|
- *> \brief \b ZDRSCL multiplies a vector by the reciprocal of a real scalar.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZDRSCL + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zdrscl.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zdrscl.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zdrscl.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZRSCL( N, A, X, INCX )
- *
- * .. Scalar Arguments ..
- * INTEGER INCX, N
- * COMPLEX*16 A
- * ..
- * .. Array Arguments ..
- * COMPLEX*16 X( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZRSCL multiplies an n-element complex vector x by the complex scalar
- *> 1/a. This is done without overflow or underflow as long as
- *> the final result x/a does not overflow or underflow.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of components of the vector x.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is COMPLEX*16
- *> The scalar a which is used to divide each component of x.
- *> A must not be 0, or the subroutine will divide by zero.
- *> \endverbatim
- *>
- *> \param[in,out] X
- *> \verbatim
- *> X is COMPLEX*16 array, dimension
- *> (1+(N-1)*abs(INCX))
- *> The n-element vector x.
- *> \endverbatim
- *>
- *> \param[in] INCX
- *> \verbatim
- *> INCX is INTEGER
- *> The increment between successive values of the vector SX.
- *> > 0: SX(1) = X(1) and SX(1+(i-1)*INCX) = x(i), 1< i<= n
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex16OTHERauxiliary
- *
- * =====================================================================
- SUBROUTINE ZRSCL( N, A, X, INCX )
- *
- * -- LAPACK auxiliary routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER INCX, N
- COMPLEX*16 A
- * ..
- * .. Array Arguments ..
- COMPLEX*16 X( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
- * ..
- * .. Local Scalars ..
- DOUBLE PRECISION SAFMAX, SAFMIN, OV, AR, AI, ABSR, ABSI, UR, UI
- * ..
- * .. External Functions ..
- DOUBLE PRECISION DLAMCH
- COMPLEX*16 ZLADIV
- EXTERNAL DLAMCH, ZLADIV
- * ..
- * .. External Subroutines ..
- EXTERNAL DSCAL, ZDSCAL, ZDRSCL
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS
- * ..
- * .. Executable Statements ..
- *
- * Quick return if possible
- *
- IF( N.LE.0 )
- $ RETURN
- *
- * Get machine parameters
- *
- SAFMIN = DLAMCH( 'S' )
- SAFMAX = ONE / SAFMIN
- OV = DLAMCH( 'O' )
- *
- * Initialize constants related to A.
- *
- AR = DBLE( A )
- AI = DIMAG( A )
- ABSR = ABS( AR )
- ABSI = ABS( AI )
- *
- IF( AI.EQ.ZERO ) THEN
- * If alpha is real, then we can use csrscl
- CALL ZDRSCL( N, AR, X, INCX )
- *
- ELSE IF( AR.EQ.ZERO ) THEN
- * If alpha has a zero real part, then we follow the same rules as if
- * alpha were real.
- IF( ABSI.GT.SAFMAX ) THEN
- CALL ZDSCAL( N, SAFMIN, X, INCX )
- CALL ZSCAL( N, DCMPLX( ZERO, -SAFMAX / AI ), X, INCX )
- ELSE IF( ABSI.LT.SAFMIN ) THEN
- CALL ZSCAL( N, DCMPLX( ZERO, -SAFMIN / AI ), X, INCX )
- CALL ZDSCAL( N, SAFMAX, X, INCX )
- ELSE
- CALL ZSCAL( N, DCMPLX( ZERO, -ONE / AI ), X, INCX )
- END IF
- *
- ELSE
- * The following numbers can be computed.
- * They are the inverse of the real and imaginary parts of 1/alpha.
- * Note that a and b are always different from zero.
- * NaNs are only possible if either:
- * 1. alphaR or alphaI is NaN.
- * 2. alphaR and alphaI are both infinite, in which case it makes sense
- * to propagate a NaN.
- UR = AR + AI * ( AI / AR )
- UI = AI + AR * ( AR / AI )
- *
- IF( (ABS( UR ).LT.SAFMIN).OR.(ABS( UI ).LT.SAFMIN) ) THEN
- * This means that both alphaR and alphaI are very small.
- CALL ZSCAL( N, DCMPLX( SAFMIN / UR, -SAFMIN / UI ), X,
- $ INCX )
- CALL ZDSCAL( N, SAFMAX, X, INCX )
- ELSE IF( (ABS( UR ).GT.SAFMAX).OR.(ABS( UI ).GT.SAFMAX) ) THEN
- IF( (ABSR.GT.OV).OR.(ABSI.GT.OV) ) THEN
- * This means that a and b are both Inf. No need for scaling.
- CALL ZSCAL( N, DCMPLX( ONE / UR, -ONE / UI ), X, INCX )
- ELSE
- CALL ZDSCAL( N, SAFMIN, X, INCX )
- IF( (ABS( UR ).GT.OV).OR.(ABS( UI ).GT.OV) ) THEN
- * Infs were generated. We do proper scaling to avoid them.
- IF( ABSR.GE.ABSI ) THEN
- * ABS( UR ) <= ABS( UI )
- UR = (SAFMIN * AR) + SAFMIN * (AI * ( AI / AR ))
- UI = (SAFMIN * AI) + AR * ( (SAFMIN * AR) / AI )
- ELSE
- * ABS( UR ) > ABS( UI )
- UR = (SAFMIN * AR) + AI * ( (SAFMIN * AI) / AR )
- UI = (SAFMIN * AI) + SAFMIN * (AR * ( AR / AI ))
- END IF
- CALL ZSCAL( N, DCMPLX( ONE / UR, -ONE / UI ), X,
- $ INCX )
- ELSE
- CALL ZSCAL( N, DCMPLX( SAFMAX / UR, -SAFMAX / UI ),
- $ X, INCX )
- END IF
- END IF
- ELSE
- CALL ZSCAL( N, DCMPLX( ONE / UR, -ONE / UI ), X, INCX )
- END IF
- END IF
- *
- RETURN
- *
- * End of ZRSCL
- *
- END
|