
- *> or the lower triangle (if UPLO='L') of A, including the
- *> diagonal, is destroyed.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is DOUBLE PRECISION array, dimension (LDB, N)
- *> On entry, the symmetric matrix B. If UPLO = 'U', the
- *> leading N-by-N upper triangular part of B contains the
- *> upper triangular part of the matrix B. If UPLO = 'L',
- *> the leading N-by-N lower triangular part of B contains
- *> the lower triangular part of the matrix B.
- *>
- *> On exit, if INFO <= N, the part of B containing the matrix is
- *> overwritten by the triangular factor U or L from the Cholesky
- *> factorization B = U**T*U or B = L*L**T.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] W
- *> \verbatim
- *> W is DOUBLE PRECISION array, dimension (N)
- *> If INFO = 0, the eigenvalues in ascending order.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK.
- *> If N <= 1, LWORK >= 1.
- *> If JOBZ = 'N' and N > 1, LWORK >= 2*N+1.
- *> If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2.
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal sizes of the WORK and IWORK
- *> arrays, returns these values as the first entries of the WORK
- *> and IWORK arrays, and no error message related to LWORK or
- *> LIWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
- *> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
- *> \endverbatim
- *>
- *> \param[in] LIWORK
- *> \verbatim
- *> LIWORK is INTEGER
- *> The dimension of the array IWORK.
- *> If N <= 1, LIWORK >= 1.
- *> If JOBZ = 'N' and N > 1, LIWORK >= 1.
- *> If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
- *>
- *> If LIWORK = -1, then a workspace query is assumed; the
- *> routine only calculates the optimal sizes of the WORK and
- *> IWORK arrays, returns these values as the first entries of
- *> the WORK and IWORK arrays, and no error message related to
- *> LWORK or LIWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: DPOTRF or DSYEVD returned an error code:
- *> <= N: if INFO = i and JOBZ = 'N', then the algorithm
- *> failed to converge; i off-diagonal elements of an
- *> intermediate tridiagonal form did not converge to
- *> zero;
- *> if INFO = i and JOBZ = 'V', then the algorithm
- *> failed to compute an eigenvalue while working on
- *> the submatrix lying in rows and columns INFO/(N+1)
- *> through mod(INFO,N+1);
- *> > N: if INFO = N + i, for 1 <= i <= N, then the leading
- *> minor of order i of B is not positive definite.
- *> The factorization of B could not be completed and
- *> no eigenvalues or eigenvectors were computed.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup doubleSYeigen
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> Modified so that no backsubstitution is performed if DSYEVD fails to
- *> converge (NEIG in old code could be greater than N causing out of
- *> bounds reference to A - reported by Ralf Meyer). Also corrected the
- *> description of INFO and the test on ITYPE. Sven, 16 Feb 05.
- *> \endverbatim
- *
- *> \par Contributors:
- * ==================
- *>
- *> Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
- *>
- * =====================================================================
- SUBROUTINE DSYGVD( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
- $ LWORK, IWORK, LIWORK, INFO )
- *
- * -- LAPACK driver routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- CHARACTER JOBZ, UPLO
- INTEGER INFO, ITYPE, LDA, LDB, LIWORK, LWORK, N
- * ..
- * .. Array Arguments ..
- INTEGER IWORK( * )
- DOUBLE PRECISION A( LDA, * ), B( LDB, * ), W( * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ONE
- PARAMETER ( ONE = 1.0D+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL LQUERY, UPPER, WANTZ
- CHARACTER TRANS
- INTEGER LIOPT, LIWMIN, LOPT, LWMIN
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL DPOTRF, DSYEVD, DSYGST, DTRMM, DTRSM, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC DBLE, MAX
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- WANTZ = LSAME( JOBZ, 'V' )
- UPPER = LSAME( UPLO, 'U' )
- LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
- *
- INFO = 0
- IF( N.LE.1 ) THEN
- LIWMIN = 1
- LWMIN = 1
- ELSE IF( WANTZ ) THEN
- LIWMIN = 3 + 5*N
- LWMIN = 1 + 6*N + 2*N**2
- ELSE
- LIWMIN = 1
- LWMIN = 2*N + 1
- END IF
- LOPT = LWMIN
- LIOPT = LIWMIN
- IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
- INFO = -1
- ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
- INFO = -2
- ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
- INFO = -3
- ELSE IF( N.LT.0 ) THEN
- INFO = -4
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -6
- ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
- INFO = -8
- END IF
- *
- IF( INFO.EQ.0 ) THEN
- WORK( 1 ) = LOPT
- IWORK( 1 ) = LIOPT
- *
- IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
- INFO = -11
- ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
- INFO = -13
- END IF
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DSYGVD', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- * Form a Cholesky factorization of B.
- *
- CALL DPOTRF( UPLO, N, B, LDB, INFO )
- IF( INFO.NE.0 ) THEN
- INFO = N + INFO
- RETURN
- END IF
- *
- * Transform problem to standard eigenvalue problem and solve.
- *
- CALL DSYGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
- CALL DSYEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, IWORK, LIWORK,
- $ INFO )
- LOPT = MAX( DBLE( LOPT ), DBLE( WORK( 1 ) ) )
- LIOPT = MAX( DBLE( LIOPT ), DBLE( IWORK( 1 ) ) )
- *
- IF( WANTZ .AND. INFO.EQ.0 ) THEN
- *
- * Backtransform eigenvectors to the original problem.
- *
- IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
- *
- * For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
- * backtransform eigenvectors: x = inv(L)**T*y or inv(U)*y
- *
- IF( UPPER ) THEN
- TRANS = 'N'
- ELSE
- TRANS = 'T'
- END IF
- *
- CALL DTRSM( 'Left', UPLO, TRANS, 'Non-unit', N, N, ONE,
- $ B, LDB, A, LDA )
- *
- ELSE IF( ITYPE.EQ.3 ) THEN
- *
- * For B*A*x=(lambda)*x;
- * backtransform eigenvectors: x = L*y or U**T*y
- *
- IF( UPPER ) THEN
- TRANS = 'T'
- ELSE
- TRANS = 'N'
- END IF
- *
- CALL DTRMM( 'Left', UPLO, TRANS, 'Non-unit', N, N, ONE,
- $ B, LDB, A, LDA )
- END IF
- END IF
- *
- WORK( 1 ) = LOPT
- IWORK( 1 ) = LIOPT
- *
- RETURN
- *
- * End of DSYGVD
- *
- END
|