You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sbdsdc.c 32 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__9 = 9;
  485. static integer c__0 = 0;
  486. static real c_b15 = 1.f;
  487. static integer c__1 = 1;
  488. static real c_b29 = 0.f;
  489. /* > \brief \b SBDSDC */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download SBDSDC + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sbdsdc.
  496. f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sbdsdc.
  499. f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sbdsdc.
  502. f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE SBDSDC( UPLO, COMPQ, N, D, E, U, LDU, VT, LDVT, Q, IQ, */
  508. /* WORK, IWORK, INFO ) */
  509. /* CHARACTER COMPQ, UPLO */
  510. /* INTEGER INFO, LDU, LDVT, N */
  511. /* INTEGER IQ( * ), IWORK( * ) */
  512. /* REAL D( * ), E( * ), Q( * ), U( LDU, * ), */
  513. /* $ VT( LDVT, * ), WORK( * ) */
  514. /* > \par Purpose: */
  515. /* ============= */
  516. /* > */
  517. /* > \verbatim */
  518. /* > */
  519. /* > SBDSDC computes the singular value decomposition (SVD) of a real */
  520. /* > N-by-N (upper or lower) bidiagonal matrix B: B = U * S * VT, */
  521. /* > using a divide and conquer method, where S is a diagonal matrix */
  522. /* > with non-negative diagonal elements (the singular values of B), and */
  523. /* > U and VT are orthogonal matrices of left and right singular vectors, */
  524. /* > respectively. SBDSDC can be used to compute all singular values, */
  525. /* > and optionally, singular vectors or singular vectors in compact form. */
  526. /* > */
  527. /* > This code makes very mild assumptions about floating point */
  528. /* > arithmetic. It will work on machines with a guard digit in */
  529. /* > add/subtract, or on those binary machines without guard digits */
  530. /* > which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. */
  531. /* > It could conceivably fail on hexadecimal or decimal machines */
  532. /* > without guard digits, but we know of none. See SLASD3 for details. */
  533. /* > */
  534. /* > The code currently calls SLASDQ if singular values only are desired. */
  535. /* > However, it can be slightly modified to compute singular values */
  536. /* > using the divide and conquer method. */
  537. /* > \endverbatim */
  538. /* Arguments: */
  539. /* ========== */
  540. /* > \param[in] UPLO */
  541. /* > \verbatim */
  542. /* > UPLO is CHARACTER*1 */
  543. /* > = 'U': B is upper bidiagonal. */
  544. /* > = 'L': B is lower bidiagonal. */
  545. /* > \endverbatim */
  546. /* > */
  547. /* > \param[in] COMPQ */
  548. /* > \verbatim */
  549. /* > COMPQ is CHARACTER*1 */
  550. /* > Specifies whether singular vectors are to be computed */
  551. /* > as follows: */
  552. /* > = 'N': Compute singular values only; */
  553. /* > = 'P': Compute singular values and compute singular */
  554. /* > vectors in compact form; */
  555. /* > = 'I': Compute singular values and singular vectors. */
  556. /* > \endverbatim */
  557. /* > */
  558. /* > \param[in] N */
  559. /* > \verbatim */
  560. /* > N is INTEGER */
  561. /* > The order of the matrix B. N >= 0. */
  562. /* > \endverbatim */
  563. /* > */
  564. /* > \param[in,out] D */
  565. /* > \verbatim */
  566. /* > D is REAL array, dimension (N) */
  567. /* > On entry, the n diagonal elements of the bidiagonal matrix B. */
  568. /* > On exit, if INFO=0, the singular values of B. */
  569. /* > \endverbatim */
  570. /* > */
  571. /* > \param[in,out] E */
  572. /* > \verbatim */
  573. /* > E is REAL array, dimension (N-1) */
  574. /* > On entry, the elements of E contain the offdiagonal */
  575. /* > elements of the bidiagonal matrix whose SVD is desired. */
  576. /* > On exit, E has been destroyed. */
  577. /* > \endverbatim */
  578. /* > */
  579. /* > \param[out] U */
  580. /* > \verbatim */
  581. /* > U is REAL array, dimension (LDU,N) */
  582. /* > If COMPQ = 'I', then: */
  583. /* > On exit, if INFO = 0, U contains the left singular vectors */
  584. /* > of the bidiagonal matrix. */
  585. /* > For other values of COMPQ, U is not referenced. */
  586. /* > \endverbatim */
  587. /* > */
  588. /* > \param[in] LDU */
  589. /* > \verbatim */
  590. /* > LDU is INTEGER */
  591. /* > The leading dimension of the array U. LDU >= 1. */
  592. /* > If singular vectors are desired, then LDU >= f2cmax( 1, N ). */
  593. /* > \endverbatim */
  594. /* > */
  595. /* > \param[out] VT */
  596. /* > \verbatim */
  597. /* > VT is REAL array, dimension (LDVT,N) */
  598. /* > If COMPQ = 'I', then: */
  599. /* > On exit, if INFO = 0, VT**T contains the right singular */
  600. /* > vectors of the bidiagonal matrix. */
  601. /* > For other values of COMPQ, VT is not referenced. */
  602. /* > \endverbatim */
  603. /* > */
  604. /* > \param[in] LDVT */
  605. /* > \verbatim */
  606. /* > LDVT is INTEGER */
  607. /* > The leading dimension of the array VT. LDVT >= 1. */
  608. /* > If singular vectors are desired, then LDVT >= f2cmax( 1, N ). */
  609. /* > \endverbatim */
  610. /* > */
  611. /* > \param[out] Q */
  612. /* > \verbatim */
  613. /* > Q is REAL array, dimension (LDQ) */
  614. /* > If COMPQ = 'P', then: */
  615. /* > On exit, if INFO = 0, Q and IQ contain the left */
  616. /* > and right singular vectors in a compact form, */
  617. /* > requiring O(N log N) space instead of 2*N**2. */
  618. /* > In particular, Q contains all the REAL data in */
  619. /* > LDQ >= N*(11 + 2*SMLSIZ + 8*INT(LOG_2(N/(SMLSIZ+1)))) */
  620. /* > words of memory, where SMLSIZ is returned by ILAENV and */
  621. /* > is equal to the maximum size of the subproblems at the */
  622. /* > bottom of the computation tree (usually about 25). */
  623. /* > For other values of COMPQ, Q is not referenced. */
  624. /* > \endverbatim */
  625. /* > */
  626. /* > \param[out] IQ */
  627. /* > \verbatim */
  628. /* > IQ is INTEGER array, dimension (LDIQ) */
  629. /* > If COMPQ = 'P', then: */
  630. /* > On exit, if INFO = 0, Q and IQ contain the left */
  631. /* > and right singular vectors in a compact form, */
  632. /* > requiring O(N log N) space instead of 2*N**2. */
  633. /* > In particular, IQ contains all INTEGER data in */
  634. /* > LDIQ >= N*(3 + 3*INT(LOG_2(N/(SMLSIZ+1)))) */
  635. /* > words of memory, where SMLSIZ is returned by ILAENV and */
  636. /* > is equal to the maximum size of the subproblems at the */
  637. /* > bottom of the computation tree (usually about 25). */
  638. /* > For other values of COMPQ, IQ is not referenced. */
  639. /* > \endverbatim */
  640. /* > */
  641. /* > \param[out] WORK */
  642. /* > \verbatim */
  643. /* > WORK is REAL array, dimension (MAX(1,LWORK)) */
  644. /* > If COMPQ = 'N' then LWORK >= (4 * N). */
  645. /* > If COMPQ = 'P' then LWORK >= (6 * N). */
  646. /* > If COMPQ = 'I' then LWORK >= (3 * N**2 + 4 * N). */
  647. /* > \endverbatim */
  648. /* > */
  649. /* > \param[out] IWORK */
  650. /* > \verbatim */
  651. /* > IWORK is INTEGER array, dimension (8*N) */
  652. /* > \endverbatim */
  653. /* > */
  654. /* > \param[out] INFO */
  655. /* > \verbatim */
  656. /* > INFO is INTEGER */
  657. /* > = 0: successful exit. */
  658. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  659. /* > > 0: The algorithm failed to compute a singular value. */
  660. /* > The update process of divide and conquer failed. */
  661. /* > \endverbatim */
  662. /* Authors: */
  663. /* ======== */
  664. /* > \author Univ. of Tennessee */
  665. /* > \author Univ. of California Berkeley */
  666. /* > \author Univ. of Colorado Denver */
  667. /* > \author NAG Ltd. */
  668. /* > \date June 2016 */
  669. /* > \ingroup auxOTHERcomputational */
  670. /* > \par Contributors: */
  671. /* ================== */
  672. /* > */
  673. /* > Ming Gu and Huan Ren, Computer Science Division, University of */
  674. /* > California at Berkeley, USA */
  675. /* > */
  676. /* ===================================================================== */
  677. /* Subroutine */ void sbdsdc_(char *uplo, char *compq, integer *n, real *d__,
  678. real *e, real *u, integer *ldu, real *vt, integer *ldvt, real *q,
  679. integer *iq, real *work, integer *iwork, integer *info)
  680. {
  681. /* System generated locals */
  682. integer u_dim1, u_offset, vt_dim1, vt_offset, i__1, i__2;
  683. real r__1;
  684. /* Local variables */
  685. integer difl, difr, ierr, perm, mlvl, sqre, i__, j, k;
  686. real p, r__;
  687. integer z__;
  688. extern logical lsame_(char *, char *);
  689. integer poles;
  690. extern /* Subroutine */ void slasr_(char *, char *, char *, integer *,
  691. integer *, real *, real *, real *, integer *);
  692. integer iuplo, nsize, start;
  693. extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *,
  694. integer *), sswap_(integer *, real *, integer *, real *, integer *
  695. ), slasd0_(integer *, integer *, real *, real *, real *, integer *
  696. , real *, integer *, integer *, integer *, real *, integer *);
  697. integer ic, ii, kk;
  698. real cs;
  699. integer is, iu;
  700. real sn;
  701. extern real slamch_(char *);
  702. extern /* Subroutine */ void slasda_(integer *, integer *, integer *,
  703. integer *, real *, real *, real *, integer *, real *, integer *,
  704. real *, real *, real *, real *, integer *, integer *, integer *,
  705. integer *, real *, real *, real *, real *, integer *, integer *);
  706. extern int xerbla_(char *, integer *, ftnlen);
  707. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  708. integer *, integer *, ftnlen, ftnlen);
  709. extern /* Subroutine */ void slascl_(char *, integer *, integer *, real *,
  710. real *, integer *, integer *, real *, integer *, integer *);
  711. integer givcol;
  712. extern /* Subroutine */ void slasdq_(char *, integer *, integer *, integer
  713. *, integer *, integer *, real *, real *, real *, integer *, real *
  714. , integer *, real *, integer *, real *, integer *);
  715. integer icompq;
  716. extern /* Subroutine */ void slaset_(char *, integer *, integer *, real *,
  717. real *, real *, integer *), slartg_(real *, real *, real *
  718. , real *, real *);
  719. real orgnrm;
  720. integer givnum;
  721. extern real slanst_(char *, integer *, real *, real *);
  722. integer givptr, nm1, qstart, smlsiz, wstart, smlszp;
  723. real eps;
  724. integer ivt;
  725. /* -- LAPACK computational routine (version 3.7.1) -- */
  726. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  727. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  728. /* June 2016 */
  729. /* ===================================================================== */
  730. /* Changed dimension statement in comment describing E from (N) to */
  731. /* (N-1). Sven, 17 Feb 05. */
  732. /* ===================================================================== */
  733. /* Test the input parameters. */
  734. /* Parameter adjustments */
  735. --d__;
  736. --e;
  737. u_dim1 = *ldu;
  738. u_offset = 1 + u_dim1 * 1;
  739. u -= u_offset;
  740. vt_dim1 = *ldvt;
  741. vt_offset = 1 + vt_dim1 * 1;
  742. vt -= vt_offset;
  743. --q;
  744. --iq;
  745. --work;
  746. --iwork;
  747. /* Function Body */
  748. *info = 0;
  749. iuplo = 0;
  750. if (lsame_(uplo, "U")) {
  751. iuplo = 1;
  752. }
  753. if (lsame_(uplo, "L")) {
  754. iuplo = 2;
  755. }
  756. if (lsame_(compq, "N")) {
  757. icompq = 0;
  758. } else if (lsame_(compq, "P")) {
  759. icompq = 1;
  760. } else if (lsame_(compq, "I")) {
  761. icompq = 2;
  762. } else {
  763. icompq = -1;
  764. }
  765. if (iuplo == 0) {
  766. *info = -1;
  767. } else if (icompq < 0) {
  768. *info = -2;
  769. } else if (*n < 0) {
  770. *info = -3;
  771. } else if (*ldu < 1 || icompq == 2 && *ldu < *n) {
  772. *info = -7;
  773. } else if (*ldvt < 1 || icompq == 2 && *ldvt < *n) {
  774. *info = -9;
  775. }
  776. if (*info != 0) {
  777. i__1 = -(*info);
  778. xerbla_("SBDSDC", &i__1, (ftnlen)6);
  779. return;
  780. }
  781. /* Quick return if possible */
  782. if (*n == 0) {
  783. return;
  784. }
  785. smlsiz = ilaenv_(&c__9, "SBDSDC", " ", &c__0, &c__0, &c__0, &c__0, (
  786. ftnlen)6, (ftnlen)1);
  787. if (*n == 1) {
  788. if (icompq == 1) {
  789. q[1] = r_sign(&c_b15, &d__[1]);
  790. q[smlsiz * *n + 1] = 1.f;
  791. } else if (icompq == 2) {
  792. u[u_dim1 + 1] = r_sign(&c_b15, &d__[1]);
  793. vt[vt_dim1 + 1] = 1.f;
  794. }
  795. d__[1] = abs(d__[1]);
  796. return;
  797. }
  798. nm1 = *n - 1;
  799. /* If matrix lower bidiagonal, rotate to be upper bidiagonal */
  800. /* by applying Givens rotations on the left */
  801. wstart = 1;
  802. qstart = 3;
  803. if (icompq == 1) {
  804. scopy_(n, &d__[1], &c__1, &q[1], &c__1);
  805. i__1 = *n - 1;
  806. scopy_(&i__1, &e[1], &c__1, &q[*n + 1], &c__1);
  807. }
  808. if (iuplo == 2) {
  809. qstart = 5;
  810. if (icompq == 2) {
  811. wstart = (*n << 1) - 1;
  812. }
  813. i__1 = *n - 1;
  814. for (i__ = 1; i__ <= i__1; ++i__) {
  815. slartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
  816. d__[i__] = r__;
  817. e[i__] = sn * d__[i__ + 1];
  818. d__[i__ + 1] = cs * d__[i__ + 1];
  819. if (icompq == 1) {
  820. q[i__ + (*n << 1)] = cs;
  821. q[i__ + *n * 3] = sn;
  822. } else if (icompq == 2) {
  823. work[i__] = cs;
  824. work[nm1 + i__] = -sn;
  825. }
  826. /* L10: */
  827. }
  828. }
  829. /* If ICOMPQ = 0, use SLASDQ to compute the singular values. */
  830. if (icompq == 0) {
  831. /* Ignore WSTART, instead using WORK( 1 ), since the two vectors */
  832. /* for CS and -SN above are added only if ICOMPQ == 2, */
  833. /* and adding them exceeds documented WORK size of 4*n. */
  834. slasdq_("U", &c__0, n, &c__0, &c__0, &c__0, &d__[1], &e[1], &vt[
  835. vt_offset], ldvt, &u[u_offset], ldu, &u[u_offset], ldu, &work[
  836. 1], info);
  837. goto L40;
  838. }
  839. /* If N is smaller than the minimum divide size SMLSIZ, then solve */
  840. /* the problem with another solver. */
  841. if (*n <= smlsiz) {
  842. if (icompq == 2) {
  843. slaset_("A", n, n, &c_b29, &c_b15, &u[u_offset], ldu);
  844. slaset_("A", n, n, &c_b29, &c_b15, &vt[vt_offset], ldvt);
  845. slasdq_("U", &c__0, n, n, n, &c__0, &d__[1], &e[1], &vt[vt_offset]
  846. , ldvt, &u[u_offset], ldu, &u[u_offset], ldu, &work[
  847. wstart], info);
  848. } else if (icompq == 1) {
  849. iu = 1;
  850. ivt = iu + *n;
  851. slaset_("A", n, n, &c_b29, &c_b15, &q[iu + (qstart - 1) * *n], n);
  852. slaset_("A", n, n, &c_b29, &c_b15, &q[ivt + (qstart - 1) * *n], n);
  853. slasdq_("U", &c__0, n, n, n, &c__0, &d__[1], &e[1], &q[ivt + (
  854. qstart - 1) * *n], n, &q[iu + (qstart - 1) * *n], n, &q[
  855. iu + (qstart - 1) * *n], n, &work[wstart], info);
  856. }
  857. goto L40;
  858. }
  859. if (icompq == 2) {
  860. slaset_("A", n, n, &c_b29, &c_b15, &u[u_offset], ldu);
  861. slaset_("A", n, n, &c_b29, &c_b15, &vt[vt_offset], ldvt);
  862. }
  863. /* Scale. */
  864. orgnrm = slanst_("M", n, &d__[1], &e[1]);
  865. if (orgnrm == 0.f) {
  866. return;
  867. }
  868. slascl_("G", &c__0, &c__0, &orgnrm, &c_b15, n, &c__1, &d__[1], n, &ierr);
  869. slascl_("G", &c__0, &c__0, &orgnrm, &c_b15, &nm1, &c__1, &e[1], &nm1, &
  870. ierr);
  871. eps = slamch_("Epsilon");
  872. mlvl = (integer) (log((real) (*n) / (real) (smlsiz + 1)) / log(2.f)) + 1;
  873. smlszp = smlsiz + 1;
  874. if (icompq == 1) {
  875. iu = 1;
  876. ivt = smlsiz + 1;
  877. difl = ivt + smlszp;
  878. difr = difl + mlvl;
  879. z__ = difr + (mlvl << 1);
  880. ic = z__ + mlvl;
  881. is = ic + 1;
  882. poles = is + 1;
  883. givnum = poles + (mlvl << 1);
  884. k = 1;
  885. givptr = 2;
  886. perm = 3;
  887. givcol = perm + mlvl;
  888. }
  889. i__1 = *n;
  890. for (i__ = 1; i__ <= i__1; ++i__) {
  891. if ((r__1 = d__[i__], abs(r__1)) < eps) {
  892. d__[i__] = r_sign(&eps, &d__[i__]);
  893. }
  894. /* L20: */
  895. }
  896. start = 1;
  897. sqre = 0;
  898. i__1 = nm1;
  899. for (i__ = 1; i__ <= i__1; ++i__) {
  900. if ((r__1 = e[i__], abs(r__1)) < eps || i__ == nm1) {
  901. /* Subproblem found. First determine its size and then */
  902. /* apply divide and conquer on it. */
  903. if (i__ < nm1) {
  904. /* A subproblem with E(I) small for I < NM1. */
  905. nsize = i__ - start + 1;
  906. } else if ((r__1 = e[i__], abs(r__1)) >= eps) {
  907. /* A subproblem with E(NM1) not too small but I = NM1. */
  908. nsize = *n - start + 1;
  909. } else {
  910. /* A subproblem with E(NM1) small. This implies an */
  911. /* 1-by-1 subproblem at D(N). Solve this 1-by-1 problem */
  912. /* first. */
  913. nsize = i__ - start + 1;
  914. if (icompq == 2) {
  915. u[*n + *n * u_dim1] = r_sign(&c_b15, &d__[*n]);
  916. vt[*n + *n * vt_dim1] = 1.f;
  917. } else if (icompq == 1) {
  918. q[*n + (qstart - 1) * *n] = r_sign(&c_b15, &d__[*n]);
  919. q[*n + (smlsiz + qstart - 1) * *n] = 1.f;
  920. }
  921. d__[*n] = (r__1 = d__[*n], abs(r__1));
  922. }
  923. if (icompq == 2) {
  924. slasd0_(&nsize, &sqre, &d__[start], &e[start], &u[start +
  925. start * u_dim1], ldu, &vt[start + start * vt_dim1],
  926. ldvt, &smlsiz, &iwork[1], &work[wstart], info);
  927. } else {
  928. slasda_(&icompq, &smlsiz, &nsize, &sqre, &d__[start], &e[
  929. start], &q[start + (iu + qstart - 2) * *n], n, &q[
  930. start + (ivt + qstart - 2) * *n], &iq[start + k * *n],
  931. &q[start + (difl + qstart - 2) * *n], &q[start + (
  932. difr + qstart - 2) * *n], &q[start + (z__ + qstart -
  933. 2) * *n], &q[start + (poles + qstart - 2) * *n], &iq[
  934. start + givptr * *n], &iq[start + givcol * *n], n, &
  935. iq[start + perm * *n], &q[start + (givnum + qstart -
  936. 2) * *n], &q[start + (ic + qstart - 2) * *n], &q[
  937. start + (is + qstart - 2) * *n], &work[wstart], &
  938. iwork[1], info);
  939. }
  940. if (*info != 0) {
  941. return;
  942. }
  943. start = i__ + 1;
  944. }
  945. /* L30: */
  946. }
  947. /* Unscale */
  948. slascl_("G", &c__0, &c__0, &c_b15, &orgnrm, n, &c__1, &d__[1], n, &ierr);
  949. L40:
  950. /* Use Selection Sort to minimize swaps of singular vectors */
  951. i__1 = *n;
  952. for (ii = 2; ii <= i__1; ++ii) {
  953. i__ = ii - 1;
  954. kk = i__;
  955. p = d__[i__];
  956. i__2 = *n;
  957. for (j = ii; j <= i__2; ++j) {
  958. if (d__[j] > p) {
  959. kk = j;
  960. p = d__[j];
  961. }
  962. /* L50: */
  963. }
  964. if (kk != i__) {
  965. d__[kk] = d__[i__];
  966. d__[i__] = p;
  967. if (icompq == 1) {
  968. iq[i__] = kk;
  969. } else if (icompq == 2) {
  970. sswap_(n, &u[i__ * u_dim1 + 1], &c__1, &u[kk * u_dim1 + 1], &
  971. c__1);
  972. sswap_(n, &vt[i__ + vt_dim1], ldvt, &vt[kk + vt_dim1], ldvt);
  973. }
  974. } else if (icompq == 1) {
  975. iq[i__] = i__;
  976. }
  977. /* L60: */
  978. }
  979. /* If ICOMPQ = 1, use IQ(N,1) as the indicator for UPLO */
  980. if (icompq == 1) {
  981. if (iuplo == 1) {
  982. iq[*n] = 1;
  983. } else {
  984. iq[*n] = 0;
  985. }
  986. }
  987. /* If B is lower bidiagonal, update U by those Givens rotations */
  988. /* which rotated B to be upper bidiagonal */
  989. if (iuplo == 2 && icompq == 2) {
  990. slasr_("L", "V", "B", n, n, &work[1], &work[*n], &u[u_offset], ldu);
  991. }
  992. return;
  993. /* End of SBDSDC */
  994. } /* sbdsdc_ */