You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dsygvd.f 12 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380
  1. *> \brief \b DSYGVD
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DSYGVD + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsygvd.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsygvd.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsygvd.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DSYGVD( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
  22. * LWORK, IWORK, LIWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER JOBZ, UPLO
  26. * INTEGER INFO, ITYPE, LDA, LDB, LIWORK, LWORK, N
  27. * ..
  28. * .. Array Arguments ..
  29. * INTEGER IWORK( * )
  30. * DOUBLE PRECISION A( LDA, * ), B( LDB, * ), W( * ), WORK( * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> DSYGVD computes all the eigenvalues, and optionally, the eigenvectors
  40. *> of a real generalized symmetric-definite eigenproblem, of the form
  41. *> A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and
  42. *> B are assumed to be symmetric and B is also positive definite.
  43. *> If eigenvectors are desired, it uses a divide and conquer algorithm.
  44. *>
  45. *> The divide and conquer algorithm makes very mild assumptions about
  46. *> floating point arithmetic. It will work on machines with a guard
  47. *> digit in add/subtract, or on those binary machines without guard
  48. *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
  49. *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
  50. *> without guard digits, but we know of none.
  51. *> \endverbatim
  52. *
  53. * Arguments:
  54. * ==========
  55. *
  56. *> \param[in] ITYPE
  57. *> \verbatim
  58. *> ITYPE is INTEGER
  59. *> Specifies the problem type to be solved:
  60. *> = 1: A*x = (lambda)*B*x
  61. *> = 2: A*B*x = (lambda)*x
  62. *> = 3: B*A*x = (lambda)*x
  63. *> \endverbatim
  64. *>
  65. *> \param[in] JOBZ
  66. *> \verbatim
  67. *> JOBZ is CHARACTER*1
  68. *> = 'N': Compute eigenvalues only;
  69. *> = 'V': Compute eigenvalues and eigenvectors.
  70. *> \endverbatim
  71. *>
  72. *> \param[in] UPLO
  73. *> \verbatim
  74. *> UPLO is CHARACTER*1
  75. *> = 'U': Upper triangles of A and B are stored;
  76. *> = 'L': Lower triangles of A and B are stored.
  77. *> \endverbatim
  78. *>
  79. *> \param[in] N
  80. *> \verbatim
  81. *> N is INTEGER
  82. *> The order of the matrices A and B. N >= 0.
  83. *> \endverbatim
  84. *>
  85. *> \param[in,out] A
  86. *> \verbatim
  87. *> A is DOUBLE PRECISION array, dimension (LDA, N)
  88. *> On entry, the symmetric matrix A. If UPLO = 'U', the
  89. *> leading N-by-N upper triangular part of A contains the
  90. *> upper triangular part of the matrix A. If UPLO = 'L',
  91. *> the leading N-by-N lower triangular part of A contains
  92. *> the lower triangular part of the matrix A.
  93. *>
  94. *> On exit, if JOBZ = 'V', then if INFO = 0, A contains the
  95. *> matrix Z of eigenvectors. The eigenvectors are normalized
  96. *> as follows:
  97. *> if ITYPE = 1 or 2, Z**T*B*Z = I;
  98. *> if ITYPE = 3, Z**T*inv(B)*Z = I.
  99. *> If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
  100. *> or the lower triangle (if UPLO='L') of A, including the
  101. *> diagonal, is destroyed.
  102. *> \endverbatim
  103. *>
  104. *> \param[in] LDA
  105. *> \verbatim
  106. *> LDA is INTEGER
  107. *> The leading dimension of the array A. LDA >= max(1,N).
  108. *> \endverbatim
  109. *>
  110. *> \param[in,out] B
  111. *> \verbatim
  112. *> B is DOUBLE PRECISION array, dimension (LDB, N)
  113. *> On entry, the symmetric matrix B. If UPLO = 'U', the
  114. *> leading N-by-N upper triangular part of B contains the
  115. *> upper triangular part of the matrix B. If UPLO = 'L',
  116. *> the leading N-by-N lower triangular part of B contains
  117. *> the lower triangular part of the matrix B.
  118. *>
  119. *> On exit, if INFO <= N, the part of B containing the matrix is
  120. *> overwritten by the triangular factor U or L from the Cholesky
  121. *> factorization B = U**T*U or B = L*L**T.
  122. *> \endverbatim
  123. *>
  124. *> \param[in] LDB
  125. *> \verbatim
  126. *> LDB is INTEGER
  127. *> The leading dimension of the array B. LDB >= max(1,N).
  128. *> \endverbatim
  129. *>
  130. *> \param[out] W
  131. *> \verbatim
  132. *> W is DOUBLE PRECISION array, dimension (N)
  133. *> If INFO = 0, the eigenvalues in ascending order.
  134. *> \endverbatim
  135. *>
  136. *> \param[out] WORK
  137. *> \verbatim
  138. *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  139. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  140. *> \endverbatim
  141. *>
  142. *> \param[in] LWORK
  143. *> \verbatim
  144. *> LWORK is INTEGER
  145. *> The dimension of the array WORK.
  146. *> If N <= 1, LWORK >= 1.
  147. *> If JOBZ = 'N' and N > 1, LWORK >= 2*N+1.
  148. *> If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2.
  149. *>
  150. *> If LWORK = -1, then a workspace query is assumed; the routine
  151. *> only calculates the optimal sizes of the WORK and IWORK
  152. *> arrays, returns these values as the first entries of the WORK
  153. *> and IWORK arrays, and no error message related to LWORK or
  154. *> LIWORK is issued by XERBLA.
  155. *> \endverbatim
  156. *>
  157. *> \param[out] IWORK
  158. *> \verbatim
  159. *> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
  160. *> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
  161. *> \endverbatim
  162. *>
  163. *> \param[in] LIWORK
  164. *> \verbatim
  165. *> LIWORK is INTEGER
  166. *> The dimension of the array IWORK.
  167. *> If N <= 1, LIWORK >= 1.
  168. *> If JOBZ = 'N' and N > 1, LIWORK >= 1.
  169. *> If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
  170. *>
  171. *> If LIWORK = -1, then a workspace query is assumed; the
  172. *> routine only calculates the optimal sizes of the WORK and
  173. *> IWORK arrays, returns these values as the first entries of
  174. *> the WORK and IWORK arrays, and no error message related to
  175. *> LWORK or LIWORK is issued by XERBLA.
  176. *> \endverbatim
  177. *>
  178. *> \param[out] INFO
  179. *> \verbatim
  180. *> INFO is INTEGER
  181. *> = 0: successful exit
  182. *> < 0: if INFO = -i, the i-th argument had an illegal value
  183. *> > 0: DPOTRF or DSYEVD returned an error code:
  184. *> <= N: if INFO = i and JOBZ = 'N', then the algorithm
  185. *> failed to converge; i off-diagonal elements of an
  186. *> intermediate tridiagonal form did not converge to
  187. *> zero;
  188. *> if INFO = i and JOBZ = 'V', then the algorithm
  189. *> failed to compute an eigenvalue while working on
  190. *> the submatrix lying in rows and columns INFO/(N+1)
  191. *> through mod(INFO,N+1);
  192. *> > N: if INFO = N + i, for 1 <= i <= N, then the leading
  193. *> minor of order i of B is not positive definite.
  194. *> The factorization of B could not be completed and
  195. *> no eigenvalues or eigenvectors were computed.
  196. *> \endverbatim
  197. *
  198. * Authors:
  199. * ========
  200. *
  201. *> \author Univ. of Tennessee
  202. *> \author Univ. of California Berkeley
  203. *> \author Univ. of Colorado Denver
  204. *> \author NAG Ltd.
  205. *
  206. *> \date December 2016
  207. *
  208. *> \ingroup doubleSYeigen
  209. *
  210. *> \par Further Details:
  211. * =====================
  212. *>
  213. *> \verbatim
  214. *>
  215. *> Modified so that no backsubstitution is performed if DSYEVD fails to
  216. *> converge (NEIG in old code could be greater than N causing out of
  217. *> bounds reference to A - reported by Ralf Meyer). Also corrected the
  218. *> description of INFO and the test on ITYPE. Sven, 16 Feb 05.
  219. *> \endverbatim
  220. *
  221. *> \par Contributors:
  222. * ==================
  223. *>
  224. *> Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
  225. *>
  226. * =====================================================================
  227. SUBROUTINE DSYGVD( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
  228. $ LWORK, IWORK, LIWORK, INFO )
  229. *
  230. * -- LAPACK driver routine (version 3.7.0) --
  231. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  232. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  233. * December 2016
  234. *
  235. * .. Scalar Arguments ..
  236. CHARACTER JOBZ, UPLO
  237. INTEGER INFO, ITYPE, LDA, LDB, LIWORK, LWORK, N
  238. * ..
  239. * .. Array Arguments ..
  240. INTEGER IWORK( * )
  241. DOUBLE PRECISION A( LDA, * ), B( LDB, * ), W( * ), WORK( * )
  242. * ..
  243. *
  244. * =====================================================================
  245. *
  246. * .. Parameters ..
  247. DOUBLE PRECISION ONE
  248. PARAMETER ( ONE = 1.0D+0 )
  249. * ..
  250. * .. Local Scalars ..
  251. LOGICAL LQUERY, UPPER, WANTZ
  252. CHARACTER TRANS
  253. INTEGER LIOPT, LIWMIN, LOPT, LWMIN
  254. * ..
  255. * .. External Functions ..
  256. LOGICAL LSAME
  257. EXTERNAL LSAME
  258. * ..
  259. * .. External Subroutines ..
  260. EXTERNAL DPOTRF, DSYEVD, DSYGST, DTRMM, DTRSM, XERBLA
  261. * ..
  262. * .. Intrinsic Functions ..
  263. INTRINSIC DBLE, MAX
  264. * ..
  265. * .. Executable Statements ..
  266. *
  267. * Test the input parameters.
  268. *
  269. WANTZ = LSAME( JOBZ, 'V' )
  270. UPPER = LSAME( UPLO, 'U' )
  271. LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
  272. *
  273. INFO = 0
  274. IF( N.LE.1 ) THEN
  275. LIWMIN = 1
  276. LWMIN = 1
  277. ELSE IF( WANTZ ) THEN
  278. LIWMIN = 3 + 5*N
  279. LWMIN = 1 + 6*N + 2*N**2
  280. ELSE
  281. LIWMIN = 1
  282. LWMIN = 2*N + 1
  283. END IF
  284. LOPT = LWMIN
  285. LIOPT = LIWMIN
  286. IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
  287. INFO = -1
  288. ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  289. INFO = -2
  290. ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
  291. INFO = -3
  292. ELSE IF( N.LT.0 ) THEN
  293. INFO = -4
  294. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  295. INFO = -6
  296. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  297. INFO = -8
  298. END IF
  299. *
  300. IF( INFO.EQ.0 ) THEN
  301. WORK( 1 ) = LOPT
  302. IWORK( 1 ) = LIOPT
  303. *
  304. IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
  305. INFO = -11
  306. ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
  307. INFO = -13
  308. END IF
  309. END IF
  310. *
  311. IF( INFO.NE.0 ) THEN
  312. CALL XERBLA( 'DSYGVD', -INFO )
  313. RETURN
  314. ELSE IF( LQUERY ) THEN
  315. RETURN
  316. END IF
  317. *
  318. * Quick return if possible
  319. *
  320. IF( N.EQ.0 )
  321. $ RETURN
  322. *
  323. * Form a Cholesky factorization of B.
  324. *
  325. CALL DPOTRF( UPLO, N, B, LDB, INFO )
  326. IF( INFO.NE.0 ) THEN
  327. INFO = N + INFO
  328. RETURN
  329. END IF
  330. *
  331. * Transform problem to standard eigenvalue problem and solve.
  332. *
  333. CALL DSYGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
  334. CALL DSYEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, IWORK, LIWORK,
  335. $ INFO )
  336. LOPT = MAX( DBLE( LOPT ), DBLE( WORK( 1 ) ) )
  337. LIOPT = MAX( DBLE( LIOPT ), DBLE( IWORK( 1 ) ) )
  338. *
  339. IF( WANTZ .AND. INFO.EQ.0 ) THEN
  340. *
  341. * Backtransform eigenvectors to the original problem.
  342. *
  343. IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
  344. *
  345. * For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
  346. * backtransform eigenvectors: x = inv(L)**T*y or inv(U)*y
  347. *
  348. IF( UPPER ) THEN
  349. TRANS = 'N'
  350. ELSE
  351. TRANS = 'T'
  352. END IF
  353. *
  354. CALL DTRSM( 'Left', UPLO, TRANS, 'Non-unit', N, N, ONE,
  355. $ B, LDB, A, LDA )
  356. *
  357. ELSE IF( ITYPE.EQ.3 ) THEN
  358. *
  359. * For B*A*x=(lambda)*x;
  360. * backtransform eigenvectors: x = L*y or U**T*y
  361. *
  362. IF( UPPER ) THEN
  363. TRANS = 'T'
  364. ELSE
  365. TRANS = 'N'
  366. END IF
  367. *
  368. CALL DTRMM( 'Left', UPLO, TRANS, 'Non-unit', N, N, ONE,
  369. $ B, LDB, A, LDA )
  370. END IF
  371. END IF
  372. *
  373. WORK( 1 ) = LOPT
  374. IWORK( 1 ) = LIOPT
  375. *
  376. RETURN
  377. *
  378. * End of DSYGVD
  379. *
  380. END