Add C/ZRSCL for reciprocal scaling of a complex vector (Reference-LAPACK PR 839)tags/v0.3.24
@@ -187,7 +187,7 @@ set(CLASRC | |||
cposv.f cposvx.f cpotrf2.f cpotri.f cpstrf.f cpstf2.f | |||
cppcon.f cppequ.f cpprfs.f cppsv.f cppsvx.f cpptrf.f cpptri.f cpptrs.f | |||
cptcon.f cpteqr.f cptrfs.f cptsv.f cptsvx.f cpttrf.f cpttrs.f cptts2.f | |||
crot.f cspcon.f csprfs.f cspsv.f | |||
crot.f crscl.f cspcon.f csprfs.f cspsv.f | |||
cspsvx.f csptrf.f csptri.f csptrs.f csrscl.f cstedc.f | |||
cstegr.f cstein.f csteqr.f csycon.f | |||
csyrfs.f csysv.f csysvx.f csytf2.f csytrf.f csytri.f | |||
@@ -381,7 +381,7 @@ set(ZLASRC | |||
zposv.f zposvx.f zpotrf2.f zpotri.f zpotrs.f zpstrf.f zpstf2.f | |||
zppcon.f zppequ.f zpprfs.f zppsv.f zppsvx.f zpptrf.f zpptri.f zpptrs.f | |||
zptcon.f zpteqr.f zptrfs.f zptsv.f zptsvx.f zpttrf.f zpttrs.f zptts2.f | |||
zrot.f zspcon.f zsprfs.f zspsv.f | |||
zrot.f zrscl.f zspcon.f zsprfs.f zspsv.f | |||
zspsvx.f zsptrf.f zsptri.f zsptrs.f zdrscl.f zstedc.f | |||
zstegr.f zstein.f zsteqr.f zsycon.f | |||
zsyrfs.f zsysv.f zsysvx.f zsytf2.f zsytrf.f zsytri.f | |||
@@ -280,7 +280,7 @@ CLASRC_O = \ | |||
cposv.o cposvx.o cpotf2.o cpotri.o cpstrf.o cpstf2.o \ | |||
cppcon.o cppequ.o cpprfs.o cppsv.o cppsvx.o cpptrf.o cpptri.o cpptrs.o \ | |||
cptcon.o cpteqr.o cptrfs.o cptsv.o cptsvx.o cpttrf.o cpttrs.o cptts2.o \ | |||
crot.o cspcon.o cspmv.o cspr.o csprfs.o cspsv.o \ | |||
crot.o crscl.o cspcon.o cspmv.o cspr.o csprfs.o cspsv.o \ | |||
cspsvx.o csptrf.o csptri.o csptrs.o csrscl.o cstedc.o \ | |||
cstegr.o cstein.o csteqr.o \ | |||
csycon.o csymv.o \ | |||
@@ -488,7 +488,7 @@ ZLASRC_O = \ | |||
zposv.o zposvx.o zpotf2.o zpotrf.o zpotri.o zpotrs.o zpstrf.o zpstf2.o \ | |||
zppcon.o zppequ.o zpprfs.o zppsv.o zppsvx.o zpptrf.o zpptri.o zpptrs.o \ | |||
zptcon.o zpteqr.o zptrfs.o zptsv.o zptsvx.o zpttrf.o zpttrs.o zptts2.o \ | |||
zrot.o zspcon.o zspmv.o zspr.o zsprfs.o zspsv.o \ | |||
zrot.o zrscl.o zspcon.o zspmv.o zspr.o zsprfs.o zspsv.o \ | |||
zspsvx.o zsptrf.o zsptri.o zsptrs.o zdrscl.o zstedc.o \ | |||
zstegr.o zstein.o zsteqr.o \ | |||
zsycon.o zsymv.o \ | |||
@@ -101,7 +101,7 @@ | |||
*> \author Univ. of Colorado Denver | |||
*> \author NAG Ltd. | |||
* | |||
*> \ingroup complexGEcomputational | |||
*> \ingroup getf2 | |||
* | |||
* ===================================================================== | |||
SUBROUTINE CGETF2( M, N, A, LDA, IPIV, INFO ) | |||
@@ -126,16 +126,14 @@ | |||
$ ZERO = ( 0.0E+0, 0.0E+0 ) ) | |||
* .. | |||
* .. Local Scalars .. | |||
REAL SFMIN | |||
INTEGER I, J, JP | |||
INTEGER J, JP | |||
* .. | |||
* .. External Functions .. | |||
REAL SLAMCH | |||
INTEGER ICAMAX | |||
EXTERNAL SLAMCH, ICAMAX | |||
EXTERNAL ICAMAX | |||
* .. | |||
* .. External Subroutines .. | |||
EXTERNAL CGERU, CSCAL, CSWAP, XERBLA | |||
EXTERNAL CGERU, CRSCL, CSWAP, XERBLA | |||
* .. | |||
* .. Intrinsic Functions .. | |||
INTRINSIC MAX, MIN | |||
@@ -161,10 +159,6 @@ | |||
* | |||
IF( M.EQ.0 .OR. N.EQ.0 ) | |||
$ RETURN | |||
* | |||
* Compute machine safe minimum | |||
* | |||
SFMIN = SLAMCH('S') | |||
* | |||
DO 10 J = 1, MIN( M, N ) | |||
* | |||
@@ -181,15 +175,8 @@ | |||
* | |||
* Compute elements J+1:M of J-th column. | |||
* | |||
IF( J.LT.M ) THEN | |||
IF( ABS(A( J, J )) .GE. SFMIN ) THEN | |||
CALL CSCAL( M-J, ONE / A( J, J ), A( J+1, J ), 1 ) | |||
ELSE | |||
DO 20 I = 1, M-J | |||
A( J+I, J ) = A( J+I, J ) / A( J, J ) | |||
20 CONTINUE | |||
END IF | |||
END IF | |||
IF( J.LT.M ) | |||
$ CALL CRSCL( M-J, A( J, J ), A( J+1, J ), 1 ) | |||
* | |||
ELSE IF( INFO.EQ.0 ) THEN | |||
* | |||
@@ -0,0 +1,202 @@ | |||
*> \brief \b CRSCL multiplies a vector by the reciprocal of a real scalar. | |||
* | |||
* =========== DOCUMENTATION =========== | |||
* | |||
* Online html documentation available at | |||
* http://www.netlib.org/lapack/explore-html/ | |||
* | |||
*> \htmlonly | |||
*> Download CRSCL + dependencies | |||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/crscl.f"> | |||
*> [TGZ]</a> | |||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/crscl.f"> | |||
*> [ZIP]</a> | |||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/crscl.f"> | |||
*> [TXT]</a> | |||
*> \endhtmlonly | |||
* | |||
* Definition: | |||
* =========== | |||
* | |||
* SUBROUTINE CRSCL( N, A, X, INCX ) | |||
* | |||
* .. Scalar Arguments .. | |||
* INTEGER INCX, N | |||
* COMPLEX A | |||
* .. | |||
* .. Array Arguments .. | |||
* COMPLEX X( * ) | |||
* .. | |||
* | |||
* | |||
*> \par Purpose: | |||
* ============= | |||
*> | |||
*> \verbatim | |||
*> | |||
*> CRSCL multiplies an n-element complex vector x by the complex scalar | |||
*> 1/a. This is done without overflow or underflow as long as | |||
*> the final result x/a does not overflow or underflow. | |||
*> \endverbatim | |||
* | |||
* Arguments: | |||
* ========== | |||
* | |||
*> \param[in] N | |||
*> \verbatim | |||
*> N is INTEGER | |||
*> The number of components of the vector x. | |||
*> \endverbatim | |||
*> | |||
*> \param[in] A | |||
*> \verbatim | |||
*> A is COMPLEX | |||
*> The scalar a which is used to divide each component of x. | |||
*> A must not be 0, or the subroutine will divide by zero. | |||
*> \endverbatim | |||
*> | |||
*> \param[in,out] X | |||
*> \verbatim | |||
*> X is COMPLEX array, dimension | |||
*> (1+(N-1)*abs(INCX)) | |||
*> The n-element vector x. | |||
*> \endverbatim | |||
*> | |||
*> \param[in] INCX | |||
*> \verbatim | |||
*> INCX is INTEGER | |||
*> The increment between successive values of the vector X. | |||
*> > 0: X(1) = X(1) and X(1+(i-1)*INCX) = x(i), 1< i<= n | |||
*> \endverbatim | |||
* | |||
* Authors: | |||
* ======== | |||
* | |||
*> \author Univ. of Tennessee | |||
*> \author Univ. of California Berkeley | |||
*> \author Univ. of Colorado Denver | |||
*> \author NAG Ltd. | |||
* | |||
*> \ingroup complexOTHERauxiliary | |||
* | |||
* ===================================================================== | |||
SUBROUTINE CRSCL( N, A, X, INCX ) | |||
* | |||
* -- LAPACK auxiliary routine -- | |||
* -- LAPACK is a software package provided by Univ. of Tennessee, -- | |||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- | |||
* | |||
* .. Scalar Arguments .. | |||
INTEGER INCX, N | |||
COMPLEX A | |||
* .. | |||
* .. Array Arguments .. | |||
COMPLEX X( * ) | |||
* .. | |||
* | |||
* ===================================================================== | |||
* | |||
* .. Parameters .. | |||
REAL ZERO, ONE | |||
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) | |||
* .. | |||
* .. Local Scalars .. | |||
REAL SAFMAX, SAFMIN, OV, AR, AI, ABSR, ABSI, UR | |||
% , UI | |||
* .. | |||
* .. External Functions .. | |||
REAL SLAMCH | |||
COMPLEX CLADIV | |||
EXTERNAL SLAMCH, CLADIV | |||
* .. | |||
* .. External Subroutines .. | |||
EXTERNAL CSCAL, CSSCAL, CSRSCL | |||
* .. | |||
* .. Intrinsic Functions .. | |||
INTRINSIC ABS | |||
* .. | |||
* .. Executable Statements .. | |||
* | |||
* Quick return if possible | |||
* | |||
IF( N.LE.0 ) | |||
$ RETURN | |||
* | |||
* Get machine parameters | |||
* | |||
SAFMIN = SLAMCH( 'S' ) | |||
SAFMAX = ONE / SAFMIN | |||
OV = SLAMCH( 'O' ) | |||
* | |||
* Initialize constants related to A. | |||
* | |||
AR = REAL( A ) | |||
AI = AIMAG( A ) | |||
ABSR = ABS( AR ) | |||
ABSI = ABS( AI ) | |||
* | |||
IF( AI.EQ.ZERO ) THEN | |||
* If alpha is real, then we can use csrscl | |||
CALL CSRSCL( N, AR, X, INCX ) | |||
* | |||
ELSE IF( AR.EQ.ZERO ) THEN | |||
* If alpha has a zero real part, then we follow the same rules as if | |||
* alpha were real. | |||
IF( ABSI.GT.SAFMAX ) THEN | |||
CALL CSSCAL( N, SAFMIN, X, INCX ) | |||
CALL CSCAL( N, CMPLX( ZERO, -SAFMAX / AI ), X, INCX ) | |||
ELSE IF( ABSI.LT.SAFMIN ) THEN | |||
CALL CSCAL( N, CMPLX( ZERO, -SAFMIN / AI ), X, INCX ) | |||
CALL CSSCAL( N, SAFMAX, X, INCX ) | |||
ELSE | |||
CALL CSCAL( N, CMPLX( ZERO, -ONE / AI ), X, INCX ) | |||
END IF | |||
* | |||
ELSE | |||
* The following numbers can be computed. | |||
* They are the inverse of the real and imaginary parts of 1/alpha. | |||
* Note that a and b are always different from zero. | |||
* NaNs are only possible if either: | |||
* 1. alphaR or alphaI is NaN. | |||
* 2. alphaR and alphaI are both infinite, in which case it makes sense | |||
* to propagate a NaN. | |||
UR = AR + AI * ( AI / AR ) | |||
UI = AI + AR * ( AR / AI ) | |||
* | |||
IF( (ABS( UR ).LT.SAFMIN).OR.(ABS( UI ).LT.SAFMIN) ) THEN | |||
* This means that both alphaR and alphaI are very small. | |||
CALL CSCAL( N, CMPLX( SAFMIN / UR, -SAFMIN / UI ), X, INCX ) | |||
CALL CSSCAL( N, SAFMAX, X, INCX ) | |||
ELSE IF( (ABS( UR ).GT.SAFMAX).OR.(ABS( UI ).GT.SAFMAX) ) THEN | |||
IF( (ABSR.GT.OV).OR.(ABSI.GT.OV) ) THEN | |||
* This means that a and b are both Inf. No need for scaling. | |||
CALL CSCAL( N, CMPLX( ONE / UR, -ONE / UI ), X, INCX ) | |||
ELSE | |||
CALL CSSCAL( N, SAFMIN, X, INCX ) | |||
IF( (ABS( UR ).GT.OV).OR.(ABS( UI ).GT.OV) ) THEN | |||
* Infs were generated. We do proper scaling to avoid them. | |||
IF( ABSR.GE.ABSI ) THEN | |||
* ABS( UR ) <= ABS( UI ) | |||
UR = (SAFMIN * AR) + SAFMIN * (AI * ( AI / AR )) | |||
UI = (SAFMIN * AI) + AR * ( (SAFMIN * AR) / AI ) | |||
ELSE | |||
* ABS( UR ) > ABS( UI ) | |||
UR = (SAFMIN * AR) + AI * ( (SAFMIN * AI) / AR ) | |||
UI = (SAFMIN * AI) + SAFMIN * (AR * ( AR / AI )) | |||
END IF | |||
CALL CSCAL( N, CMPLX( ONE / UR, -ONE / UI ), X, INCX ) | |||
ELSE | |||
CALL CSCAL( N, CMPLX( SAFMAX / UR, -SAFMAX / UI ), | |||
$ X, INCX ) | |||
END IF | |||
END IF | |||
ELSE | |||
CALL CSCAL( N, CMPLX( ONE / UR, -ONE / UI ), X, INCX ) | |||
END IF | |||
END IF | |||
* | |||
RETURN | |||
* | |||
* End of CRSCL | |||
* | |||
END |
@@ -101,7 +101,7 @@ | |||
*> \author Univ. of Colorado Denver | |||
*> \author NAG Ltd. | |||
* | |||
*> \ingroup complex16GEcomputational | |||
*> \ingroup getf2 | |||
* | |||
* ===================================================================== | |||
SUBROUTINE ZGETF2( M, N, A, LDA, IPIV, INFO ) | |||
@@ -127,7 +127,7 @@ | |||
* .. | |||
* .. Local Scalars .. | |||
DOUBLE PRECISION SFMIN | |||
INTEGER I, J, JP | |||
INTEGER J, JP | |||
* .. | |||
* .. External Functions .. | |||
DOUBLE PRECISION DLAMCH | |||
@@ -135,7 +135,7 @@ | |||
EXTERNAL DLAMCH, IZAMAX | |||
* .. | |||
* .. External Subroutines .. | |||
EXTERNAL XERBLA, ZGERU, ZSCAL, ZSWAP | |||
EXTERNAL XERBLA, ZGERU, ZRSCL, ZSWAP | |||
* .. | |||
* .. Intrinsic Functions .. | |||
INTRINSIC MAX, MIN | |||
@@ -181,15 +181,8 @@ | |||
* | |||
* Compute elements J+1:M of J-th column. | |||
* | |||
IF( J.LT.M ) THEN | |||
IF( ABS(A( J, J )) .GE. SFMIN ) THEN | |||
CALL ZSCAL( M-J, ONE / A( J, J ), A( J+1, J ), 1 ) | |||
ELSE | |||
DO 20 I = 1, M-J | |||
A( J+I, J ) = A( J+I, J ) / A( J, J ) | |||
20 CONTINUE | |||
END IF | |||
END IF | |||
IF( J.LT.M ) | |||
$ CALL ZRSCL( M-J, A( J, J ), A( J+1, J ), 1 ) | |||
* | |||
ELSE IF( INFO.EQ.0 ) THEN | |||
* | |||
@@ -0,0 +1,203 @@ | |||
*> \brief \b ZDRSCL multiplies a vector by the reciprocal of a real scalar. | |||
* | |||
* =========== DOCUMENTATION =========== | |||
* | |||
* Online html documentation available at | |||
* http://www.netlib.org/lapack/explore-html/ | |||
* | |||
*> \htmlonly | |||
*> Download ZDRSCL + dependencies | |||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zdrscl.f"> | |||
*> [TGZ]</a> | |||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zdrscl.f"> | |||
*> [ZIP]</a> | |||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zdrscl.f"> | |||
*> [TXT]</a> | |||
*> \endhtmlonly | |||
* | |||
* Definition: | |||
* =========== | |||
* | |||
* SUBROUTINE ZRSCL( N, A, X, INCX ) | |||
* | |||
* .. Scalar Arguments .. | |||
* INTEGER INCX, N | |||
* COMPLEX*16 A | |||
* .. | |||
* .. Array Arguments .. | |||
* COMPLEX*16 X( * ) | |||
* .. | |||
* | |||
* | |||
*> \par Purpose: | |||
* ============= | |||
*> | |||
*> \verbatim | |||
*> | |||
*> ZRSCL multiplies an n-element complex vector x by the complex scalar | |||
*> 1/a. This is done without overflow or underflow as long as | |||
*> the final result x/a does not overflow or underflow. | |||
*> \endverbatim | |||
* | |||
* Arguments: | |||
* ========== | |||
* | |||
*> \param[in] N | |||
*> \verbatim | |||
*> N is INTEGER | |||
*> The number of components of the vector x. | |||
*> \endverbatim | |||
*> | |||
*> \param[in] A | |||
*> \verbatim | |||
*> A is COMPLEX*16 | |||
*> The scalar a which is used to divide each component of x. | |||
*> A must not be 0, or the subroutine will divide by zero. | |||
*> \endverbatim | |||
*> | |||
*> \param[in,out] X | |||
*> \verbatim | |||
*> X is COMPLEX*16 array, dimension | |||
*> (1+(N-1)*abs(INCX)) | |||
*> The n-element vector x. | |||
*> \endverbatim | |||
*> | |||
*> \param[in] INCX | |||
*> \verbatim | |||
*> INCX is INTEGER | |||
*> The increment between successive values of the vector SX. | |||
*> > 0: SX(1) = X(1) and SX(1+(i-1)*INCX) = x(i), 1< i<= n | |||
*> \endverbatim | |||
* | |||
* Authors: | |||
* ======== | |||
* | |||
*> \author Univ. of Tennessee | |||
*> \author Univ. of California Berkeley | |||
*> \author Univ. of Colorado Denver | |||
*> \author NAG Ltd. | |||
* | |||
*> \ingroup complex16OTHERauxiliary | |||
* | |||
* ===================================================================== | |||
SUBROUTINE ZRSCL( N, A, X, INCX ) | |||
* | |||
* -- LAPACK auxiliary routine -- | |||
* -- LAPACK is a software package provided by Univ. of Tennessee, -- | |||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- | |||
* | |||
* .. Scalar Arguments .. | |||
INTEGER INCX, N | |||
COMPLEX*16 A | |||
* .. | |||
* .. Array Arguments .. | |||
COMPLEX*16 X( * ) | |||
* .. | |||
* | |||
* ===================================================================== | |||
* | |||
* .. Parameters .. | |||
DOUBLE PRECISION ZERO, ONE | |||
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) | |||
* .. | |||
* .. Local Scalars .. | |||
DOUBLE PRECISION SAFMAX, SAFMIN, OV, AR, AI, ABSR, ABSI, UR, UI | |||
* .. | |||
* .. External Functions .. | |||
DOUBLE PRECISION DLAMCH | |||
COMPLEX*16 ZLADIV | |||
EXTERNAL DLAMCH, ZLADIV | |||
* .. | |||
* .. External Subroutines .. | |||
EXTERNAL DSCAL, ZDSCAL, ZDRSCL | |||
* .. | |||
* .. Intrinsic Functions .. | |||
INTRINSIC ABS | |||
* .. | |||
* .. Executable Statements .. | |||
* | |||
* Quick return if possible | |||
* | |||
IF( N.LE.0 ) | |||
$ RETURN | |||
* | |||
* Get machine parameters | |||
* | |||
SAFMIN = DLAMCH( 'S' ) | |||
SAFMAX = ONE / SAFMIN | |||
OV = DLAMCH( 'O' ) | |||
* | |||
* Initialize constants related to A. | |||
* | |||
AR = DBLE( A ) | |||
AI = DIMAG( A ) | |||
ABSR = ABS( AR ) | |||
ABSI = ABS( AI ) | |||
* | |||
IF( AI.EQ.ZERO ) THEN | |||
* If alpha is real, then we can use csrscl | |||
CALL ZDRSCL( N, AR, X, INCX ) | |||
* | |||
ELSE IF( AR.EQ.ZERO ) THEN | |||
* If alpha has a zero real part, then we follow the same rules as if | |||
* alpha were real. | |||
IF( ABSI.GT.SAFMAX ) THEN | |||
CALL ZDSCAL( N, SAFMIN, X, INCX ) | |||
CALL ZSCAL( N, DCMPLX( ZERO, -SAFMAX / AI ), X, INCX ) | |||
ELSE IF( ABSI.LT.SAFMIN ) THEN | |||
CALL ZSCAL( N, DCMPLX( ZERO, -SAFMIN / AI ), X, INCX ) | |||
CALL ZDSCAL( N, SAFMAX, X, INCX ) | |||
ELSE | |||
CALL ZSCAL( N, DCMPLX( ZERO, -ONE / AI ), X, INCX ) | |||
END IF | |||
* | |||
ELSE | |||
* The following numbers can be computed. | |||
* They are the inverse of the real and imaginary parts of 1/alpha. | |||
* Note that a and b are always different from zero. | |||
* NaNs are only possible if either: | |||
* 1. alphaR or alphaI is NaN. | |||
* 2. alphaR and alphaI are both infinite, in which case it makes sense | |||
* to propagate a NaN. | |||
UR = AR + AI * ( AI / AR ) | |||
UI = AI + AR * ( AR / AI ) | |||
* | |||
IF( (ABS( UR ).LT.SAFMIN).OR.(ABS( UI ).LT.SAFMIN) ) THEN | |||
* This means that both alphaR and alphaI are very small. | |||
CALL ZSCAL( N, DCMPLX( SAFMIN / UR, -SAFMIN / UI ), X, | |||
$ INCX ) | |||
CALL ZDSCAL( N, SAFMAX, X, INCX ) | |||
ELSE IF( (ABS( UR ).GT.SAFMAX).OR.(ABS( UI ).GT.SAFMAX) ) THEN | |||
IF( (ABSR.GT.OV).OR.(ABSI.GT.OV) ) THEN | |||
* This means that a and b are both Inf. No need for scaling. | |||
CALL ZSCAL( N, DCMPLX( ONE / UR, -ONE / UI ), X, INCX ) | |||
ELSE | |||
CALL ZDSCAL( N, SAFMIN, X, INCX ) | |||
IF( (ABS( UR ).GT.OV).OR.(ABS( UI ).GT.OV) ) THEN | |||
* Infs were generated. We do proper scaling to avoid them. | |||
IF( ABSR.GE.ABSI ) THEN | |||
* ABS( UR ) <= ABS( UI ) | |||
UR = (SAFMIN * AR) + SAFMIN * (AI * ( AI / AR )) | |||
UI = (SAFMIN * AI) + AR * ( (SAFMIN * AR) / AI ) | |||
ELSE | |||
* ABS( UR ) > ABS( UI ) | |||
UR = (SAFMIN * AR) + AI * ( (SAFMIN * AI) / AR ) | |||
UI = (SAFMIN * AI) + SAFMIN * (AR * ( AR / AI )) | |||
END IF | |||
CALL ZSCAL( N, DCMPLX( ONE / UR, -ONE / UI ), X, | |||
$ INCX ) | |||
ELSE | |||
CALL ZSCAL( N, DCMPLX( SAFMAX / UR, -SAFMAX / UI ), | |||
$ X, INCX ) | |||
END IF | |||
END IF | |||
ELSE | |||
CALL ZSCAL( N, DCMPLX( ONE / UR, -ONE / UI ), X, INCX ) | |||
END IF | |||
END IF | |||
* | |||
RETURN | |||
* | |||
* End of ZRSCL | |||
* | |||
END |