You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zpot05.f 9.0 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295
  1. *> \brief \b ZPOT05
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE ZPOT05( UPLO, N, NRHS, A, LDA, B, LDB, X, LDX, XACT,
  12. * LDXACT, FERR, BERR, RESLTS )
  13. *
  14. * .. Scalar Arguments ..
  15. * CHARACTER UPLO
  16. * INTEGER LDA, LDB, LDX, LDXACT, N, NRHS
  17. * ..
  18. * .. Array Arguments ..
  19. * DOUBLE PRECISION BERR( * ), FERR( * ), RESLTS( * )
  20. * COMPLEX*16 A( LDA, * ), B( LDB, * ), X( LDX, * ),
  21. * $ XACT( LDXACT, * )
  22. * ..
  23. *
  24. *
  25. *> \par Purpose:
  26. * =============
  27. *>
  28. *> \verbatim
  29. *>
  30. *> ZPOT05 tests the error bounds from iterative refinement for the
  31. *> computed solution to a system of equations A*X = B, where A is a
  32. *> Hermitian n by n matrix.
  33. *>
  34. *> RESLTS(1) = test of the error bound
  35. *> = norm(X - XACT) / ( norm(X) * FERR )
  36. *>
  37. *> A large value is returned if this ratio is not less than one.
  38. *>
  39. *> RESLTS(2) = residual from the iterative refinement routine
  40. *> = the maximum of BERR / ( (n+1)*EPS + (*) ), where
  41. *> (*) = (n+1)*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
  42. *> \endverbatim
  43. *
  44. * Arguments:
  45. * ==========
  46. *
  47. *> \param[in] UPLO
  48. *> \verbatim
  49. *> UPLO is CHARACTER*1
  50. *> Specifies whether the upper or lower triangular part of the
  51. *> Hermitian matrix A is stored.
  52. *> = 'U': Upper triangular
  53. *> = 'L': Lower triangular
  54. *> \endverbatim
  55. *>
  56. *> \param[in] N
  57. *> \verbatim
  58. *> N is INTEGER
  59. *> The number of rows of the matrices X, B, and XACT, and the
  60. *> order of the matrix A. N >= 0.
  61. *> \endverbatim
  62. *>
  63. *> \param[in] NRHS
  64. *> \verbatim
  65. *> NRHS is INTEGER
  66. *> The number of columns of the matrices X, B, and XACT.
  67. *> NRHS >= 0.
  68. *> \endverbatim
  69. *>
  70. *> \param[in] A
  71. *> \verbatim
  72. *> A is COMPLEX*16 array, dimension (LDA,N)
  73. *> The Hermitian matrix A. If UPLO = 'U', the leading n by n
  74. *> upper triangular part of A contains the upper triangular part
  75. *> of the matrix A, and the strictly lower triangular part of A
  76. *> is not referenced. If UPLO = 'L', the leading n by n lower
  77. *> triangular part of A contains the lower triangular part of
  78. *> the matrix A, and the strictly upper triangular part of A is
  79. *> not referenced.
  80. *> \endverbatim
  81. *>
  82. *> \param[in] LDA
  83. *> \verbatim
  84. *> LDA is INTEGER
  85. *> The leading dimension of the array A. LDA >= max(1,N).
  86. *> \endverbatim
  87. *>
  88. *> \param[in] B
  89. *> \verbatim
  90. *> B is COMPLEX*16 array, dimension (LDB,NRHS)
  91. *> The right hand side vectors for the system of linear
  92. *> equations.
  93. *> \endverbatim
  94. *>
  95. *> \param[in] LDB
  96. *> \verbatim
  97. *> LDB is INTEGER
  98. *> The leading dimension of the array B. LDB >= max(1,N).
  99. *> \endverbatim
  100. *>
  101. *> \param[in] X
  102. *> \verbatim
  103. *> X is COMPLEX*16 array, dimension (LDX,NRHS)
  104. *> The computed solution vectors. Each vector is stored as a
  105. *> column of the matrix X.
  106. *> \endverbatim
  107. *>
  108. *> \param[in] LDX
  109. *> \verbatim
  110. *> LDX is INTEGER
  111. *> The leading dimension of the array X. LDX >= max(1,N).
  112. *> \endverbatim
  113. *>
  114. *> \param[in] XACT
  115. *> \verbatim
  116. *> XACT is COMPLEX*16 array, dimension (LDX,NRHS)
  117. *> The exact solution vectors. Each vector is stored as a
  118. *> column of the matrix XACT.
  119. *> \endverbatim
  120. *>
  121. *> \param[in] LDXACT
  122. *> \verbatim
  123. *> LDXACT is INTEGER
  124. *> The leading dimension of the array XACT. LDXACT >= max(1,N).
  125. *> \endverbatim
  126. *>
  127. *> \param[in] FERR
  128. *> \verbatim
  129. *> FERR is DOUBLE PRECISION array, dimension (NRHS)
  130. *> The estimated forward error bounds for each solution vector
  131. *> X. If XTRUE is the true solution, FERR bounds the magnitude
  132. *> of the largest entry in (X - XTRUE) divided by the magnitude
  133. *> of the largest entry in X.
  134. *> \endverbatim
  135. *>
  136. *> \param[in] BERR
  137. *> \verbatim
  138. *> BERR is DOUBLE PRECISION array, dimension (NRHS)
  139. *> The componentwise relative backward error of each solution
  140. *> vector (i.e., the smallest relative change in any entry of A
  141. *> or B that makes X an exact solution).
  142. *> \endverbatim
  143. *>
  144. *> \param[out] RESLTS
  145. *> \verbatim
  146. *> RESLTS is DOUBLE PRECISION array, dimension (2)
  147. *> The maximum over the NRHS solution vectors of the ratios:
  148. *> RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR )
  149. *> RESLTS(2) = BERR / ( (n+1)*EPS + (*) )
  150. *> \endverbatim
  151. *
  152. * Authors:
  153. * ========
  154. *
  155. *> \author Univ. of Tennessee
  156. *> \author Univ. of California Berkeley
  157. *> \author Univ. of Colorado Denver
  158. *> \author NAG Ltd.
  159. *
  160. *> \ingroup complex16_lin
  161. *
  162. * =====================================================================
  163. SUBROUTINE ZPOT05( UPLO, N, NRHS, A, LDA, B, LDB, X, LDX, XACT,
  164. $ LDXACT, FERR, BERR, RESLTS )
  165. *
  166. * -- LAPACK test routine --
  167. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  168. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  169. *
  170. * .. Scalar Arguments ..
  171. CHARACTER UPLO
  172. INTEGER LDA, LDB, LDX, LDXACT, N, NRHS
  173. * ..
  174. * .. Array Arguments ..
  175. DOUBLE PRECISION BERR( * ), FERR( * ), RESLTS( * )
  176. COMPLEX*16 A( LDA, * ), B( LDB, * ), X( LDX, * ),
  177. $ XACT( LDXACT, * )
  178. * ..
  179. *
  180. * =====================================================================
  181. *
  182. * .. Parameters ..
  183. DOUBLE PRECISION ZERO, ONE
  184. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  185. * ..
  186. * .. Local Scalars ..
  187. LOGICAL UPPER
  188. INTEGER I, IMAX, J, K
  189. DOUBLE PRECISION AXBI, DIFF, EPS, ERRBND, OVFL, TMP, UNFL, XNORM
  190. COMPLEX*16 ZDUM
  191. * ..
  192. * .. External Functions ..
  193. LOGICAL LSAME
  194. INTEGER IZAMAX
  195. DOUBLE PRECISION DLAMCH
  196. EXTERNAL LSAME, IZAMAX, DLAMCH
  197. * ..
  198. * .. Intrinsic Functions ..
  199. INTRINSIC ABS, DBLE, DIMAG, MAX, MIN
  200. * ..
  201. * .. Statement Functions ..
  202. DOUBLE PRECISION CABS1
  203. * ..
  204. * .. Statement Function definitions ..
  205. CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  206. * ..
  207. * .. Executable Statements ..
  208. *
  209. * Quick exit if N = 0 or NRHS = 0.
  210. *
  211. IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
  212. RESLTS( 1 ) = ZERO
  213. RESLTS( 2 ) = ZERO
  214. RETURN
  215. END IF
  216. *
  217. EPS = DLAMCH( 'Epsilon' )
  218. UNFL = DLAMCH( 'Safe minimum' )
  219. OVFL = ONE / UNFL
  220. UPPER = LSAME( UPLO, 'U' )
  221. *
  222. * Test 1: Compute the maximum of
  223. * norm(X - XACT) / ( norm(X) * FERR )
  224. * over all the vectors X and XACT using the infinity-norm.
  225. *
  226. ERRBND = ZERO
  227. DO 30 J = 1, NRHS
  228. IMAX = IZAMAX( N, X( 1, J ), 1 )
  229. XNORM = MAX( CABS1( X( IMAX, J ) ), UNFL )
  230. DIFF = ZERO
  231. DO 10 I = 1, N
  232. DIFF = MAX( DIFF, CABS1( X( I, J )-XACT( I, J ) ) )
  233. 10 CONTINUE
  234. *
  235. IF( XNORM.GT.ONE ) THEN
  236. GO TO 20
  237. ELSE IF( DIFF.LE.OVFL*XNORM ) THEN
  238. GO TO 20
  239. ELSE
  240. ERRBND = ONE / EPS
  241. GO TO 30
  242. END IF
  243. *
  244. 20 CONTINUE
  245. IF( DIFF / XNORM.LE.FERR( J ) ) THEN
  246. ERRBND = MAX( ERRBND, ( DIFF / XNORM ) / FERR( J ) )
  247. ELSE
  248. ERRBND = ONE / EPS
  249. END IF
  250. 30 CONTINUE
  251. RESLTS( 1 ) = ERRBND
  252. *
  253. * Test 2: Compute the maximum of BERR / ( (n+1)*EPS + (*) ), where
  254. * (*) = (n+1)*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
  255. *
  256. DO 90 K = 1, NRHS
  257. DO 80 I = 1, N
  258. TMP = CABS1( B( I, K ) )
  259. IF( UPPER ) THEN
  260. DO 40 J = 1, I - 1
  261. TMP = TMP + CABS1( A( J, I ) )*CABS1( X( J, K ) )
  262. 40 CONTINUE
  263. TMP = TMP + ABS( DBLE( A( I, I ) ) )*CABS1( X( I, K ) )
  264. DO 50 J = I + 1, N
  265. TMP = TMP + CABS1( A( I, J ) )*CABS1( X( J, K ) )
  266. 50 CONTINUE
  267. ELSE
  268. DO 60 J = 1, I - 1
  269. TMP = TMP + CABS1( A( I, J ) )*CABS1( X( J, K ) )
  270. 60 CONTINUE
  271. TMP = TMP + ABS( DBLE( A( I, I ) ) )*CABS1( X( I, K ) )
  272. DO 70 J = I + 1, N
  273. TMP = TMP + CABS1( A( J, I ) )*CABS1( X( J, K ) )
  274. 70 CONTINUE
  275. END IF
  276. IF( I.EQ.1 ) THEN
  277. AXBI = TMP
  278. ELSE
  279. AXBI = MIN( AXBI, TMP )
  280. END IF
  281. 80 CONTINUE
  282. TMP = BERR( K ) / ( ( N+1 )*EPS+( N+1 )*UNFL /
  283. $ MAX( AXBI, ( N+1 )*UNFL ) )
  284. IF( K.EQ.1 ) THEN
  285. RESLTS( 2 ) = TMP
  286. ELSE
  287. RESLTS( 2 ) = MAX( RESLTS( 2 ), TMP )
  288. END IF
  289. 90 CONTINUE
  290. *
  291. RETURN
  292. *
  293. * End of ZPOT05
  294. *
  295. END