You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  217. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  218. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  219. #define sig_die(s, kill) { exit(1); }
  220. #define s_stop(s, n) {exit(0);}
  221. #define z_abs(z) (cabs(Cd(z)))
  222. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  223. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  224. #define myexit_() break;
  225. #define mycycle() continue;
  226. #define myceiling(w) {ceil(w)}
  227. #define myhuge(w) {HUGE_VAL}
  228. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  229. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  230. /* -- translated by f2c (version 20000121).
  231. You must link the resulting object file with the libraries:
  232. -lf2c -lm (in that order)
  233. */
  234. /* > \brief <b> SGTSV computes the solution to system of linear equations A * X = B for GT matrices </b> */
  235. /* =========== DOCUMENTATION =========== */
  236. /* Online html documentation available at */
  237. /* http://www.netlib.org/lapack/explore-html/ */
  238. /* > \htmlonly */
  239. /* > Download SGTSV + dependencies */
  240. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgtsv.f
  241. "> */
  242. /* > [TGZ]</a> */
  243. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgtsv.f
  244. "> */
  245. /* > [ZIP]</a> */
  246. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgtsv.f
  247. "> */
  248. /* > [TXT]</a> */
  249. /* > \endhtmlonly */
  250. /* Definition: */
  251. /* =========== */
  252. /* SUBROUTINE SGTSV( N, NRHS, DL, D, DU, B, LDB, INFO ) */
  253. /* INTEGER INFO, LDB, N, NRHS */
  254. /* REAL B( LDB, * ), D( * ), DL( * ), DU( * ) */
  255. /* > \par Purpose: */
  256. /* ============= */
  257. /* > */
  258. /* > \verbatim */
  259. /* > */
  260. /* > SGTSV solves the equation */
  261. /* > */
  262. /* > A*X = B, */
  263. /* > */
  264. /* > where A is an n by n tridiagonal matrix, by Gaussian elimination with */
  265. /* > partial pivoting. */
  266. /* > */
  267. /* > Note that the equation A**T*X = B may be solved by interchanging the */
  268. /* > order of the arguments DU and DL. */
  269. /* > \endverbatim */
  270. /* Arguments: */
  271. /* ========== */
  272. /* > \param[in] N */
  273. /* > \verbatim */
  274. /* > N is INTEGER */
  275. /* > The order of the matrix A. N >= 0. */
  276. /* > \endverbatim */
  277. /* > */
  278. /* > \param[in] NRHS */
  279. /* > \verbatim */
  280. /* > NRHS is INTEGER */
  281. /* > The number of right hand sides, i.e., the number of columns */
  282. /* > of the matrix B. NRHS >= 0. */
  283. /* > \endverbatim */
  284. /* > */
  285. /* > \param[in,out] DL */
  286. /* > \verbatim */
  287. /* > DL is REAL array, dimension (N-1) */
  288. /* > On entry, DL must contain the (n-1) sub-diagonal elements of */
  289. /* > A. */
  290. /* > */
  291. /* > On exit, DL is overwritten by the (n-2) elements of the */
  292. /* > second super-diagonal of the upper triangular matrix U from */
  293. /* > the LU factorization of A, in DL(1), ..., DL(n-2). */
  294. /* > \endverbatim */
  295. /* > */
  296. /* > \param[in,out] D */
  297. /* > \verbatim */
  298. /* > D is REAL array, dimension (N) */
  299. /* > On entry, D must contain the diagonal elements of A. */
  300. /* > */
  301. /* > On exit, D is overwritten by the n diagonal elements of U. */
  302. /* > \endverbatim */
  303. /* > */
  304. /* > \param[in,out] DU */
  305. /* > \verbatim */
  306. /* > DU is REAL array, dimension (N-1) */
  307. /* > On entry, DU must contain the (n-1) super-diagonal elements */
  308. /* > of A. */
  309. /* > */
  310. /* > On exit, DU is overwritten by the (n-1) elements of the first */
  311. /* > super-diagonal of U. */
  312. /* > \endverbatim */
  313. /* > */
  314. /* > \param[in,out] B */
  315. /* > \verbatim */
  316. /* > B is REAL array, dimension (LDB,NRHS) */
  317. /* > On entry, the N by NRHS matrix of right hand side matrix B. */
  318. /* > On exit, if INFO = 0, the N by NRHS solution matrix X. */
  319. /* > \endverbatim */
  320. /* > */
  321. /* > \param[in] LDB */
  322. /* > \verbatim */
  323. /* > LDB is INTEGER */
  324. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  325. /* > \endverbatim */
  326. /* > */
  327. /* > \param[out] INFO */
  328. /* > \verbatim */
  329. /* > INFO is INTEGER */
  330. /* > = 0: successful exit */
  331. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  332. /* > > 0: if INFO = i, U(i,i) is exactly zero, and the solution */
  333. /* > has not been computed. The factorization has not been */
  334. /* > completed unless i = N. */
  335. /* > \endverbatim */
  336. /* Authors: */
  337. /* ======== */
  338. /* > \author Univ. of Tennessee */
  339. /* > \author Univ. of California Berkeley */
  340. /* > \author Univ. of Colorado Denver */
  341. /* > \author NAG Ltd. */
  342. /* > \date December 2016 */
  343. /* > \ingroup realGTsolve */
  344. /* ===================================================================== */
  345. /* Subroutine */ void sgtsv_(integer *n, integer *nrhs, real *dl, real *d__,
  346. real *du, real *b, integer *ldb, integer *info)
  347. {
  348. /* System generated locals */
  349. integer b_dim1, b_offset, i__1, i__2;
  350. real r__1, r__2;
  351. /* Local variables */
  352. real fact, temp;
  353. integer i__, j;
  354. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  355. /* -- LAPACK driver routine (version 3.7.0) -- */
  356. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  357. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  358. /* December 2016 */
  359. /* ===================================================================== */
  360. /* Parameter adjustments */
  361. --dl;
  362. --d__;
  363. --du;
  364. b_dim1 = *ldb;
  365. b_offset = 1 + b_dim1 * 1;
  366. b -= b_offset;
  367. /* Function Body */
  368. *info = 0;
  369. if (*n < 0) {
  370. *info = -1;
  371. } else if (*nrhs < 0) {
  372. *info = -2;
  373. } else if (*ldb < f2cmax(1,*n)) {
  374. *info = -7;
  375. }
  376. if (*info != 0) {
  377. i__1 = -(*info);
  378. xerbla_("SGTSV ", &i__1, (ftnlen)5);
  379. return;
  380. }
  381. if (*n == 0) {
  382. return;
  383. }
  384. if (*nrhs == 1) {
  385. i__1 = *n - 2;
  386. for (i__ = 1; i__ <= i__1; ++i__) {
  387. if ((r__1 = d__[i__], abs(r__1)) >= (r__2 = dl[i__], abs(r__2))) {
  388. /* No row interchange required */
  389. if (d__[i__] != 0.f) {
  390. fact = dl[i__] / d__[i__];
  391. d__[i__ + 1] -= fact * du[i__];
  392. b[i__ + 1 + b_dim1] -= fact * b[i__ + b_dim1];
  393. } else {
  394. *info = i__;
  395. return;
  396. }
  397. dl[i__] = 0.f;
  398. } else {
  399. /* Interchange rows I and I+1 */
  400. fact = d__[i__] / dl[i__];
  401. d__[i__] = dl[i__];
  402. temp = d__[i__ + 1];
  403. d__[i__ + 1] = du[i__] - fact * temp;
  404. dl[i__] = du[i__ + 1];
  405. du[i__ + 1] = -fact * dl[i__];
  406. du[i__] = temp;
  407. temp = b[i__ + b_dim1];
  408. b[i__ + b_dim1] = b[i__ + 1 + b_dim1];
  409. b[i__ + 1 + b_dim1] = temp - fact * b[i__ + 1 + b_dim1];
  410. }
  411. /* L10: */
  412. }
  413. if (*n > 1) {
  414. i__ = *n - 1;
  415. if ((r__1 = d__[i__], abs(r__1)) >= (r__2 = dl[i__], abs(r__2))) {
  416. if (d__[i__] != 0.f) {
  417. fact = dl[i__] / d__[i__];
  418. d__[i__ + 1] -= fact * du[i__];
  419. b[i__ + 1 + b_dim1] -= fact * b[i__ + b_dim1];
  420. } else {
  421. *info = i__;
  422. return;
  423. }
  424. } else {
  425. fact = d__[i__] / dl[i__];
  426. d__[i__] = dl[i__];
  427. temp = d__[i__ + 1];
  428. d__[i__ + 1] = du[i__] - fact * temp;
  429. du[i__] = temp;
  430. temp = b[i__ + b_dim1];
  431. b[i__ + b_dim1] = b[i__ + 1 + b_dim1];
  432. b[i__ + 1 + b_dim1] = temp - fact * b[i__ + 1 + b_dim1];
  433. }
  434. }
  435. if (d__[*n] == 0.f) {
  436. *info = *n;
  437. return;
  438. }
  439. } else {
  440. i__1 = *n - 2;
  441. for (i__ = 1; i__ <= i__1; ++i__) {
  442. if ((r__1 = d__[i__], abs(r__1)) >= (r__2 = dl[i__], abs(r__2))) {
  443. /* No row interchange required */
  444. if (d__[i__] != 0.f) {
  445. fact = dl[i__] / d__[i__];
  446. d__[i__ + 1] -= fact * du[i__];
  447. i__2 = *nrhs;
  448. for (j = 1; j <= i__2; ++j) {
  449. b[i__ + 1 + j * b_dim1] -= fact * b[i__ + j * b_dim1];
  450. /* L20: */
  451. }
  452. } else {
  453. *info = i__;
  454. return;
  455. }
  456. dl[i__] = 0.f;
  457. } else {
  458. /* Interchange rows I and I+1 */
  459. fact = d__[i__] / dl[i__];
  460. d__[i__] = dl[i__];
  461. temp = d__[i__ + 1];
  462. d__[i__ + 1] = du[i__] - fact * temp;
  463. dl[i__] = du[i__ + 1];
  464. du[i__ + 1] = -fact * dl[i__];
  465. du[i__] = temp;
  466. i__2 = *nrhs;
  467. for (j = 1; j <= i__2; ++j) {
  468. temp = b[i__ + j * b_dim1];
  469. b[i__ + j * b_dim1] = b[i__ + 1 + j * b_dim1];
  470. b[i__ + 1 + j * b_dim1] = temp - fact * b[i__ + 1 + j *
  471. b_dim1];
  472. /* L30: */
  473. }
  474. }
  475. /* L40: */
  476. }
  477. if (*n > 1) {
  478. i__ = *n - 1;
  479. if ((r__1 = d__[i__], abs(r__1)) >= (r__2 = dl[i__], abs(r__2))) {
  480. if (d__[i__] != 0.f) {
  481. fact = dl[i__] / d__[i__];
  482. d__[i__ + 1] -= fact * du[i__];
  483. i__1 = *nrhs;
  484. for (j = 1; j <= i__1; ++j) {
  485. b[i__ + 1 + j * b_dim1] -= fact * b[i__ + j * b_dim1];
  486. /* L50: */
  487. }
  488. } else {
  489. *info = i__;
  490. return;
  491. }
  492. } else {
  493. fact = d__[i__] / dl[i__];
  494. d__[i__] = dl[i__];
  495. temp = d__[i__ + 1];
  496. d__[i__ + 1] = du[i__] - fact * temp;
  497. du[i__] = temp;
  498. i__1 = *nrhs;
  499. for (j = 1; j <= i__1; ++j) {
  500. temp = b[i__ + j * b_dim1];
  501. b[i__ + j * b_dim1] = b[i__ + 1 + j * b_dim1];
  502. b[i__ + 1 + j * b_dim1] = temp - fact * b[i__ + 1 + j *
  503. b_dim1];
  504. /* L60: */
  505. }
  506. }
  507. }
  508. if (d__[*n] == 0.f) {
  509. *info = *n;
  510. return;
  511. }
  512. }
  513. /* Back solve with the matrix U from the factorization. */
  514. if (*nrhs <= 2) {
  515. j = 1;
  516. L70:
  517. b[*n + j * b_dim1] /= d__[*n];
  518. if (*n > 1) {
  519. b[*n - 1 + j * b_dim1] = (b[*n - 1 + j * b_dim1] - du[*n - 1] * b[
  520. *n + j * b_dim1]) / d__[*n - 1];
  521. }
  522. for (i__ = *n - 2; i__ >= 1; --i__) {
  523. b[i__ + j * b_dim1] = (b[i__ + j * b_dim1] - du[i__] * b[i__ + 1
  524. + j * b_dim1] - dl[i__] * b[i__ + 2 + j * b_dim1]) / d__[
  525. i__];
  526. /* L80: */
  527. }
  528. if (j < *nrhs) {
  529. ++j;
  530. goto L70;
  531. }
  532. } else {
  533. i__1 = *nrhs;
  534. for (j = 1; j <= i__1; ++j) {
  535. b[*n + j * b_dim1] /= d__[*n];
  536. if (*n > 1) {
  537. b[*n - 1 + j * b_dim1] = (b[*n - 1 + j * b_dim1] - du[*n - 1]
  538. * b[*n + j * b_dim1]) / d__[*n - 1];
  539. }
  540. for (i__ = *n - 2; i__ >= 1; --i__) {
  541. b[i__ + j * b_dim1] = (b[i__ + j * b_dim1] - du[i__] * b[i__
  542. + 1 + j * b_dim1] - dl[i__] * b[i__ + 2 + j * b_dim1])
  543. / d__[i__];
  544. /* L90: */
  545. }
  546. /* L100: */
  547. }
  548. }
  549. return;
  550. /* End of SGTSV */
  551. } /* sgtsv_ */