|
- *> \brief \b ZPOT05
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZPOT05( UPLO, N, NRHS, A, LDA, B, LDB, X, LDX, XACT,
- * LDXACT, FERR, BERR, RESLTS )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER LDA, LDB, LDX, LDXACT, N, NRHS
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION BERR( * ), FERR( * ), RESLTS( * )
- * COMPLEX*16 A( LDA, * ), B( LDB, * ), X( LDX, * ),
- * $ XACT( LDXACT, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZPOT05 tests the error bounds from iterative refinement for the
- *> computed solution to a system of equations A*X = B, where A is a
- *> Hermitian n by n matrix.
- *>
- *> RESLTS(1) = test of the error bound
- *> = norm(X - XACT) / ( norm(X) * FERR )
- *>
- *> A large value is returned if this ratio is not less than one.
- *>
- *> RESLTS(2) = residual from the iterative refinement routine
- *> = the maximum of BERR / ( (n+1)*EPS + (*) ), where
- *> (*) = (n+1)*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> Specifies whether the upper or lower triangular part of the
- *> Hermitian matrix A is stored.
- *> = 'U': Upper triangular
- *> = 'L': Lower triangular
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of rows of the matrices X, B, and XACT, and the
- *> order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of columns of the matrices X, B, and XACT.
- *> NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is COMPLEX*16 array, dimension (LDA,N)
- *> The Hermitian matrix A. If UPLO = 'U', the leading n by n
- *> upper triangular part of A contains the upper triangular part
- *> of the matrix A, and the strictly lower triangular part of A
- *> is not referenced. If UPLO = 'L', the leading n by n lower
- *> triangular part of A contains the lower triangular part of
- *> the matrix A, and the strictly upper triangular part of A is
- *> not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] B
- *> \verbatim
- *> B is COMPLEX*16 array, dimension (LDB,NRHS)
- *> The right hand side vectors for the system of linear
- *> equations.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] X
- *> \verbatim
- *> X is COMPLEX*16 array, dimension (LDX,NRHS)
- *> The computed solution vectors. Each vector is stored as a
- *> column of the matrix X.
- *> \endverbatim
- *>
- *> \param[in] LDX
- *> \verbatim
- *> LDX is INTEGER
- *> The leading dimension of the array X. LDX >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] XACT
- *> \verbatim
- *> XACT is COMPLEX*16 array, dimension (LDX,NRHS)
- *> The exact solution vectors. Each vector is stored as a
- *> column of the matrix XACT.
- *> \endverbatim
- *>
- *> \param[in] LDXACT
- *> \verbatim
- *> LDXACT is INTEGER
- *> The leading dimension of the array XACT. LDXACT >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] FERR
- *> \verbatim
- *> FERR is DOUBLE PRECISION array, dimension (NRHS)
- *> The estimated forward error bounds for each solution vector
- *> X. If XTRUE is the true solution, FERR bounds the magnitude
- *> of the largest entry in (X - XTRUE) divided by the magnitude
- *> of the largest entry in X.
- *> \endverbatim
- *>
- *> \param[in] BERR
- *> \verbatim
- *> BERR is DOUBLE PRECISION array, dimension (NRHS)
- *> The componentwise relative backward error of each solution
- *> vector (i.e., the smallest relative change in any entry of A
- *> or B that makes X an exact solution).
- *> \endverbatim
- *>
- *> \param[out] RESLTS
- *> \verbatim
- *> RESLTS is DOUBLE PRECISION array, dimension (2)
- *> The maximum over the NRHS solution vectors of the ratios:
- *> RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR )
- *> RESLTS(2) = BERR / ( (n+1)*EPS + (*) )
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex16_lin
- *
- * =====================================================================
- SUBROUTINE ZPOT05( UPLO, N, NRHS, A, LDA, B, LDB, X, LDX, XACT,
- $ LDXACT, FERR, BERR, RESLTS )
- *
- * -- LAPACK test routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER LDA, LDB, LDX, LDXACT, N, NRHS
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION BERR( * ), FERR( * ), RESLTS( * )
- COMPLEX*16 A( LDA, * ), B( LDB, * ), X( LDX, * ),
- $ XACT( LDXACT, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL UPPER
- INTEGER I, IMAX, J, K
- DOUBLE PRECISION AXBI, DIFF, EPS, ERRBND, OVFL, TMP, UNFL, XNORM
- COMPLEX*16 ZDUM
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- INTEGER IZAMAX
- DOUBLE PRECISION DLAMCH
- EXTERNAL LSAME, IZAMAX, DLAMCH
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, DBLE, DIMAG, MAX, MIN
- * ..
- * .. Statement Functions ..
- DOUBLE PRECISION CABS1
- * ..
- * .. Statement Function definitions ..
- CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
- * ..
- * .. Executable Statements ..
- *
- * Quick exit if N = 0 or NRHS = 0.
- *
- IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
- RESLTS( 1 ) = ZERO
- RESLTS( 2 ) = ZERO
- RETURN
- END IF
- *
- EPS = DLAMCH( 'Epsilon' )
- UNFL = DLAMCH( 'Safe minimum' )
- OVFL = ONE / UNFL
- UPPER = LSAME( UPLO, 'U' )
- *
- * Test 1: Compute the maximum of
- * norm(X - XACT) / ( norm(X) * FERR )
- * over all the vectors X and XACT using the infinity-norm.
- *
- ERRBND = ZERO
- DO 30 J = 1, NRHS
- IMAX = IZAMAX( N, X( 1, J ), 1 )
- XNORM = MAX( CABS1( X( IMAX, J ) ), UNFL )
- DIFF = ZERO
- DO 10 I = 1, N
- DIFF = MAX( DIFF, CABS1( X( I, J )-XACT( I, J ) ) )
- 10 CONTINUE
- *
- IF( XNORM.GT.ONE ) THEN
- GO TO 20
- ELSE IF( DIFF.LE.OVFL*XNORM ) THEN
- GO TO 20
- ELSE
- ERRBND = ONE / EPS
- GO TO 30
- END IF
- *
- 20 CONTINUE
- IF( DIFF / XNORM.LE.FERR( J ) ) THEN
- ERRBND = MAX( ERRBND, ( DIFF / XNORM ) / FERR( J ) )
- ELSE
- ERRBND = ONE / EPS
- END IF
- 30 CONTINUE
- RESLTS( 1 ) = ERRBND
- *
- * Test 2: Compute the maximum of BERR / ( (n+1)*EPS + (*) ), where
- * (*) = (n+1)*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
- *
- DO 90 K = 1, NRHS
- DO 80 I = 1, N
- TMP = CABS1( B( I, K ) )
- IF( UPPER ) THEN
- DO 40 J = 1, I - 1
- TMP = TMP + CABS1( A( J, I ) )*CABS1( X( J, K ) )
- 40 CONTINUE
- TMP = TMP + ABS( DBLE( A( I, I ) ) )*CABS1( X( I, K ) )
- DO 50 J = I + 1, N
- TMP = TMP + CABS1( A( I, J ) )*CABS1( X( J, K ) )
- 50 CONTINUE
- ELSE
- DO 60 J = 1, I - 1
- TMP = TMP + CABS1( A( I, J ) )*CABS1( X( J, K ) )
- 60 CONTINUE
- TMP = TMP + ABS( DBLE( A( I, I ) ) )*CABS1( X( I, K ) )
- DO 70 J = I + 1, N
- TMP = TMP + CABS1( A( J, I ) )*CABS1( X( J, K ) )
- 70 CONTINUE
- END IF
- IF( I.EQ.1 ) THEN
- AXBI = TMP
- ELSE
- AXBI = MIN( AXBI, TMP )
- END IF
- 80 CONTINUE
- TMP = BERR( K ) / ( ( N+1 )*EPS+( N+1 )*UNFL /
- $ MAX( AXBI, ( N+1 )*UNFL ) )
- IF( K.EQ.1 ) THEN
- RESLTS( 2 ) = TMP
- ELSE
- RESLTS( 2 ) = MAX( RESLTS( 2 ), TMP )
- END IF
- 90 CONTINUE
- *
- RETURN
- *
- * End of ZPOT05
- *
- END
|