|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727 |
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static complex c_b1 = {0.f,0.f};
- static complex c_b2 = {1.f,0.f};
- static integer c__6 = 6;
- static integer c__0 = 0;
- static integer c__2 = 2;
- static integer c_n1 = -1;
- static integer c__1 = 1;
-
- /* > \brief <b> CGESVD computes the singular value decomposition (SVD) for GE matrices</b> */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download CGESVD + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgesvd.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgesvd.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgesvd.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE CGESVD( JOBU, JOBVT, M, N, A, LDA, S, U, LDU, VT, LDVT, */
- /* WORK, LWORK, RWORK, INFO ) */
-
- /* CHARACTER JOBU, JOBVT */
- /* INTEGER INFO, LDA, LDU, LDVT, LWORK, M, N */
- /* REAL RWORK( * ), S( * ) */
- /* COMPLEX A( LDA, * ), U( LDU, * ), VT( LDVT, * ), */
- /* $ WORK( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > CGESVD computes the singular value decomposition (SVD) of a complex */
- /* > M-by-N matrix A, optionally computing the left and/or right singular */
- /* > vectors. The SVD is written */
- /* > */
- /* > A = U * SIGMA * conjugate-transpose(V) */
- /* > */
- /* > where SIGMA is an M-by-N matrix which is zero except for its */
- /* > f2cmin(m,n) diagonal elements, U is an M-by-M unitary matrix, and */
- /* > V is an N-by-N unitary matrix. The diagonal elements of SIGMA */
- /* > are the singular values of A; they are real and non-negative, and */
- /* > are returned in descending order. The first f2cmin(m,n) columns of */
- /* > U and V are the left and right singular vectors of A. */
- /* > */
- /* > Note that the routine returns V**H, not V. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] JOBU */
- /* > \verbatim */
- /* > JOBU is CHARACTER*1 */
- /* > Specifies options for computing all or part of the matrix U: */
- /* > = 'A': all M columns of U are returned in array U: */
- /* > = 'S': the first f2cmin(m,n) columns of U (the left singular */
- /* > vectors) are returned in the array U; */
- /* > = 'O': the first f2cmin(m,n) columns of U (the left singular */
- /* > vectors) are overwritten on the array A; */
- /* > = 'N': no columns of U (no left singular vectors) are */
- /* > computed. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] JOBVT */
- /* > \verbatim */
- /* > JOBVT is CHARACTER*1 */
- /* > Specifies options for computing all or part of the matrix */
- /* > V**H: */
- /* > = 'A': all N rows of V**H are returned in the array VT; */
- /* > = 'S': the first f2cmin(m,n) rows of V**H (the right singular */
- /* > vectors) are returned in the array VT; */
- /* > = 'O': the first f2cmin(m,n) rows of V**H (the right singular */
- /* > vectors) are overwritten on the array A; */
- /* > = 'N': no rows of V**H (no right singular vectors) are */
- /* > computed. */
- /* > */
- /* > JOBVT and JOBU cannot both be 'O'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] M */
- /* > \verbatim */
- /* > M is INTEGER */
- /* > The number of rows of the input matrix A. M >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The number of columns of the input matrix A. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] A */
- /* > \verbatim */
- /* > A is COMPLEX array, dimension (LDA,N) */
- /* > On entry, the M-by-N matrix A. */
- /* > On exit, */
- /* > if JOBU = 'O', A is overwritten with the first f2cmin(m,n) */
- /* > columns of U (the left singular vectors, */
- /* > stored columnwise); */
- /* > if JOBVT = 'O', A is overwritten with the first f2cmin(m,n) */
- /* > rows of V**H (the right singular vectors, */
- /* > stored rowwise); */
- /* > if JOBU .ne. 'O' and JOBVT .ne. 'O', the contents of A */
- /* > are destroyed. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] S */
- /* > \verbatim */
- /* > S is REAL array, dimension (f2cmin(M,N)) */
- /* > The singular values of A, sorted so that S(i) >= S(i+1). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] U */
- /* > \verbatim */
- /* > U is COMPLEX array, dimension (LDU,UCOL) */
- /* > (LDU,M) if JOBU = 'A' or (LDU,f2cmin(M,N)) if JOBU = 'S'. */
- /* > If JOBU = 'A', U contains the M-by-M unitary matrix U; */
- /* > if JOBU = 'S', U contains the first f2cmin(m,n) columns of U */
- /* > (the left singular vectors, stored columnwise); */
- /* > if JOBU = 'N' or 'O', U is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDU */
- /* > \verbatim */
- /* > LDU is INTEGER */
- /* > The leading dimension of the array U. LDU >= 1; if */
- /* > JOBU = 'S' or 'A', LDU >= M. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] VT */
- /* > \verbatim */
- /* > VT is COMPLEX array, dimension (LDVT,N) */
- /* > If JOBVT = 'A', VT contains the N-by-N unitary matrix */
- /* > V**H; */
- /* > if JOBVT = 'S', VT contains the first f2cmin(m,n) rows of */
- /* > V**H (the right singular vectors, stored rowwise); */
- /* > if JOBVT = 'N' or 'O', VT is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDVT */
- /* > \verbatim */
- /* > LDVT is INTEGER */
- /* > The leading dimension of the array VT. LDVT >= 1; if */
- /* > JOBVT = 'A', LDVT >= N; if JOBVT = 'S', LDVT >= f2cmin(M,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
- /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LWORK */
- /* > \verbatim */
- /* > LWORK is INTEGER */
- /* > The dimension of the array WORK. */
- /* > LWORK >= MAX(1,2*MIN(M,N)+MAX(M,N)). */
- /* > For good performance, LWORK should generally be larger. */
- /* > */
- /* > If LWORK = -1, then a workspace query is assumed; the routine */
- /* > only calculates the optimal size of the WORK array, returns */
- /* > this value as the first entry of the WORK array, and no error */
- /* > message related to LWORK is issued by XERBLA. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] RWORK */
- /* > \verbatim */
- /* > RWORK is REAL array, dimension (5*f2cmin(M,N)) */
- /* > On exit, if INFO > 0, RWORK(1:MIN(M,N)-1) contains the */
- /* > unconverged superdiagonal elements of an upper bidiagonal */
- /* > matrix B whose diagonal is in S (not necessarily sorted). */
- /* > B satisfies A = U * B * VT, so it has the same singular */
- /* > values as A, and singular vectors related by U and VT. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit. */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > > 0: if CBDSQR did not converge, INFO specifies how many */
- /* > superdiagonals of an intermediate bidiagonal form B */
- /* > did not converge to zero. See the description of RWORK */
- /* > above for details. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date April 2012 */
-
- /* > \ingroup complexGEsing */
-
- /* ===================================================================== */
- /* Subroutine */ void cgesvd_(char *jobu, char *jobvt, integer *m, integer *n,
- complex *a, integer *lda, real *s, complex *u, integer *ldu, complex *
- vt, integer *ldvt, complex *work, integer *lwork, real *rwork,
- integer *info)
- {
- /* System generated locals */
- address a__1[2];
- integer a_dim1, a_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1[2],
- i__2, i__3, i__4;
- char ch__1[2];
-
- /* Local variables */
- complex cdum[1];
- integer iscl;
- real anrm;
- integer ierr, itau, ncvt, nrvt, lwork_cgebrd__, lwork_cgelqf__,
- lwork_cgeqrf__, i__;
- extern /* Subroutine */ void cgemm_(char *, char *, integer *, integer *,
- integer *, complex *, complex *, integer *, complex *, integer *,
- complex *, complex *, integer *);
- extern logical lsame_(char *, char *);
- integer chunk, minmn, wrkbl, itaup, itauq, mnthr, iwork;
- logical wntua, wntva, wntun, wntuo, wntvn, wntvo, wntus, wntvs;
- integer ie;
- extern /* Subroutine */ void cgebrd_(integer *, integer *, complex *,
- integer *, real *, real *, complex *, complex *, complex *,
- integer *, integer *);
- extern real clange_(char *, integer *, integer *, complex *, integer *,
- real *);
- integer ir, iu;
- extern /* Subroutine */ void cgelqf_(integer *, integer *, complex *,
- integer *, complex *, complex *, integer *, integer *), clascl_(
- char *, integer *, integer *, real *, real *, integer *, integer *
- , complex *, integer *, integer *), cgeqrf_(integer *,
- integer *, complex *, integer *, complex *, complex *, integer *,
- integer *);
- extern real slamch_(char *);
- extern /* Subroutine */ void clacpy_(char *, integer *, integer *, complex
- *, integer *, complex *, integer *), claset_(char *,
- integer *, integer *, complex *, complex *, complex *, integer *), cbdsqr_(char *, integer *, integer *, integer *, integer
- *, real *, real *, complex *, integer *, complex *, integer *,
- complex *, integer *, real *, integer *);
- extern int xerbla_(char *, integer *, ftnlen);
- extern void cungbr_(char *, integer *, integer *, integer
- *, complex *, integer *, complex *, complex *, integer *, integer
- *);
- real bignum;
- extern /* Subroutine */ void slascl_(char *, integer *, integer *, real *,
- real *, integer *, integer *, real *, integer *, integer *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- extern /* Subroutine */ void cunmbr_(char *, char *, char *, integer *,
- integer *, integer *, complex *, integer *, complex *, complex *,
- integer *, complex *, integer *, integer *), cunglq_(integer *, integer *, integer *, complex *,
- integer *, complex *, complex *, integer *, integer *), cungqr_(
- integer *, integer *, integer *, complex *, integer *, complex *,
- complex *, integer *, integer *);
- integer ldwrkr, minwrk, ldwrku, maxwrk;
- real smlnum;
- integer irwork;
- logical lquery, wntuas, wntvas;
- integer lwork_cungbr_p__, lwork_cungbr_q__, lwork_cunglq_n__,
- lwork_cunglq_m__, lwork_cungqr_m__, lwork_cungqr_n__, blk, ncu;
- real dum[1], eps;
- integer nru;
-
-
- /* -- LAPACK driver routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* April 2012 */
-
-
- /* ===================================================================== */
-
-
- /* Test the input arguments */
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --s;
- u_dim1 = *ldu;
- u_offset = 1 + u_dim1 * 1;
- u -= u_offset;
- vt_dim1 = *ldvt;
- vt_offset = 1 + vt_dim1 * 1;
- vt -= vt_offset;
- --work;
- --rwork;
-
- /* Function Body */
- *info = 0;
- minmn = f2cmin(*m,*n);
- wntua = lsame_(jobu, "A");
- wntus = lsame_(jobu, "S");
- wntuas = wntua || wntus;
- wntuo = lsame_(jobu, "O");
- wntun = lsame_(jobu, "N");
- wntva = lsame_(jobvt, "A");
- wntvs = lsame_(jobvt, "S");
- wntvas = wntva || wntvs;
- wntvo = lsame_(jobvt, "O");
- wntvn = lsame_(jobvt, "N");
- lquery = *lwork == -1;
-
- if (! (wntua || wntus || wntuo || wntun)) {
- *info = -1;
- } else if (! (wntva || wntvs || wntvo || wntvn) || wntvo && wntuo) {
- *info = -2;
- } else if (*m < 0) {
- *info = -3;
- } else if (*n < 0) {
- *info = -4;
- } else if (*lda < f2cmax(1,*m)) {
- *info = -6;
- } else if (*ldu < 1 || wntuas && *ldu < *m) {
- *info = -9;
- } else if (*ldvt < 1 || wntva && *ldvt < *n || wntvs && *ldvt < minmn) {
- *info = -11;
- }
-
- /* Compute workspace */
- /* (Note: Comments in the code beginning "Workspace:" describe the */
- /* minimal amount of workspace needed at that point in the code, */
- /* as well as the preferred amount for good performance. */
- /* CWorkspace refers to complex workspace, and RWorkspace to */
- /* real workspace. NB refers to the optimal block size for the */
- /* immediately following subroutine, as returned by ILAENV.) */
-
- if (*info == 0) {
- minwrk = 1;
- maxwrk = 1;
- if (*m >= *n && minmn > 0) {
-
- /* Space needed for ZBDSQR is BDSPAC = 5*N */
-
- /* Writing concatenation */
- i__1[0] = 1, a__1[0] = jobu;
- i__1[1] = 1, a__1[1] = jobvt;
- s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
- mnthr = ilaenv_(&c__6, "CGESVD", ch__1, m, n, &c__0, &c__0, (
- ftnlen)6, (ftnlen)2);
- /* Compute space needed for CGEQRF */
- cgeqrf_(m, n, &a[a_offset], lda, cdum, cdum, &c_n1, &ierr);
- lwork_cgeqrf__ = (integer) cdum[0].r;
- /* Compute space needed for CUNGQR */
- cungqr_(m, n, n, &a[a_offset], lda, cdum, cdum, &c_n1, &ierr);
- lwork_cungqr_n__ = (integer) cdum[0].r;
- cungqr_(m, m, n, &a[a_offset], lda, cdum, cdum, &c_n1, &ierr);
- lwork_cungqr_m__ = (integer) cdum[0].r;
- /* Compute space needed for CGEBRD */
- cgebrd_(n, n, &a[a_offset], lda, &s[1], dum, cdum, cdum, cdum, &
- c_n1, &ierr);
- lwork_cgebrd__ = (integer) cdum[0].r;
- /* Compute space needed for CUNGBR */
- cungbr_("P", n, n, n, &a[a_offset], lda, cdum, cdum, &c_n1, &ierr);
- lwork_cungbr_p__ = (integer) cdum[0].r;
- cungbr_("Q", n, n, n, &a[a_offset], lda, cdum, cdum, &c_n1, &ierr);
- lwork_cungbr_q__ = (integer) cdum[0].r;
-
- /* Writing concatenation */
- i__1[0] = 1, a__1[0] = jobu;
- i__1[1] = 1, a__1[1] = jobvt;
- s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
- mnthr = ilaenv_(&c__6, "CGESVD", ch__1, m, n, &c__0, &c__0, (
- ftnlen)6, (ftnlen)2);
- if (*m >= mnthr) {
- if (wntun) {
-
- /* Path 1 (M much larger than N, JOBU='N') */
-
- maxwrk = *n + lwork_cgeqrf__;
- /* Computing MAX */
- i__2 = maxwrk, i__3 = (*n << 1) + lwork_cgebrd__;
- maxwrk = f2cmax(i__2,i__3);
- if (wntvo || wntvas) {
- /* Computing MAX */
- i__2 = maxwrk, i__3 = (*n << 1) + lwork_cungbr_p__;
- maxwrk = f2cmax(i__2,i__3);
- }
- minwrk = *n * 3;
- } else if (wntuo && wntvn) {
-
- /* Path 2 (M much larger than N, JOBU='O', JOBVT='N') */
-
- wrkbl = *n + lwork_cgeqrf__;
- /* Computing MAX */
- i__2 = wrkbl, i__3 = *n + lwork_cungqr_n__;
- wrkbl = f2cmax(i__2,i__3);
- /* Computing MAX */
- i__2 = wrkbl, i__3 = (*n << 1) + lwork_cgebrd__;
- wrkbl = f2cmax(i__2,i__3);
- /* Computing MAX */
- i__2 = wrkbl, i__3 = (*n << 1) + lwork_cungbr_q__;
- wrkbl = f2cmax(i__2,i__3);
- /* Computing MAX */
- i__2 = *n * *n + wrkbl, i__3 = *n * *n + *m * *n;
- maxwrk = f2cmax(i__2,i__3);
- minwrk = (*n << 1) + *m;
- } else if (wntuo && wntvas) {
-
- /* Path 3 (M much larger than N, JOBU='O', JOBVT='S' or */
- /* 'A') */
-
- wrkbl = *n + lwork_cgeqrf__;
- /* Computing MAX */
- i__2 = wrkbl, i__3 = *n + lwork_cungqr_n__;
- wrkbl = f2cmax(i__2,i__3);
- /* Computing MAX */
- i__2 = wrkbl, i__3 = (*n << 1) + lwork_cgebrd__;
- wrkbl = f2cmax(i__2,i__3);
- /* Computing MAX */
- i__2 = wrkbl, i__3 = (*n << 1) + lwork_cungbr_q__;
- wrkbl = f2cmax(i__2,i__3);
- /* Computing MAX */
- i__2 = wrkbl, i__3 = (*n << 1) + lwork_cungbr_p__;
- wrkbl = f2cmax(i__2,i__3);
- /* Computing MAX */
- i__2 = *n * *n + wrkbl, i__3 = *n * *n + *m * *n;
- maxwrk = f2cmax(i__2,i__3);
- minwrk = (*n << 1) + *m;
- } else if (wntus && wntvn) {
-
- /* Path 4 (M much larger than N, JOBU='S', JOBVT='N') */
-
- wrkbl = *n + lwork_cgeqrf__;
- /* Computing MAX */
- i__2 = wrkbl, i__3 = *n + lwork_cungqr_n__;
- wrkbl = f2cmax(i__2,i__3);
- /* Computing MAX */
- i__2 = wrkbl, i__3 = (*n << 1) + lwork_cgebrd__;
- wrkbl = f2cmax(i__2,i__3);
- /* Computing MAX */
- i__2 = wrkbl, i__3 = (*n << 1) + lwork_cungbr_q__;
- wrkbl = f2cmax(i__2,i__3);
- maxwrk = *n * *n + wrkbl;
- minwrk = (*n << 1) + *m;
- } else if (wntus && wntvo) {
-
- /* Path 5 (M much larger than N, JOBU='S', JOBVT='O') */
-
- wrkbl = *n + lwork_cgeqrf__;
- /* Computing MAX */
- i__2 = wrkbl, i__3 = *n + lwork_cungqr_n__;
- wrkbl = f2cmax(i__2,i__3);
- /* Computing MAX */
- i__2 = wrkbl, i__3 = (*n << 1) + lwork_cgebrd__;
- wrkbl = f2cmax(i__2,i__3);
- /* Computing MAX */
- i__2 = wrkbl, i__3 = (*n << 1) + lwork_cungbr_q__;
- wrkbl = f2cmax(i__2,i__3);
- /* Computing MAX */
- i__2 = wrkbl, i__3 = (*n << 1) + lwork_cungbr_p__;
- wrkbl = f2cmax(i__2,i__3);
- maxwrk = (*n << 1) * *n + wrkbl;
- minwrk = (*n << 1) + *m;
- } else if (wntus && wntvas) {
-
- /* Path 6 (M much larger than N, JOBU='S', JOBVT='S' or */
- /* 'A') */
-
- wrkbl = *n + lwork_cgeqrf__;
- /* Computing MAX */
- i__2 = wrkbl, i__3 = *n + lwork_cungqr_n__;
- wrkbl = f2cmax(i__2,i__3);
- /* Computing MAX */
- i__2 = wrkbl, i__3 = (*n << 1) + lwork_cgebrd__;
- wrkbl = f2cmax(i__2,i__3);
- /* Computing MAX */
- i__2 = wrkbl, i__3 = (*n << 1) + lwork_cungbr_q__;
- wrkbl = f2cmax(i__2,i__3);
- /* Computing MAX */
- i__2 = wrkbl, i__3 = (*n << 1) + lwork_cungbr_p__;
- wrkbl = f2cmax(i__2,i__3);
- maxwrk = *n * *n + wrkbl;
- minwrk = (*n << 1) + *m;
- } else if (wntua && wntvn) {
-
- /* Path 7 (M much larger than N, JOBU='A', JOBVT='N') */
-
- wrkbl = *n + lwork_cgeqrf__;
- /* Computing MAX */
- i__2 = wrkbl, i__3 = *n + lwork_cungqr_m__;
- wrkbl = f2cmax(i__2,i__3);
- /* Computing MAX */
- i__2 = wrkbl, i__3 = (*n << 1) + lwork_cgebrd__;
- wrkbl = f2cmax(i__2,i__3);
- /* Computing MAX */
- i__2 = wrkbl, i__3 = (*n << 1) + lwork_cungbr_q__;
- wrkbl = f2cmax(i__2,i__3);
- maxwrk = *n * *n + wrkbl;
- minwrk = (*n << 1) + *m;
- } else if (wntua && wntvo) {
-
- /* Path 8 (M much larger than N, JOBU='A', JOBVT='O') */
-
- wrkbl = *n + lwork_cgeqrf__;
- /* Computing MAX */
- i__2 = wrkbl, i__3 = *n + lwork_cungqr_m__;
- wrkbl = f2cmax(i__2,i__3);
- /* Computing MAX */
- i__2 = wrkbl, i__3 = (*n << 1) + lwork_cgebrd__;
- wrkbl = f2cmax(i__2,i__3);
- /* Computing MAX */
- i__2 = wrkbl, i__3 = (*n << 1) + lwork_cungbr_q__;
- wrkbl = f2cmax(i__2,i__3);
- /* Computing MAX */
- i__2 = wrkbl, i__3 = (*n << 1) + lwork_cungbr_p__;
- wrkbl = f2cmax(i__2,i__3);
- maxwrk = (*n << 1) * *n + wrkbl;
- minwrk = (*n << 1) + *m;
- } else if (wntua && wntvas) {
-
- /* Path 9 (M much larger than N, JOBU='A', JOBVT='S' or */
- /* 'A') */
-
- wrkbl = *n + lwork_cgeqrf__;
- /* Computing MAX */
- i__2 = wrkbl, i__3 = *n + lwork_cungqr_m__;
- wrkbl = f2cmax(i__2,i__3);
- /* Computing MAX */
- i__2 = wrkbl, i__3 = (*n << 1) + lwork_cgebrd__;
- wrkbl = f2cmax(i__2,i__3);
- /* Computing MAX */
- i__2 = wrkbl, i__3 = (*n << 1) + lwork_cungbr_q__;
- wrkbl = f2cmax(i__2,i__3);
- /* Computing MAX */
- i__2 = wrkbl, i__3 = (*n << 1) + lwork_cungbr_p__;
- wrkbl = f2cmax(i__2,i__3);
- maxwrk = *n * *n + wrkbl;
- minwrk = (*n << 1) + *m;
- }
- } else {
-
- /* Path 10 (M at least N, but not much larger) */
-
- cgebrd_(m, n, &a[a_offset], lda, &s[1], dum, cdum, cdum, cdum,
- &c_n1, &ierr);
- lwork_cgebrd__ = (integer) cdum[0].r;
- maxwrk = (*n << 1) + lwork_cgebrd__;
- if (wntus || wntuo) {
- cungbr_("Q", m, n, n, &a[a_offset], lda, cdum, cdum, &
- c_n1, &ierr);
- lwork_cungbr_q__ = (integer) cdum[0].r;
- /* Computing MAX */
- i__2 = maxwrk, i__3 = (*n << 1) + lwork_cungbr_q__;
- maxwrk = f2cmax(i__2,i__3);
- }
- if (wntua) {
- cungbr_("Q", m, m, n, &a[a_offset], lda, cdum, cdum, &
- c_n1, &ierr);
- lwork_cungbr_q__ = (integer) cdum[0].r;
- /* Computing MAX */
- i__2 = maxwrk, i__3 = (*n << 1) + lwork_cungbr_q__;
- maxwrk = f2cmax(i__2,i__3);
- }
- if (! wntvn) {
- /* Computing MAX */
- i__2 = maxwrk, i__3 = (*n << 1) + lwork_cungbr_p__;
- maxwrk = f2cmax(i__2,i__3);
- }
- minwrk = (*n << 1) + *m;
- }
- } else if (minmn > 0) {
-
- /* Space needed for CBDSQR is BDSPAC = 5*M */
-
- /* Writing concatenation */
- i__1[0] = 1, a__1[0] = jobu;
- i__1[1] = 1, a__1[1] = jobvt;
- s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
- mnthr = ilaenv_(&c__6, "CGESVD", ch__1, m, n, &c__0, &c__0, (
- ftnlen)6, (ftnlen)2);
- /* Compute space needed for CGELQF */
- cgelqf_(m, n, &a[a_offset], lda, cdum, cdum, &c_n1, &ierr);
- lwork_cgelqf__ = (integer) cdum[0].r;
- /* Compute space needed for CUNGLQ */
- cunglq_(n, n, m, cdum, n, cdum, cdum, &c_n1, &ierr);
- lwork_cunglq_n__ = (integer) cdum[0].r;
- cunglq_(m, n, m, &a[a_offset], lda, cdum, cdum, &c_n1, &ierr);
- lwork_cunglq_m__ = (integer) cdum[0].r;
- /* Compute space needed for CGEBRD */
- cgebrd_(m, m, &a[a_offset], lda, &s[1], dum, cdum, cdum, cdum, &
- c_n1, &ierr);
- lwork_cgebrd__ = (integer) cdum[0].r;
- /* Compute space needed for CUNGBR P */
- cungbr_("P", m, m, m, &a[a_offset], n, cdum, cdum, &c_n1, &ierr);
- lwork_cungbr_p__ = (integer) cdum[0].r;
- /* Compute space needed for CUNGBR Q */
- cungbr_("Q", m, m, m, &a[a_offset], n, cdum, cdum, &c_n1, &ierr);
- lwork_cungbr_q__ = (integer) cdum[0].r;
- if (*n >= mnthr) {
- if (wntvn) {
-
- /* Path 1t(N much larger than M, JOBVT='N') */
-
- maxwrk = *m + lwork_cgelqf__;
- /* Computing MAX */
- i__2 = maxwrk, i__3 = (*m << 1) + lwork_cgebrd__;
- maxwrk = f2cmax(i__2,i__3);
- if (wntuo || wntuas) {
- /* Computing MAX */
- i__2 = maxwrk, i__3 = (*m << 1) + lwork_cungbr_q__;
- maxwrk = f2cmax(i__2,i__3);
- }
- minwrk = *m * 3;
- } else if (wntvo && wntun) {
-
- /* Path 2t(N much larger than M, JOBU='N', JOBVT='O') */
-
- wrkbl = *m + lwork_cgelqf__;
- /* Computing MAX */
- i__2 = wrkbl, i__3 = *m + lwork_cunglq_m__;
- wrkbl = f2cmax(i__2,i__3);
- /* Computing MAX */
- i__2 = wrkbl, i__3 = (*m << 1) + lwork_cgebrd__;
- wrkbl = f2cmax(i__2,i__3);
- /* Computing MAX */
- i__2 = wrkbl, i__3 = (*m << 1) + lwork_cungbr_p__;
- wrkbl = f2cmax(i__2,i__3);
- /* Computing MAX */
- i__2 = *m * *m + wrkbl, i__3 = *m * *m + *m * *n;
- maxwrk = f2cmax(i__2,i__3);
- minwrk = (*m << 1) + *n;
- } else if (wntvo && wntuas) {
-
- /* Path 3t(N much larger than M, JOBU='S' or 'A', */
- /* JOBVT='O') */
-
- wrkbl = *m + lwork_cgelqf__;
- /* Computing MAX */
- i__2 = wrkbl, i__3 = *m + lwork_cunglq_m__;
- wrkbl = f2cmax(i__2,i__3);
- /* Computing MAX */
- i__2 = wrkbl, i__3 = (*m << 1) + lwork_cgebrd__;
- wrkbl = f2cmax(i__2,i__3);
- /* Computing MAX */
- i__2 = wrkbl, i__3 = (*m << 1) + lwork_cungbr_p__;
- wrkbl = f2cmax(i__2,i__3);
- /* Computing MAX */
- i__2 = wrkbl, i__3 = (*m << 1) + lwork_cungbr_q__;
- wrkbl = f2cmax(i__2,i__3);
- /* Computing MAX */
- i__2 = *m * *m + wrkbl, i__3 = *m * *m + *m * *n;
- maxwrk = f2cmax(i__2,i__3);
- minwrk = (*m << 1) + *n;
- } else if (wntvs && wntun) {
-
- /* Path 4t(N much larger than M, JOBU='N', JOBVT='S') */
-
- wrkbl = *m + lwork_cgelqf__;
- /* Computing MAX */
- i__2 = wrkbl, i__3 = *m + lwork_cunglq_m__;
- wrkbl = f2cmax(i__2,i__3);
- /* Computing MAX */
- i__2 = wrkbl, i__3 = (*m << 1) + lwork_cgebrd__;
- wrkbl = f2cmax(i__2,i__3);
- /* Computing MAX */
- i__2 = wrkbl, i__3 = (*m << 1) + lwork_cungbr_p__;
- wrkbl = f2cmax(i__2,i__3);
- maxwrk = *m * *m + wrkbl;
- minwrk = (*m << 1) + *n;
- } else if (wntvs && wntuo) {
-
- /* Path 5t(N much larger than M, JOBU='O', JOBVT='S') */
-
- wrkbl = *m + lwork_cgelqf__;
- /* Computing MAX */
- i__2 = wrkbl, i__3 = *m + lwork_cunglq_m__;
- wrkbl = f2cmax(i__2,i__3);
- /* Computing MAX */
- i__2 = wrkbl, i__3 = (*m << 1) + lwork_cgebrd__;
- wrkbl = f2cmax(i__2,i__3);
- /* Computing MAX */
- i__2 = wrkbl, i__3 = (*m << 1) + lwork_cungbr_p__;
- wrkbl = f2cmax(i__2,i__3);
- /* Computing MAX */
- i__2 = wrkbl, i__3 = (*m << 1) + lwork_cungbr_q__;
- wrkbl = f2cmax(i__2,i__3);
- maxwrk = (*m << 1) * *m + wrkbl;
- minwrk = (*m << 1) + *n;
- } else if (wntvs && wntuas) {
-
- /* Path 6t(N much larger than M, JOBU='S' or 'A', */
- /* JOBVT='S') */
-
- wrkbl = *m + lwork_cgelqf__;
- /* Computing MAX */
- i__2 = wrkbl, i__3 = *m + lwork_cunglq_m__;
- wrkbl = f2cmax(i__2,i__3);
- /* Computing MAX */
- i__2 = wrkbl, i__3 = (*m << 1) + lwork_cgebrd__;
- wrkbl = f2cmax(i__2,i__3);
- /* Computing MAX */
- i__2 = wrkbl, i__3 = (*m << 1) + lwork_cungbr_p__;
- wrkbl = f2cmax(i__2,i__3);
- /* Computing MAX */
- i__2 = wrkbl, i__3 = (*m << 1) + lwork_cungbr_q__;
- wrkbl = f2cmax(i__2,i__3);
- maxwrk = *m * *m + wrkbl;
- minwrk = (*m << 1) + *n;
- } else if (wntva && wntun) {
-
- /* Path 7t(N much larger than M, JOBU='N', JOBVT='A') */
-
- wrkbl = *m + lwork_cgelqf__;
- /* Computing MAX */
- i__2 = wrkbl, i__3 = *m + lwork_cunglq_n__;
- wrkbl = f2cmax(i__2,i__3);
- /* Computing MAX */
- i__2 = wrkbl, i__3 = (*m << 1) + lwork_cgebrd__;
- wrkbl = f2cmax(i__2,i__3);
- /* Computing MAX */
- i__2 = wrkbl, i__3 = (*m << 1) + lwork_cungbr_p__;
- wrkbl = f2cmax(i__2,i__3);
- maxwrk = *m * *m + wrkbl;
- minwrk = (*m << 1) + *n;
- } else if (wntva && wntuo) {
-
- /* Path 8t(N much larger than M, JOBU='O', JOBVT='A') */
-
- wrkbl = *m + lwork_cgelqf__;
- /* Computing MAX */
- i__2 = wrkbl, i__3 = *m + lwork_cunglq_n__;
- wrkbl = f2cmax(i__2,i__3);
- /* Computing MAX */
- i__2 = wrkbl, i__3 = (*m << 1) + lwork_cgebrd__;
- wrkbl = f2cmax(i__2,i__3);
- /* Computing MAX */
- i__2 = wrkbl, i__3 = (*m << 1) + lwork_cungbr_p__;
- wrkbl = f2cmax(i__2,i__3);
- /* Computing MAX */
- i__2 = wrkbl, i__3 = (*m << 1) + lwork_cungbr_q__;
- wrkbl = f2cmax(i__2,i__3);
- maxwrk = (*m << 1) * *m + wrkbl;
- minwrk = (*m << 1) + *n;
- } else if (wntva && wntuas) {
-
- /* Path 9t(N much larger than M, JOBU='S' or 'A', */
- /* JOBVT='A') */
-
- wrkbl = *m + lwork_cgelqf__;
- /* Computing MAX */
- i__2 = wrkbl, i__3 = *m + lwork_cunglq_n__;
- wrkbl = f2cmax(i__2,i__3);
- /* Computing MAX */
- i__2 = wrkbl, i__3 = (*m << 1) + lwork_cgebrd__;
- wrkbl = f2cmax(i__2,i__3);
- /* Computing MAX */
- i__2 = wrkbl, i__3 = (*m << 1) + lwork_cungbr_p__;
- wrkbl = f2cmax(i__2,i__3);
- /* Computing MAX */
- i__2 = wrkbl, i__3 = (*m << 1) + lwork_cungbr_q__;
- wrkbl = f2cmax(i__2,i__3);
- maxwrk = *m * *m + wrkbl;
- minwrk = (*m << 1) + *n;
- }
- } else {
-
- /* Path 10t(N greater than M, but not much larger) */
-
- cgebrd_(m, n, &a[a_offset], lda, &s[1], dum, cdum, cdum, cdum,
- &c_n1, &ierr);
- lwork_cgebrd__ = (integer) cdum[0].r;
- maxwrk = (*m << 1) + lwork_cgebrd__;
- if (wntvs || wntvo) {
- /* Compute space needed for CUNGBR P */
- cungbr_("P", m, n, m, &a[a_offset], n, cdum, cdum, &c_n1,
- &ierr);
- lwork_cungbr_p__ = (integer) cdum[0].r;
- /* Computing MAX */
- i__2 = maxwrk, i__3 = (*m << 1) + lwork_cungbr_p__;
- maxwrk = f2cmax(i__2,i__3);
- }
- if (wntva) {
- cungbr_("P", n, n, m, &a[a_offset], n, cdum, cdum, &c_n1,
- &ierr);
- lwork_cungbr_p__ = (integer) cdum[0].r;
- /* Computing MAX */
- i__2 = maxwrk, i__3 = (*m << 1) + lwork_cungbr_p__;
- maxwrk = f2cmax(i__2,i__3);
- }
- if (! wntun) {
- /* Computing MAX */
- i__2 = maxwrk, i__3 = (*m << 1) + lwork_cungbr_q__;
- maxwrk = f2cmax(i__2,i__3);
- }
- minwrk = (*m << 1) + *n;
- }
- }
- maxwrk = f2cmax(minwrk,maxwrk);
- work[1].r = (real) maxwrk, work[1].i = 0.f;
-
- if (*lwork < minwrk && ! lquery) {
- *info = -13;
- }
- }
-
- if (*info != 0) {
- i__2 = -(*info);
- xerbla_("CGESVD", &i__2, (ftnlen)6);
- return;
- } else if (lquery) {
- return;
- }
-
- /* Quick return if possible */
-
- if (*m == 0 || *n == 0) {
- return;
- }
-
- /* Get machine constants */
-
- eps = slamch_("P");
- smlnum = sqrt(slamch_("S")) / eps;
- bignum = 1.f / smlnum;
-
- /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
-
- anrm = clange_("M", m, n, &a[a_offset], lda, dum);
- iscl = 0;
- if (anrm > 0.f && anrm < smlnum) {
- iscl = 1;
- clascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, &
- ierr);
- } else if (anrm > bignum) {
- iscl = 1;
- clascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, &
- ierr);
- }
-
- if (*m >= *n) {
-
- /* A has at least as many rows as columns. If A has sufficiently */
- /* more rows than columns, first reduce using the QR */
- /* decomposition (if sufficient workspace available) */
-
- if (*m >= mnthr) {
-
- if (wntun) {
-
- /* Path 1 (M much larger than N, JOBU='N') */
- /* No left singular vectors to be computed */
-
- itau = 1;
- iwork = itau + *n;
-
- /* Compute A=Q*R */
- /* (CWorkspace: need 2*N, prefer N+N*NB) */
- /* (RWorkspace: need 0) */
-
- i__2 = *lwork - iwork + 1;
- cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork], &
- i__2, &ierr);
-
- /* Zero out below R */
-
- if (*n > 1) {
- i__2 = *n - 1;
- i__3 = *n - 1;
- claset_("L", &i__2, &i__3, &c_b1, &c_b1, &a[a_dim1 + 2],
- lda);
- }
- ie = 1;
- itauq = 1;
- itaup = itauq + *n;
- iwork = itaup + *n;
-
- /* Bidiagonalize R in A */
- /* (CWorkspace: need 3*N, prefer 2*N+2*N*NB) */
- /* (RWorkspace: need N) */
-
- i__2 = *lwork - iwork + 1;
- cgebrd_(n, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[
- itauq], &work[itaup], &work[iwork], &i__2, &ierr);
- ncvt = 0;
- if (wntvo || wntvas) {
-
- /* If right singular vectors desired, generate P'. */
- /* (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cungbr_("P", n, n, n, &a[a_offset], lda, &work[itaup], &
- work[iwork], &i__2, &ierr);
- ncvt = *n;
- }
- irwork = ie + *n;
-
- /* Perform bidiagonal QR iteration, computing right */
- /* singular vectors of A in A if desired */
- /* (CWorkspace: 0) */
- /* (RWorkspace: need BDSPAC) */
-
- cbdsqr_("U", n, &ncvt, &c__0, &c__0, &s[1], &rwork[ie], &a[
- a_offset], lda, cdum, &c__1, cdum, &c__1, &rwork[
- irwork], info);
-
- /* If right singular vectors desired in VT, copy them there */
-
- if (wntvas) {
- clacpy_("F", n, n, &a[a_offset], lda, &vt[vt_offset],
- ldvt);
- }
-
- } else if (wntuo && wntvn) {
-
- /* Path 2 (M much larger than N, JOBU='O', JOBVT='N') */
- /* N left singular vectors to be overwritten on A and */
- /* no right singular vectors to be computed */
-
- if (*lwork >= *n * *n + *n * 3) {
-
- /* Sufficient workspace for a fast algorithm */
-
- ir = 1;
- /* Computing MAX */
- i__2 = wrkbl, i__3 = *lda * *n;
- if (*lwork >= f2cmax(i__2,i__3) + *lda * *n) {
-
- /* WORK(IU) is LDA by N, WORK(IR) is LDA by N */
-
- ldwrku = *lda;
- ldwrkr = *lda;
- } else /* if(complicated condition) */ {
- /* Computing MAX */
- i__2 = wrkbl, i__3 = *lda * *n;
- if (*lwork >= f2cmax(i__2,i__3) + *n * *n) {
-
- /* WORK(IU) is LDA by N, WORK(IR) is N by N */
-
- ldwrku = *lda;
- ldwrkr = *n;
- } else {
-
- /* WORK(IU) is LDWRKU by N, WORK(IR) is N by N */
-
- ldwrku = (*lwork - *n * *n) / *n;
- ldwrkr = *n;
- }
- }
- itau = ir + ldwrkr * *n;
- iwork = itau + *n;
-
- /* Compute A=Q*R */
- /* (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork]
- , &i__2, &ierr);
-
- /* Copy R to WORK(IR) and zero out below it */
-
- clacpy_("U", n, n, &a[a_offset], lda, &work[ir], &ldwrkr);
- i__2 = *n - 1;
- i__3 = *n - 1;
- claset_("L", &i__2, &i__3, &c_b1, &c_b1, &work[ir + 1], &
- ldwrkr);
-
- /* Generate Q in A */
- /* (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cungqr_(m, n, n, &a[a_offset], lda, &work[itau], &work[
- iwork], &i__2, &ierr);
- ie = 1;
- itauq = itau;
- itaup = itauq + *n;
- iwork = itaup + *n;
-
- /* Bidiagonalize R in WORK(IR) */
- /* (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB) */
- /* (RWorkspace: need N) */
-
- i__2 = *lwork - iwork + 1;
- cgebrd_(n, n, &work[ir], &ldwrkr, &s[1], &rwork[ie], &
- work[itauq], &work[itaup], &work[iwork], &i__2, &
- ierr);
-
- /* Generate left vectors bidiagonalizing R */
- /* (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB) */
- /* (RWorkspace: need 0) */
-
- i__2 = *lwork - iwork + 1;
- cungbr_("Q", n, n, n, &work[ir], &ldwrkr, &work[itauq], &
- work[iwork], &i__2, &ierr);
- irwork = ie + *n;
-
- /* Perform bidiagonal QR iteration, computing left */
- /* singular vectors of R in WORK(IR) */
- /* (CWorkspace: need N*N) */
- /* (RWorkspace: need BDSPAC) */
-
- cbdsqr_("U", n, &c__0, n, &c__0, &s[1], &rwork[ie], cdum,
- &c__1, &work[ir], &ldwrkr, cdum, &c__1, &rwork[
- irwork], info);
- iu = itauq;
-
- /* Multiply Q in A by left singular vectors of R in */
- /* WORK(IR), storing result in WORK(IU) and copying to A */
- /* (CWorkspace: need N*N+N, prefer N*N+M*N) */
- /* (RWorkspace: 0) */
-
- i__2 = *m;
- i__3 = ldwrku;
- for (i__ = 1; i__3 < 0 ? i__ >= i__2 : i__ <= i__2; i__ +=
- i__3) {
- /* Computing MIN */
- i__4 = *m - i__ + 1;
- chunk = f2cmin(i__4,ldwrku);
- cgemm_("N", "N", &chunk, n, n, &c_b2, &a[i__ + a_dim1]
- , lda, &work[ir], &ldwrkr, &c_b1, &work[iu], &
- ldwrku);
- clacpy_("F", &chunk, n, &work[iu], &ldwrku, &a[i__ +
- a_dim1], lda);
- /* L10: */
- }
-
- } else {
-
- /* Insufficient workspace for a fast algorithm */
-
- ie = 1;
- itauq = 1;
- itaup = itauq + *n;
- iwork = itaup + *n;
-
- /* Bidiagonalize A */
- /* (CWorkspace: need 2*N+M, prefer 2*N+(M+N)*NB) */
- /* (RWorkspace: N) */
-
- i__3 = *lwork - iwork + 1;
- cgebrd_(m, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[
- itauq], &work[itaup], &work[iwork], &i__3, &ierr);
-
- /* Generate left vectors bidiagonalizing A */
- /* (CWorkspace: need 3*N, prefer 2*N+N*NB) */
- /* (RWorkspace: 0) */
-
- i__3 = *lwork - iwork + 1;
- cungbr_("Q", m, n, n, &a[a_offset], lda, &work[itauq], &
- work[iwork], &i__3, &ierr);
- irwork = ie + *n;
-
- /* Perform bidiagonal QR iteration, computing left */
- /* singular vectors of A in A */
- /* (CWorkspace: need 0) */
- /* (RWorkspace: need BDSPAC) */
-
- cbdsqr_("U", n, &c__0, m, &c__0, &s[1], &rwork[ie], cdum,
- &c__1, &a[a_offset], lda, cdum, &c__1, &rwork[
- irwork], info);
-
- }
-
- } else if (wntuo && wntvas) {
-
- /* Path 3 (M much larger than N, JOBU='O', JOBVT='S' or 'A') */
- /* N left singular vectors to be overwritten on A and */
- /* N right singular vectors to be computed in VT */
-
- if (*lwork >= *n * *n + *n * 3) {
-
- /* Sufficient workspace for a fast algorithm */
-
- ir = 1;
- /* Computing MAX */
- i__3 = wrkbl, i__2 = *lda * *n;
- if (*lwork >= f2cmax(i__3,i__2) + *lda * *n) {
-
- /* WORK(IU) is LDA by N and WORK(IR) is LDA by N */
-
- ldwrku = *lda;
- ldwrkr = *lda;
- } else /* if(complicated condition) */ {
- /* Computing MAX */
- i__3 = wrkbl, i__2 = *lda * *n;
- if (*lwork >= f2cmax(i__3,i__2) + *n * *n) {
-
- /* WORK(IU) is LDA by N and WORK(IR) is N by N */
-
- ldwrku = *lda;
- ldwrkr = *n;
- } else {
-
- /* WORK(IU) is LDWRKU by N and WORK(IR) is N by N */
-
- ldwrku = (*lwork - *n * *n) / *n;
- ldwrkr = *n;
- }
- }
- itau = ir + ldwrkr * *n;
- iwork = itau + *n;
-
- /* Compute A=Q*R */
- /* (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB) */
- /* (RWorkspace: 0) */
-
- i__3 = *lwork - iwork + 1;
- cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork]
- , &i__3, &ierr);
-
- /* Copy R to VT, zeroing out below it */
-
- clacpy_("U", n, n, &a[a_offset], lda, &vt[vt_offset],
- ldvt);
- if (*n > 1) {
- i__3 = *n - 1;
- i__2 = *n - 1;
- claset_("L", &i__3, &i__2, &c_b1, &c_b1, &vt[vt_dim1
- + 2], ldvt);
- }
-
- /* Generate Q in A */
- /* (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB) */
- /* (RWorkspace: 0) */
-
- i__3 = *lwork - iwork + 1;
- cungqr_(m, n, n, &a[a_offset], lda, &work[itau], &work[
- iwork], &i__3, &ierr);
- ie = 1;
- itauq = itau;
- itaup = itauq + *n;
- iwork = itaup + *n;
-
- /* Bidiagonalize R in VT, copying result to WORK(IR) */
- /* (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB) */
- /* (RWorkspace: need N) */
-
- i__3 = *lwork - iwork + 1;
- cgebrd_(n, n, &vt[vt_offset], ldvt, &s[1], &rwork[ie], &
- work[itauq], &work[itaup], &work[iwork], &i__3, &
- ierr);
- clacpy_("L", n, n, &vt[vt_offset], ldvt, &work[ir], &
- ldwrkr);
-
- /* Generate left vectors bidiagonalizing R in WORK(IR) */
- /* (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB) */
- /* (RWorkspace: 0) */
-
- i__3 = *lwork - iwork + 1;
- cungbr_("Q", n, n, n, &work[ir], &ldwrkr, &work[itauq], &
- work[iwork], &i__3, &ierr);
-
- /* Generate right vectors bidiagonalizing R in VT */
- /* (CWorkspace: need N*N+3*N-1, prefer N*N+2*N+(N-1)*NB) */
- /* (RWorkspace: 0) */
-
- i__3 = *lwork - iwork + 1;
- cungbr_("P", n, n, n, &vt[vt_offset], ldvt, &work[itaup],
- &work[iwork], &i__3, &ierr);
- irwork = ie + *n;
-
- /* Perform bidiagonal QR iteration, computing left */
- /* singular vectors of R in WORK(IR) and computing right */
- /* singular vectors of R in VT */
- /* (CWorkspace: need N*N) */
- /* (RWorkspace: need BDSPAC) */
-
- cbdsqr_("U", n, n, n, &c__0, &s[1], &rwork[ie], &vt[
- vt_offset], ldvt, &work[ir], &ldwrkr, cdum, &c__1,
- &rwork[irwork], info);
- iu = itauq;
-
- /* Multiply Q in A by left singular vectors of R in */
- /* WORK(IR), storing result in WORK(IU) and copying to A */
- /* (CWorkspace: need N*N+N, prefer N*N+M*N) */
- /* (RWorkspace: 0) */
-
- i__3 = *m;
- i__2 = ldwrku;
- for (i__ = 1; i__2 < 0 ? i__ >= i__3 : i__ <= i__3; i__ +=
- i__2) {
- /* Computing MIN */
- i__4 = *m - i__ + 1;
- chunk = f2cmin(i__4,ldwrku);
- cgemm_("N", "N", &chunk, n, n, &c_b2, &a[i__ + a_dim1]
- , lda, &work[ir], &ldwrkr, &c_b1, &work[iu], &
- ldwrku);
- clacpy_("F", &chunk, n, &work[iu], &ldwrku, &a[i__ +
- a_dim1], lda);
- /* L20: */
- }
-
- } else {
-
- /* Insufficient workspace for a fast algorithm */
-
- itau = 1;
- iwork = itau + *n;
-
- /* Compute A=Q*R */
- /* (CWorkspace: need 2*N, prefer N+N*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork]
- , &i__2, &ierr);
-
- /* Copy R to VT, zeroing out below it */
-
- clacpy_("U", n, n, &a[a_offset], lda, &vt[vt_offset],
- ldvt);
- if (*n > 1) {
- i__2 = *n - 1;
- i__3 = *n - 1;
- claset_("L", &i__2, &i__3, &c_b1, &c_b1, &vt[vt_dim1
- + 2], ldvt);
- }
-
- /* Generate Q in A */
- /* (CWorkspace: need 2*N, prefer N+N*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cungqr_(m, n, n, &a[a_offset], lda, &work[itau], &work[
- iwork], &i__2, &ierr);
- ie = 1;
- itauq = itau;
- itaup = itauq + *n;
- iwork = itaup + *n;
-
- /* Bidiagonalize R in VT */
- /* (CWorkspace: need 3*N, prefer 2*N+2*N*NB) */
- /* (RWorkspace: N) */
-
- i__2 = *lwork - iwork + 1;
- cgebrd_(n, n, &vt[vt_offset], ldvt, &s[1], &rwork[ie], &
- work[itauq], &work[itaup], &work[iwork], &i__2, &
- ierr);
-
- /* Multiply Q in A by left vectors bidiagonalizing R */
- /* (CWorkspace: need 2*N+M, prefer 2*N+M*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cunmbr_("Q", "R", "N", m, n, n, &vt[vt_offset], ldvt, &
- work[itauq], &a[a_offset], lda, &work[iwork], &
- i__2, &ierr);
-
- /* Generate right vectors bidiagonalizing R in VT */
- /* (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cungbr_("P", n, n, n, &vt[vt_offset], ldvt, &work[itaup],
- &work[iwork], &i__2, &ierr);
- irwork = ie + *n;
-
- /* Perform bidiagonal QR iteration, computing left */
- /* singular vectors of A in A and computing right */
- /* singular vectors of A in VT */
- /* (CWorkspace: 0) */
- /* (RWorkspace: need BDSPAC) */
-
- cbdsqr_("U", n, n, m, &c__0, &s[1], &rwork[ie], &vt[
- vt_offset], ldvt, &a[a_offset], lda, cdum, &c__1,
- &rwork[irwork], info);
-
- }
-
- } else if (wntus) {
-
- if (wntvn) {
-
- /* Path 4 (M much larger than N, JOBU='S', JOBVT='N') */
- /* N left singular vectors to be computed in U and */
- /* no right singular vectors to be computed */
-
- if (*lwork >= *n * *n + *n * 3) {
-
- /* Sufficient workspace for a fast algorithm */
-
- ir = 1;
- if (*lwork >= wrkbl + *lda * *n) {
-
- /* WORK(IR) is LDA by N */
-
- ldwrkr = *lda;
- } else {
-
- /* WORK(IR) is N by N */
-
- ldwrkr = *n;
- }
- itau = ir + ldwrkr * *n;
- iwork = itau + *n;
-
- /* Compute A=Q*R */
- /* (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[
- iwork], &i__2, &ierr);
-
- /* Copy R to WORK(IR), zeroing out below it */
-
- clacpy_("U", n, n, &a[a_offset], lda, &work[ir], &
- ldwrkr);
- i__2 = *n - 1;
- i__3 = *n - 1;
- claset_("L", &i__2, &i__3, &c_b1, &c_b1, &work[ir + 1]
- , &ldwrkr);
-
- /* Generate Q in A */
- /* (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cungqr_(m, n, n, &a[a_offset], lda, &work[itau], &
- work[iwork], &i__2, &ierr);
- ie = 1;
- itauq = itau;
- itaup = itauq + *n;
- iwork = itaup + *n;
-
- /* Bidiagonalize R in WORK(IR) */
- /* (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB) */
- /* (RWorkspace: need N) */
-
- i__2 = *lwork - iwork + 1;
- cgebrd_(n, n, &work[ir], &ldwrkr, &s[1], &rwork[ie], &
- work[itauq], &work[itaup], &work[iwork], &
- i__2, &ierr);
-
- /* Generate left vectors bidiagonalizing R in WORK(IR) */
- /* (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cungbr_("Q", n, n, n, &work[ir], &ldwrkr, &work[itauq]
- , &work[iwork], &i__2, &ierr);
- irwork = ie + *n;
-
- /* Perform bidiagonal QR iteration, computing left */
- /* singular vectors of R in WORK(IR) */
- /* (CWorkspace: need N*N) */
- /* (RWorkspace: need BDSPAC) */
-
- cbdsqr_("U", n, &c__0, n, &c__0, &s[1], &rwork[ie],
- cdum, &c__1, &work[ir], &ldwrkr, cdum, &c__1,
- &rwork[irwork], info);
-
- /* Multiply Q in A by left singular vectors of R in */
- /* WORK(IR), storing result in U */
- /* (CWorkspace: need N*N) */
- /* (RWorkspace: 0) */
-
- cgemm_("N", "N", m, n, n, &c_b2, &a[a_offset], lda, &
- work[ir], &ldwrkr, &c_b1, &u[u_offset], ldu);
-
- } else {
-
- /* Insufficient workspace for a fast algorithm */
-
- itau = 1;
- iwork = itau + *n;
-
- /* Compute A=Q*R, copying result to U */
- /* (CWorkspace: need 2*N, prefer N+N*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[
- iwork], &i__2, &ierr);
- clacpy_("L", m, n, &a[a_offset], lda, &u[u_offset],
- ldu);
-
- /* Generate Q in U */
- /* (CWorkspace: need 2*N, prefer N+N*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cungqr_(m, n, n, &u[u_offset], ldu, &work[itau], &
- work[iwork], &i__2, &ierr);
- ie = 1;
- itauq = itau;
- itaup = itauq + *n;
- iwork = itaup + *n;
-
- /* Zero out below R in A */
-
- if (*n > 1) {
- i__2 = *n - 1;
- i__3 = *n - 1;
- claset_("L", &i__2, &i__3, &c_b1, &c_b1, &a[
- a_dim1 + 2], lda);
- }
-
- /* Bidiagonalize R in A */
- /* (CWorkspace: need 3*N, prefer 2*N+2*N*NB) */
- /* (RWorkspace: need N) */
-
- i__2 = *lwork - iwork + 1;
- cgebrd_(n, n, &a[a_offset], lda, &s[1], &rwork[ie], &
- work[itauq], &work[itaup], &work[iwork], &
- i__2, &ierr);
-
- /* Multiply Q in U by left vectors bidiagonalizing R */
- /* (CWorkspace: need 2*N+M, prefer 2*N+M*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cunmbr_("Q", "R", "N", m, n, n, &a[a_offset], lda, &
- work[itauq], &u[u_offset], ldu, &work[iwork],
- &i__2, &ierr)
- ;
- irwork = ie + *n;
-
- /* Perform bidiagonal QR iteration, computing left */
- /* singular vectors of A in U */
- /* (CWorkspace: 0) */
- /* (RWorkspace: need BDSPAC) */
-
- cbdsqr_("U", n, &c__0, m, &c__0, &s[1], &rwork[ie],
- cdum, &c__1, &u[u_offset], ldu, cdum, &c__1, &
- rwork[irwork], info);
-
- }
-
- } else if (wntvo) {
-
- /* Path 5 (M much larger than N, JOBU='S', JOBVT='O') */
- /* N left singular vectors to be computed in U and */
- /* N right singular vectors to be overwritten on A */
-
- if (*lwork >= (*n << 1) * *n + *n * 3) {
-
- /* Sufficient workspace for a fast algorithm */
-
- iu = 1;
- if (*lwork >= wrkbl + (*lda << 1) * *n) {
-
- /* WORK(IU) is LDA by N and WORK(IR) is LDA by N */
-
- ldwrku = *lda;
- ir = iu + ldwrku * *n;
- ldwrkr = *lda;
- } else if (*lwork >= wrkbl + (*lda + *n) * *n) {
-
- /* WORK(IU) is LDA by N and WORK(IR) is N by N */
-
- ldwrku = *lda;
- ir = iu + ldwrku * *n;
- ldwrkr = *n;
- } else {
-
- /* WORK(IU) is N by N and WORK(IR) is N by N */
-
- ldwrku = *n;
- ir = iu + ldwrku * *n;
- ldwrkr = *n;
- }
- itau = ir + ldwrkr * *n;
- iwork = itau + *n;
-
- /* Compute A=Q*R */
- /* (CWorkspace: need 2*N*N+2*N, prefer 2*N*N+N+N*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[
- iwork], &i__2, &ierr);
-
- /* Copy R to WORK(IU), zeroing out below it */
-
- clacpy_("U", n, n, &a[a_offset], lda, &work[iu], &
- ldwrku);
- i__2 = *n - 1;
- i__3 = *n - 1;
- claset_("L", &i__2, &i__3, &c_b1, &c_b1, &work[iu + 1]
- , &ldwrku);
-
- /* Generate Q in A */
- /* (CWorkspace: need 2*N*N+2*N, prefer 2*N*N+N+N*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cungqr_(m, n, n, &a[a_offset], lda, &work[itau], &
- work[iwork], &i__2, &ierr);
- ie = 1;
- itauq = itau;
- itaup = itauq + *n;
- iwork = itaup + *n;
-
- /* Bidiagonalize R in WORK(IU), copying result to */
- /* WORK(IR) */
- /* (CWorkspace: need 2*N*N+3*N, */
- /* prefer 2*N*N+2*N+2*N*NB) */
- /* (RWorkspace: need N) */
-
- i__2 = *lwork - iwork + 1;
- cgebrd_(n, n, &work[iu], &ldwrku, &s[1], &rwork[ie], &
- work[itauq], &work[itaup], &work[iwork], &
- i__2, &ierr);
- clacpy_("U", n, n, &work[iu], &ldwrku, &work[ir], &
- ldwrkr);
-
- /* Generate left bidiagonalizing vectors in WORK(IU) */
- /* (CWorkspace: need 2*N*N+3*N, prefer 2*N*N+2*N+N*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cungbr_("Q", n, n, n, &work[iu], &ldwrku, &work[itauq]
- , &work[iwork], &i__2, &ierr);
-
- /* Generate right bidiagonalizing vectors in WORK(IR) */
- /* (CWorkspace: need 2*N*N+3*N-1, */
- /* prefer 2*N*N+2*N+(N-1)*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cungbr_("P", n, n, n, &work[ir], &ldwrkr, &work[itaup]
- , &work[iwork], &i__2, &ierr);
- irwork = ie + *n;
-
- /* Perform bidiagonal QR iteration, computing left */
- /* singular vectors of R in WORK(IU) and computing */
- /* right singular vectors of R in WORK(IR) */
- /* (CWorkspace: need 2*N*N) */
- /* (RWorkspace: need BDSPAC) */
-
- cbdsqr_("U", n, n, n, &c__0, &s[1], &rwork[ie], &work[
- ir], &ldwrkr, &work[iu], &ldwrku, cdum, &c__1,
- &rwork[irwork], info);
-
- /* Multiply Q in A by left singular vectors of R in */
- /* WORK(IU), storing result in U */
- /* (CWorkspace: need N*N) */
- /* (RWorkspace: 0) */
-
- cgemm_("N", "N", m, n, n, &c_b2, &a[a_offset], lda, &
- work[iu], &ldwrku, &c_b1, &u[u_offset], ldu);
-
- /* Copy right singular vectors of R to A */
- /* (CWorkspace: need N*N) */
- /* (RWorkspace: 0) */
-
- clacpy_("F", n, n, &work[ir], &ldwrkr, &a[a_offset],
- lda);
-
- } else {
-
- /* Insufficient workspace for a fast algorithm */
-
- itau = 1;
- iwork = itau + *n;
-
- /* Compute A=Q*R, copying result to U */
- /* (CWorkspace: need 2*N, prefer N+N*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[
- iwork], &i__2, &ierr);
- clacpy_("L", m, n, &a[a_offset], lda, &u[u_offset],
- ldu);
-
- /* Generate Q in U */
- /* (CWorkspace: need 2*N, prefer N+N*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cungqr_(m, n, n, &u[u_offset], ldu, &work[itau], &
- work[iwork], &i__2, &ierr);
- ie = 1;
- itauq = itau;
- itaup = itauq + *n;
- iwork = itaup + *n;
-
- /* Zero out below R in A */
-
- if (*n > 1) {
- i__2 = *n - 1;
- i__3 = *n - 1;
- claset_("L", &i__2, &i__3, &c_b1, &c_b1, &a[
- a_dim1 + 2], lda);
- }
-
- /* Bidiagonalize R in A */
- /* (CWorkspace: need 3*N, prefer 2*N+2*N*NB) */
- /* (RWorkspace: need N) */
-
- i__2 = *lwork - iwork + 1;
- cgebrd_(n, n, &a[a_offset], lda, &s[1], &rwork[ie], &
- work[itauq], &work[itaup], &work[iwork], &
- i__2, &ierr);
-
- /* Multiply Q in U by left vectors bidiagonalizing R */
- /* (CWorkspace: need 2*N+M, prefer 2*N+M*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cunmbr_("Q", "R", "N", m, n, n, &a[a_offset], lda, &
- work[itauq], &u[u_offset], ldu, &work[iwork],
- &i__2, &ierr)
- ;
-
- /* Generate right vectors bidiagonalizing R in A */
- /* (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cungbr_("P", n, n, n, &a[a_offset], lda, &work[itaup],
- &work[iwork], &i__2, &ierr);
- irwork = ie + *n;
-
- /* Perform bidiagonal QR iteration, computing left */
- /* singular vectors of A in U and computing right */
- /* singular vectors of A in A */
- /* (CWorkspace: 0) */
- /* (RWorkspace: need BDSPAC) */
-
- cbdsqr_("U", n, n, m, &c__0, &s[1], &rwork[ie], &a[
- a_offset], lda, &u[u_offset], ldu, cdum, &
- c__1, &rwork[irwork], info);
-
- }
-
- } else if (wntvas) {
-
- /* Path 6 (M much larger than N, JOBU='S', JOBVT='S' */
- /* or 'A') */
- /* N left singular vectors to be computed in U and */
- /* N right singular vectors to be computed in VT */
-
- if (*lwork >= *n * *n + *n * 3) {
-
- /* Sufficient workspace for a fast algorithm */
-
- iu = 1;
- if (*lwork >= wrkbl + *lda * *n) {
-
- /* WORK(IU) is LDA by N */
-
- ldwrku = *lda;
- } else {
-
- /* WORK(IU) is N by N */
-
- ldwrku = *n;
- }
- itau = iu + ldwrku * *n;
- iwork = itau + *n;
-
- /* Compute A=Q*R */
- /* (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[
- iwork], &i__2, &ierr);
-
- /* Copy R to WORK(IU), zeroing out below it */
-
- clacpy_("U", n, n, &a[a_offset], lda, &work[iu], &
- ldwrku);
- i__2 = *n - 1;
- i__3 = *n - 1;
- claset_("L", &i__2, &i__3, &c_b1, &c_b1, &work[iu + 1]
- , &ldwrku);
-
- /* Generate Q in A */
- /* (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cungqr_(m, n, n, &a[a_offset], lda, &work[itau], &
- work[iwork], &i__2, &ierr);
- ie = 1;
- itauq = itau;
- itaup = itauq + *n;
- iwork = itaup + *n;
-
- /* Bidiagonalize R in WORK(IU), copying result to VT */
- /* (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB) */
- /* (RWorkspace: need N) */
-
- i__2 = *lwork - iwork + 1;
- cgebrd_(n, n, &work[iu], &ldwrku, &s[1], &rwork[ie], &
- work[itauq], &work[itaup], &work[iwork], &
- i__2, &ierr);
- clacpy_("U", n, n, &work[iu], &ldwrku, &vt[vt_offset],
- ldvt);
-
- /* Generate left bidiagonalizing vectors in WORK(IU) */
- /* (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cungbr_("Q", n, n, n, &work[iu], &ldwrku, &work[itauq]
- , &work[iwork], &i__2, &ierr);
-
- /* Generate right bidiagonalizing vectors in VT */
- /* (CWorkspace: need N*N+3*N-1, */
- /* prefer N*N+2*N+(N-1)*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cungbr_("P", n, n, n, &vt[vt_offset], ldvt, &work[
- itaup], &work[iwork], &i__2, &ierr)
- ;
- irwork = ie + *n;
-
- /* Perform bidiagonal QR iteration, computing left */
- /* singular vectors of R in WORK(IU) and computing */
- /* right singular vectors of R in VT */
- /* (CWorkspace: need N*N) */
- /* (RWorkspace: need BDSPAC) */
-
- cbdsqr_("U", n, n, n, &c__0, &s[1], &rwork[ie], &vt[
- vt_offset], ldvt, &work[iu], &ldwrku, cdum, &
- c__1, &rwork[irwork], info);
-
- /* Multiply Q in A by left singular vectors of R in */
- /* WORK(IU), storing result in U */
- /* (CWorkspace: need N*N) */
- /* (RWorkspace: 0) */
-
- cgemm_("N", "N", m, n, n, &c_b2, &a[a_offset], lda, &
- work[iu], &ldwrku, &c_b1, &u[u_offset], ldu);
-
- } else {
-
- /* Insufficient workspace for a fast algorithm */
-
- itau = 1;
- iwork = itau + *n;
-
- /* Compute A=Q*R, copying result to U */
- /* (CWorkspace: need 2*N, prefer N+N*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[
- iwork], &i__2, &ierr);
- clacpy_("L", m, n, &a[a_offset], lda, &u[u_offset],
- ldu);
-
- /* Generate Q in U */
- /* (CWorkspace: need 2*N, prefer N+N*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cungqr_(m, n, n, &u[u_offset], ldu, &work[itau], &
- work[iwork], &i__2, &ierr);
-
- /* Copy R to VT, zeroing out below it */
-
- clacpy_("U", n, n, &a[a_offset], lda, &vt[vt_offset],
- ldvt);
- if (*n > 1) {
- i__2 = *n - 1;
- i__3 = *n - 1;
- claset_("L", &i__2, &i__3, &c_b1, &c_b1, &vt[
- vt_dim1 + 2], ldvt);
- }
- ie = 1;
- itauq = itau;
- itaup = itauq + *n;
- iwork = itaup + *n;
-
- /* Bidiagonalize R in VT */
- /* (CWorkspace: need 3*N, prefer 2*N+2*N*NB) */
- /* (RWorkspace: need N) */
-
- i__2 = *lwork - iwork + 1;
- cgebrd_(n, n, &vt[vt_offset], ldvt, &s[1], &rwork[ie],
- &work[itauq], &work[itaup], &work[iwork], &
- i__2, &ierr);
-
- /* Multiply Q in U by left bidiagonalizing vectors */
- /* in VT */
- /* (CWorkspace: need 2*N+M, prefer 2*N+M*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cunmbr_("Q", "R", "N", m, n, n, &vt[vt_offset], ldvt,
- &work[itauq], &u[u_offset], ldu, &work[iwork],
- &i__2, &ierr);
-
- /* Generate right bidiagonalizing vectors in VT */
- /* (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cungbr_("P", n, n, n, &vt[vt_offset], ldvt, &work[
- itaup], &work[iwork], &i__2, &ierr)
- ;
- irwork = ie + *n;
-
- /* Perform bidiagonal QR iteration, computing left */
- /* singular vectors of A in U and computing right */
- /* singular vectors of A in VT */
- /* (CWorkspace: 0) */
- /* (RWorkspace: need BDSPAC) */
-
- cbdsqr_("U", n, n, m, &c__0, &s[1], &rwork[ie], &vt[
- vt_offset], ldvt, &u[u_offset], ldu, cdum, &
- c__1, &rwork[irwork], info);
-
- }
-
- }
-
- } else if (wntua) {
-
- if (wntvn) {
-
- /* Path 7 (M much larger than N, JOBU='A', JOBVT='N') */
- /* M left singular vectors to be computed in U and */
- /* no right singular vectors to be computed */
-
- /* Computing MAX */
- i__2 = *n + *m, i__3 = *n * 3;
- if (*lwork >= *n * *n + f2cmax(i__2,i__3)) {
-
- /* Sufficient workspace for a fast algorithm */
-
- ir = 1;
- if (*lwork >= wrkbl + *lda * *n) {
-
- /* WORK(IR) is LDA by N */
-
- ldwrkr = *lda;
- } else {
-
- /* WORK(IR) is N by N */
-
- ldwrkr = *n;
- }
- itau = ir + ldwrkr * *n;
- iwork = itau + *n;
-
- /* Compute A=Q*R, copying result to U */
- /* (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[
- iwork], &i__2, &ierr);
- clacpy_("L", m, n, &a[a_offset], lda, &u[u_offset],
- ldu);
-
- /* Copy R to WORK(IR), zeroing out below it */
-
- clacpy_("U", n, n, &a[a_offset], lda, &work[ir], &
- ldwrkr);
- i__2 = *n - 1;
- i__3 = *n - 1;
- claset_("L", &i__2, &i__3, &c_b1, &c_b1, &work[ir + 1]
- , &ldwrkr);
-
- /* Generate Q in U */
- /* (CWorkspace: need N*N+N+M, prefer N*N+N+M*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cungqr_(m, m, n, &u[u_offset], ldu, &work[itau], &
- work[iwork], &i__2, &ierr);
- ie = 1;
- itauq = itau;
- itaup = itauq + *n;
- iwork = itaup + *n;
-
- /* Bidiagonalize R in WORK(IR) */
- /* (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB) */
- /* (RWorkspace: need N) */
-
- i__2 = *lwork - iwork + 1;
- cgebrd_(n, n, &work[ir], &ldwrkr, &s[1], &rwork[ie], &
- work[itauq], &work[itaup], &work[iwork], &
- i__2, &ierr);
-
- /* Generate left bidiagonalizing vectors in WORK(IR) */
- /* (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cungbr_("Q", n, n, n, &work[ir], &ldwrkr, &work[itauq]
- , &work[iwork], &i__2, &ierr);
- irwork = ie + *n;
-
- /* Perform bidiagonal QR iteration, computing left */
- /* singular vectors of R in WORK(IR) */
- /* (CWorkspace: need N*N) */
- /* (RWorkspace: need BDSPAC) */
-
- cbdsqr_("U", n, &c__0, n, &c__0, &s[1], &rwork[ie],
- cdum, &c__1, &work[ir], &ldwrkr, cdum, &c__1,
- &rwork[irwork], info);
-
- /* Multiply Q in U by left singular vectors of R in */
- /* WORK(IR), storing result in A */
- /* (CWorkspace: need N*N) */
- /* (RWorkspace: 0) */
-
- cgemm_("N", "N", m, n, n, &c_b2, &u[u_offset], ldu, &
- work[ir], &ldwrkr, &c_b1, &a[a_offset], lda);
-
- /* Copy left singular vectors of A from A to U */
-
- clacpy_("F", m, n, &a[a_offset], lda, &u[u_offset],
- ldu);
-
- } else {
-
- /* Insufficient workspace for a fast algorithm */
-
- itau = 1;
- iwork = itau + *n;
-
- /* Compute A=Q*R, copying result to U */
- /* (CWorkspace: need 2*N, prefer N+N*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[
- iwork], &i__2, &ierr);
- clacpy_("L", m, n, &a[a_offset], lda, &u[u_offset],
- ldu);
-
- /* Generate Q in U */
- /* (CWorkspace: need N+M, prefer N+M*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cungqr_(m, m, n, &u[u_offset], ldu, &work[itau], &
- work[iwork], &i__2, &ierr);
- ie = 1;
- itauq = itau;
- itaup = itauq + *n;
- iwork = itaup + *n;
-
- /* Zero out below R in A */
-
- if (*n > 1) {
- i__2 = *n - 1;
- i__3 = *n - 1;
- claset_("L", &i__2, &i__3, &c_b1, &c_b1, &a[
- a_dim1 + 2], lda);
- }
-
- /* Bidiagonalize R in A */
- /* (CWorkspace: need 3*N, prefer 2*N+2*N*NB) */
- /* (RWorkspace: need N) */
-
- i__2 = *lwork - iwork + 1;
- cgebrd_(n, n, &a[a_offset], lda, &s[1], &rwork[ie], &
- work[itauq], &work[itaup], &work[iwork], &
- i__2, &ierr);
-
- /* Multiply Q in U by left bidiagonalizing vectors */
- /* in A */
- /* (CWorkspace: need 2*N+M, prefer 2*N+M*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cunmbr_("Q", "R", "N", m, n, n, &a[a_offset], lda, &
- work[itauq], &u[u_offset], ldu, &work[iwork],
- &i__2, &ierr)
- ;
- irwork = ie + *n;
-
- /* Perform bidiagonal QR iteration, computing left */
- /* singular vectors of A in U */
- /* (CWorkspace: 0) */
- /* (RWorkspace: need BDSPAC) */
-
- cbdsqr_("U", n, &c__0, m, &c__0, &s[1], &rwork[ie],
- cdum, &c__1, &u[u_offset], ldu, cdum, &c__1, &
- rwork[irwork], info);
-
- }
-
- } else if (wntvo) {
-
- /* Path 8 (M much larger than N, JOBU='A', JOBVT='O') */
- /* M left singular vectors to be computed in U and */
- /* N right singular vectors to be overwritten on A */
-
- /* Computing MAX */
- i__2 = *n + *m, i__3 = *n * 3;
- if (*lwork >= (*n << 1) * *n + f2cmax(i__2,i__3)) {
-
- /* Sufficient workspace for a fast algorithm */
-
- iu = 1;
- if (*lwork >= wrkbl + (*lda << 1) * *n) {
-
- /* WORK(IU) is LDA by N and WORK(IR) is LDA by N */
-
- ldwrku = *lda;
- ir = iu + ldwrku * *n;
- ldwrkr = *lda;
- } else if (*lwork >= wrkbl + (*lda + *n) * *n) {
-
- /* WORK(IU) is LDA by N and WORK(IR) is N by N */
-
- ldwrku = *lda;
- ir = iu + ldwrku * *n;
- ldwrkr = *n;
- } else {
-
- /* WORK(IU) is N by N and WORK(IR) is N by N */
-
- ldwrku = *n;
- ir = iu + ldwrku * *n;
- ldwrkr = *n;
- }
- itau = ir + ldwrkr * *n;
- iwork = itau + *n;
-
- /* Compute A=Q*R, copying result to U */
- /* (CWorkspace: need 2*N*N+2*N, prefer 2*N*N+N+N*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[
- iwork], &i__2, &ierr);
- clacpy_("L", m, n, &a[a_offset], lda, &u[u_offset],
- ldu);
-
- /* Generate Q in U */
- /* (CWorkspace: need 2*N*N+N+M, prefer 2*N*N+N+M*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cungqr_(m, m, n, &u[u_offset], ldu, &work[itau], &
- work[iwork], &i__2, &ierr);
-
- /* Copy R to WORK(IU), zeroing out below it */
-
- clacpy_("U", n, n, &a[a_offset], lda, &work[iu], &
- ldwrku);
- i__2 = *n - 1;
- i__3 = *n - 1;
- claset_("L", &i__2, &i__3, &c_b1, &c_b1, &work[iu + 1]
- , &ldwrku);
- ie = 1;
- itauq = itau;
- itaup = itauq + *n;
- iwork = itaup + *n;
-
- /* Bidiagonalize R in WORK(IU), copying result to */
- /* WORK(IR) */
- /* (CWorkspace: need 2*N*N+3*N, */
- /* prefer 2*N*N+2*N+2*N*NB) */
- /* (RWorkspace: need N) */
-
- i__2 = *lwork - iwork + 1;
- cgebrd_(n, n, &work[iu], &ldwrku, &s[1], &rwork[ie], &
- work[itauq], &work[itaup], &work[iwork], &
- i__2, &ierr);
- clacpy_("U", n, n, &work[iu], &ldwrku, &work[ir], &
- ldwrkr);
-
- /* Generate left bidiagonalizing vectors in WORK(IU) */
- /* (CWorkspace: need 2*N*N+3*N, prefer 2*N*N+2*N+N*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cungbr_("Q", n, n, n, &work[iu], &ldwrku, &work[itauq]
- , &work[iwork], &i__2, &ierr);
-
- /* Generate right bidiagonalizing vectors in WORK(IR) */
- /* (CWorkspace: need 2*N*N+3*N-1, */
- /* prefer 2*N*N+2*N+(N-1)*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cungbr_("P", n, n, n, &work[ir], &ldwrkr, &work[itaup]
- , &work[iwork], &i__2, &ierr);
- irwork = ie + *n;
-
- /* Perform bidiagonal QR iteration, computing left */
- /* singular vectors of R in WORK(IU) and computing */
- /* right singular vectors of R in WORK(IR) */
- /* (CWorkspace: need 2*N*N) */
- /* (RWorkspace: need BDSPAC) */
-
- cbdsqr_("U", n, n, n, &c__0, &s[1], &rwork[ie], &work[
- ir], &ldwrkr, &work[iu], &ldwrku, cdum, &c__1,
- &rwork[irwork], info);
-
- /* Multiply Q in U by left singular vectors of R in */
- /* WORK(IU), storing result in A */
- /* (CWorkspace: need N*N) */
- /* (RWorkspace: 0) */
-
- cgemm_("N", "N", m, n, n, &c_b2, &u[u_offset], ldu, &
- work[iu], &ldwrku, &c_b1, &a[a_offset], lda);
-
- /* Copy left singular vectors of A from A to U */
-
- clacpy_("F", m, n, &a[a_offset], lda, &u[u_offset],
- ldu);
-
- /* Copy right singular vectors of R from WORK(IR) to A */
-
- clacpy_("F", n, n, &work[ir], &ldwrkr, &a[a_offset],
- lda);
-
- } else {
-
- /* Insufficient workspace for a fast algorithm */
-
- itau = 1;
- iwork = itau + *n;
-
- /* Compute A=Q*R, copying result to U */
- /* (CWorkspace: need 2*N, prefer N+N*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[
- iwork], &i__2, &ierr);
- clacpy_("L", m, n, &a[a_offset], lda, &u[u_offset],
- ldu);
-
- /* Generate Q in U */
- /* (CWorkspace: need N+M, prefer N+M*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cungqr_(m, m, n, &u[u_offset], ldu, &work[itau], &
- work[iwork], &i__2, &ierr);
- ie = 1;
- itauq = itau;
- itaup = itauq + *n;
- iwork = itaup + *n;
-
- /* Zero out below R in A */
-
- if (*n > 1) {
- i__2 = *n - 1;
- i__3 = *n - 1;
- claset_("L", &i__2, &i__3, &c_b1, &c_b1, &a[
- a_dim1 + 2], lda);
- }
-
- /* Bidiagonalize R in A */
- /* (CWorkspace: need 3*N, prefer 2*N+2*N*NB) */
- /* (RWorkspace: need N) */
-
- i__2 = *lwork - iwork + 1;
- cgebrd_(n, n, &a[a_offset], lda, &s[1], &rwork[ie], &
- work[itauq], &work[itaup], &work[iwork], &
- i__2, &ierr);
-
- /* Multiply Q in U by left bidiagonalizing vectors */
- /* in A */
- /* (CWorkspace: need 2*N+M, prefer 2*N+M*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cunmbr_("Q", "R", "N", m, n, n, &a[a_offset], lda, &
- work[itauq], &u[u_offset], ldu, &work[iwork],
- &i__2, &ierr)
- ;
-
- /* Generate right bidiagonalizing vectors in A */
- /* (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cungbr_("P", n, n, n, &a[a_offset], lda, &work[itaup],
- &work[iwork], &i__2, &ierr);
- irwork = ie + *n;
-
- /* Perform bidiagonal QR iteration, computing left */
- /* singular vectors of A in U and computing right */
- /* singular vectors of A in A */
- /* (CWorkspace: 0) */
- /* (RWorkspace: need BDSPAC) */
-
- cbdsqr_("U", n, n, m, &c__0, &s[1], &rwork[ie], &a[
- a_offset], lda, &u[u_offset], ldu, cdum, &
- c__1, &rwork[irwork], info);
-
- }
-
- } else if (wntvas) {
-
- /* Path 9 (M much larger than N, JOBU='A', JOBVT='S' */
- /* or 'A') */
- /* M left singular vectors to be computed in U and */
- /* N right singular vectors to be computed in VT */
-
- /* Computing MAX */
- i__2 = *n + *m, i__3 = *n * 3;
- if (*lwork >= *n * *n + f2cmax(i__2,i__3)) {
-
- /* Sufficient workspace for a fast algorithm */
-
- iu = 1;
- if (*lwork >= wrkbl + *lda * *n) {
-
- /* WORK(IU) is LDA by N */
-
- ldwrku = *lda;
- } else {
-
- /* WORK(IU) is N by N */
-
- ldwrku = *n;
- }
- itau = iu + ldwrku * *n;
- iwork = itau + *n;
-
- /* Compute A=Q*R, copying result to U */
- /* (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[
- iwork], &i__2, &ierr);
- clacpy_("L", m, n, &a[a_offset], lda, &u[u_offset],
- ldu);
-
- /* Generate Q in U */
- /* (CWorkspace: need N*N+N+M, prefer N*N+N+M*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cungqr_(m, m, n, &u[u_offset], ldu, &work[itau], &
- work[iwork], &i__2, &ierr);
-
- /* Copy R to WORK(IU), zeroing out below it */
-
- clacpy_("U", n, n, &a[a_offset], lda, &work[iu], &
- ldwrku);
- i__2 = *n - 1;
- i__3 = *n - 1;
- claset_("L", &i__2, &i__3, &c_b1, &c_b1, &work[iu + 1]
- , &ldwrku);
- ie = 1;
- itauq = itau;
- itaup = itauq + *n;
- iwork = itaup + *n;
-
- /* Bidiagonalize R in WORK(IU), copying result to VT */
- /* (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB) */
- /* (RWorkspace: need N) */
-
- i__2 = *lwork - iwork + 1;
- cgebrd_(n, n, &work[iu], &ldwrku, &s[1], &rwork[ie], &
- work[itauq], &work[itaup], &work[iwork], &
- i__2, &ierr);
- clacpy_("U", n, n, &work[iu], &ldwrku, &vt[vt_offset],
- ldvt);
-
- /* Generate left bidiagonalizing vectors in WORK(IU) */
- /* (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cungbr_("Q", n, n, n, &work[iu], &ldwrku, &work[itauq]
- , &work[iwork], &i__2, &ierr);
-
- /* Generate right bidiagonalizing vectors in VT */
- /* (CWorkspace: need N*N+3*N-1, */
- /* prefer N*N+2*N+(N-1)*NB) */
- /* (RWorkspace: need 0) */
-
- i__2 = *lwork - iwork + 1;
- cungbr_("P", n, n, n, &vt[vt_offset], ldvt, &work[
- itaup], &work[iwork], &i__2, &ierr)
- ;
- irwork = ie + *n;
-
- /* Perform bidiagonal QR iteration, computing left */
- /* singular vectors of R in WORK(IU) and computing */
- /* right singular vectors of R in VT */
- /* (CWorkspace: need N*N) */
- /* (RWorkspace: need BDSPAC) */
-
- cbdsqr_("U", n, n, n, &c__0, &s[1], &rwork[ie], &vt[
- vt_offset], ldvt, &work[iu], &ldwrku, cdum, &
- c__1, &rwork[irwork], info);
-
- /* Multiply Q in U by left singular vectors of R in */
- /* WORK(IU), storing result in A */
- /* (CWorkspace: need N*N) */
- /* (RWorkspace: 0) */
-
- cgemm_("N", "N", m, n, n, &c_b2, &u[u_offset], ldu, &
- work[iu], &ldwrku, &c_b1, &a[a_offset], lda);
-
- /* Copy left singular vectors of A from A to U */
-
- clacpy_("F", m, n, &a[a_offset], lda, &u[u_offset],
- ldu);
-
- } else {
-
- /* Insufficient workspace for a fast algorithm */
-
- itau = 1;
- iwork = itau + *n;
-
- /* Compute A=Q*R, copying result to U */
- /* (CWorkspace: need 2*N, prefer N+N*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[
- iwork], &i__2, &ierr);
- clacpy_("L", m, n, &a[a_offset], lda, &u[u_offset],
- ldu);
-
- /* Generate Q in U */
- /* (CWorkspace: need N+M, prefer N+M*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cungqr_(m, m, n, &u[u_offset], ldu, &work[itau], &
- work[iwork], &i__2, &ierr);
-
- /* Copy R from A to VT, zeroing out below it */
-
- clacpy_("U", n, n, &a[a_offset], lda, &vt[vt_offset],
- ldvt);
- if (*n > 1) {
- i__2 = *n - 1;
- i__3 = *n - 1;
- claset_("L", &i__2, &i__3, &c_b1, &c_b1, &vt[
- vt_dim1 + 2], ldvt);
- }
- ie = 1;
- itauq = itau;
- itaup = itauq + *n;
- iwork = itaup + *n;
-
- /* Bidiagonalize R in VT */
- /* (CWorkspace: need 3*N, prefer 2*N+2*N*NB) */
- /* (RWorkspace: need N) */
-
- i__2 = *lwork - iwork + 1;
- cgebrd_(n, n, &vt[vt_offset], ldvt, &s[1], &rwork[ie],
- &work[itauq], &work[itaup], &work[iwork], &
- i__2, &ierr);
-
- /* Multiply Q in U by left bidiagonalizing vectors */
- /* in VT */
- /* (CWorkspace: need 2*N+M, prefer 2*N+M*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cunmbr_("Q", "R", "N", m, n, n, &vt[vt_offset], ldvt,
- &work[itauq], &u[u_offset], ldu, &work[iwork],
- &i__2, &ierr);
-
- /* Generate right bidiagonalizing vectors in VT */
- /* (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cungbr_("P", n, n, n, &vt[vt_offset], ldvt, &work[
- itaup], &work[iwork], &i__2, &ierr)
- ;
- irwork = ie + *n;
-
- /* Perform bidiagonal QR iteration, computing left */
- /* singular vectors of A in U and computing right */
- /* singular vectors of A in VT */
- /* (CWorkspace: 0) */
- /* (RWorkspace: need BDSPAC) */
-
- cbdsqr_("U", n, n, m, &c__0, &s[1], &rwork[ie], &vt[
- vt_offset], ldvt, &u[u_offset], ldu, cdum, &
- c__1, &rwork[irwork], info);
-
- }
-
- }
-
- }
-
- } else {
-
- /* M .LT. MNTHR */
-
- /* Path 10 (M at least N, but not much larger) */
- /* Reduce to bidiagonal form without QR decomposition */
-
- ie = 1;
- itauq = 1;
- itaup = itauq + *n;
- iwork = itaup + *n;
-
- /* Bidiagonalize A */
- /* (CWorkspace: need 2*N+M, prefer 2*N+(M+N)*NB) */
- /* (RWorkspace: need N) */
-
- i__2 = *lwork - iwork + 1;
- cgebrd_(m, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq],
- &work[itaup], &work[iwork], &i__2, &ierr);
- if (wntuas) {
-
- /* If left singular vectors desired in U, copy result to U */
- /* and generate left bidiagonalizing vectors in U */
- /* (CWorkspace: need 2*N+NCU, prefer 2*N+NCU*NB) */
- /* (RWorkspace: 0) */
-
- clacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], ldu);
- if (wntus) {
- ncu = *n;
- }
- if (wntua) {
- ncu = *m;
- }
- i__2 = *lwork - iwork + 1;
- cungbr_("Q", m, &ncu, n, &u[u_offset], ldu, &work[itauq], &
- work[iwork], &i__2, &ierr);
- }
- if (wntvas) {
-
- /* If right singular vectors desired in VT, copy result to */
- /* VT and generate right bidiagonalizing vectors in VT */
- /* (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB) */
- /* (RWorkspace: 0) */
-
- clacpy_("U", n, n, &a[a_offset], lda, &vt[vt_offset], ldvt);
- i__2 = *lwork - iwork + 1;
- cungbr_("P", n, n, n, &vt[vt_offset], ldvt, &work[itaup], &
- work[iwork], &i__2, &ierr);
- }
- if (wntuo) {
-
- /* If left singular vectors desired in A, generate left */
- /* bidiagonalizing vectors in A */
- /* (CWorkspace: need 3*N, prefer 2*N+N*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cungbr_("Q", m, n, n, &a[a_offset], lda, &work[itauq], &work[
- iwork], &i__2, &ierr);
- }
- if (wntvo) {
-
- /* If right singular vectors desired in A, generate right */
- /* bidiagonalizing vectors in A */
- /* (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cungbr_("P", n, n, n, &a[a_offset], lda, &work[itaup], &work[
- iwork], &i__2, &ierr);
- }
- irwork = ie + *n;
- if (wntuas || wntuo) {
- nru = *m;
- }
- if (wntun) {
- nru = 0;
- }
- if (wntvas || wntvo) {
- ncvt = *n;
- }
- if (wntvn) {
- ncvt = 0;
- }
- if (! wntuo && ! wntvo) {
-
- /* Perform bidiagonal QR iteration, if desired, computing */
- /* left singular vectors in U and computing right singular */
- /* vectors in VT */
- /* (CWorkspace: 0) */
- /* (RWorkspace: need BDSPAC) */
-
- cbdsqr_("U", n, &ncvt, &nru, &c__0, &s[1], &rwork[ie], &vt[
- vt_offset], ldvt, &u[u_offset], ldu, cdum, &c__1, &
- rwork[irwork], info);
- } else if (! wntuo && wntvo) {
-
- /* Perform bidiagonal QR iteration, if desired, computing */
- /* left singular vectors in U and computing right singular */
- /* vectors in A */
- /* (CWorkspace: 0) */
- /* (RWorkspace: need BDSPAC) */
-
- cbdsqr_("U", n, &ncvt, &nru, &c__0, &s[1], &rwork[ie], &a[
- a_offset], lda, &u[u_offset], ldu, cdum, &c__1, &
- rwork[irwork], info);
- } else {
-
- /* Perform bidiagonal QR iteration, if desired, computing */
- /* left singular vectors in A and computing right singular */
- /* vectors in VT */
- /* (CWorkspace: 0) */
- /* (RWorkspace: need BDSPAC) */
-
- cbdsqr_("U", n, &ncvt, &nru, &c__0, &s[1], &rwork[ie], &vt[
- vt_offset], ldvt, &a[a_offset], lda, cdum, &c__1, &
- rwork[irwork], info);
- }
-
- }
-
- } else {
-
- /* A has more columns than rows. If A has sufficiently more */
- /* columns than rows, first reduce using the LQ decomposition (if */
- /* sufficient workspace available) */
-
- if (*n >= mnthr) {
-
- if (wntvn) {
-
- /* Path 1t(N much larger than M, JOBVT='N') */
- /* No right singular vectors to be computed */
-
- itau = 1;
- iwork = itau + *m;
-
- /* Compute A=L*Q */
- /* (CWorkspace: need 2*M, prefer M+M*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork], &
- i__2, &ierr);
-
- /* Zero out above L */
-
- i__2 = *m - 1;
- i__3 = *m - 1;
- claset_("U", &i__2, &i__3, &c_b1, &c_b1, &a[(a_dim1 << 1) + 1]
- , lda);
- ie = 1;
- itauq = 1;
- itaup = itauq + *m;
- iwork = itaup + *m;
-
- /* Bidiagonalize L in A */
- /* (CWorkspace: need 3*M, prefer 2*M+2*M*NB) */
- /* (RWorkspace: need M) */
-
- i__2 = *lwork - iwork + 1;
- cgebrd_(m, m, &a[a_offset], lda, &s[1], &rwork[ie], &work[
- itauq], &work[itaup], &work[iwork], &i__2, &ierr);
- if (wntuo || wntuas) {
-
- /* If left singular vectors desired, generate Q */
- /* (CWorkspace: need 3*M, prefer 2*M+M*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cungbr_("Q", m, m, m, &a[a_offset], lda, &work[itauq], &
- work[iwork], &i__2, &ierr);
- }
- irwork = ie + *m;
- nru = 0;
- if (wntuo || wntuas) {
- nru = *m;
- }
-
- /* Perform bidiagonal QR iteration, computing left singular */
- /* vectors of A in A if desired */
- /* (CWorkspace: 0) */
- /* (RWorkspace: need BDSPAC) */
-
- cbdsqr_("U", m, &c__0, &nru, &c__0, &s[1], &rwork[ie], cdum, &
- c__1, &a[a_offset], lda, cdum, &c__1, &rwork[irwork],
- info);
-
- /* If left singular vectors desired in U, copy them there */
-
- if (wntuas) {
- clacpy_("F", m, m, &a[a_offset], lda, &u[u_offset], ldu);
- }
-
- } else if (wntvo && wntun) {
-
- /* Path 2t(N much larger than M, JOBU='N', JOBVT='O') */
- /* M right singular vectors to be overwritten on A and */
- /* no left singular vectors to be computed */
-
- if (*lwork >= *m * *m + *m * 3) {
-
- /* Sufficient workspace for a fast algorithm */
-
- ir = 1;
- /* Computing MAX */
- i__2 = wrkbl, i__3 = *lda * *n;
- if (*lwork >= f2cmax(i__2,i__3) + *lda * *m) {
-
- /* WORK(IU) is LDA by N and WORK(IR) is LDA by M */
-
- ldwrku = *lda;
- chunk = *n;
- ldwrkr = *lda;
- } else /* if(complicated condition) */ {
- /* Computing MAX */
- i__2 = wrkbl, i__3 = *lda * *n;
- if (*lwork >= f2cmax(i__2,i__3) + *m * *m) {
-
- /* WORK(IU) is LDA by N and WORK(IR) is M by M */
-
- ldwrku = *lda;
- chunk = *n;
- ldwrkr = *m;
- } else {
-
- /* WORK(IU) is M by CHUNK and WORK(IR) is M by M */
-
- ldwrku = *m;
- chunk = (*lwork - *m * *m) / *m;
- ldwrkr = *m;
- }
- }
- itau = ir + ldwrkr * *m;
- iwork = itau + *m;
-
- /* Compute A=L*Q */
- /* (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork]
- , &i__2, &ierr);
-
- /* Copy L to WORK(IR) and zero out above it */
-
- clacpy_("L", m, m, &a[a_offset], lda, &work[ir], &ldwrkr);
- i__2 = *m - 1;
- i__3 = *m - 1;
- claset_("U", &i__2, &i__3, &c_b1, &c_b1, &work[ir +
- ldwrkr], &ldwrkr);
-
- /* Generate Q in A */
- /* (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cunglq_(m, n, m, &a[a_offset], lda, &work[itau], &work[
- iwork], &i__2, &ierr);
- ie = 1;
- itauq = itau;
- itaup = itauq + *m;
- iwork = itaup + *m;
-
- /* Bidiagonalize L in WORK(IR) */
- /* (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB) */
- /* (RWorkspace: need M) */
-
- i__2 = *lwork - iwork + 1;
- cgebrd_(m, m, &work[ir], &ldwrkr, &s[1], &rwork[ie], &
- work[itauq], &work[itaup], &work[iwork], &i__2, &
- ierr);
-
- /* Generate right vectors bidiagonalizing L */
- /* (CWorkspace: need M*M+3*M-1, prefer M*M+2*M+(M-1)*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cungbr_("P", m, m, m, &work[ir], &ldwrkr, &work[itaup], &
- work[iwork], &i__2, &ierr);
- irwork = ie + *m;
-
- /* Perform bidiagonal QR iteration, computing right */
- /* singular vectors of L in WORK(IR) */
- /* (CWorkspace: need M*M) */
- /* (RWorkspace: need BDSPAC) */
-
- cbdsqr_("U", m, m, &c__0, &c__0, &s[1], &rwork[ie], &work[
- ir], &ldwrkr, cdum, &c__1, cdum, &c__1, &rwork[
- irwork], info);
- iu = itauq;
-
- /* Multiply right singular vectors of L in WORK(IR) by Q */
- /* in A, storing result in WORK(IU) and copying to A */
- /* (CWorkspace: need M*M+M, prefer M*M+M*N) */
- /* (RWorkspace: 0) */
-
- i__2 = *n;
- i__3 = chunk;
- for (i__ = 1; i__3 < 0 ? i__ >= i__2 : i__ <= i__2; i__ +=
- i__3) {
- /* Computing MIN */
- i__4 = *n - i__ + 1;
- blk = f2cmin(i__4,chunk);
- cgemm_("N", "N", m, &blk, m, &c_b2, &work[ir], &
- ldwrkr, &a[i__ * a_dim1 + 1], lda, &c_b1, &
- work[iu], &ldwrku);
- clacpy_("F", m, &blk, &work[iu], &ldwrku, &a[i__ *
- a_dim1 + 1], lda);
- /* L30: */
- }
-
- } else {
-
- /* Insufficient workspace for a fast algorithm */
-
- ie = 1;
- itauq = 1;
- itaup = itauq + *m;
- iwork = itaup + *m;
-
- /* Bidiagonalize A */
- /* (CWorkspace: need 2*M+N, prefer 2*M+(M+N)*NB) */
- /* (RWorkspace: need M) */
-
- i__3 = *lwork - iwork + 1;
- cgebrd_(m, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[
- itauq], &work[itaup], &work[iwork], &i__3, &ierr);
-
- /* Generate right vectors bidiagonalizing A */
- /* (CWorkspace: need 3*M, prefer 2*M+M*NB) */
- /* (RWorkspace: 0) */
-
- i__3 = *lwork - iwork + 1;
- cungbr_("P", m, n, m, &a[a_offset], lda, &work[itaup], &
- work[iwork], &i__3, &ierr);
- irwork = ie + *m;
-
- /* Perform bidiagonal QR iteration, computing right */
- /* singular vectors of A in A */
- /* (CWorkspace: 0) */
- /* (RWorkspace: need BDSPAC) */
-
- cbdsqr_("L", m, n, &c__0, &c__0, &s[1], &rwork[ie], &a[
- a_offset], lda, cdum, &c__1, cdum, &c__1, &rwork[
- irwork], info);
-
- }
-
- } else if (wntvo && wntuas) {
-
- /* Path 3t(N much larger than M, JOBU='S' or 'A', JOBVT='O') */
- /* M right singular vectors to be overwritten on A and */
- /* M left singular vectors to be computed in U */
-
- if (*lwork >= *m * *m + *m * 3) {
-
- /* Sufficient workspace for a fast algorithm */
-
- ir = 1;
- /* Computing MAX */
- i__3 = wrkbl, i__2 = *lda * *n;
- if (*lwork >= f2cmax(i__3,i__2) + *lda * *m) {
-
- /* WORK(IU) is LDA by N and WORK(IR) is LDA by M */
-
- ldwrku = *lda;
- chunk = *n;
- ldwrkr = *lda;
- } else /* if(complicated condition) */ {
- /* Computing MAX */
- i__3 = wrkbl, i__2 = *lda * *n;
- if (*lwork >= f2cmax(i__3,i__2) + *m * *m) {
-
- /* WORK(IU) is LDA by N and WORK(IR) is M by M */
-
- ldwrku = *lda;
- chunk = *n;
- ldwrkr = *m;
- } else {
-
- /* WORK(IU) is M by CHUNK and WORK(IR) is M by M */
-
- ldwrku = *m;
- chunk = (*lwork - *m * *m) / *m;
- ldwrkr = *m;
- }
- }
- itau = ir + ldwrkr * *m;
- iwork = itau + *m;
-
- /* Compute A=L*Q */
- /* (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB) */
- /* (RWorkspace: 0) */
-
- i__3 = *lwork - iwork + 1;
- cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork]
- , &i__3, &ierr);
-
- /* Copy L to U, zeroing about above it */
-
- clacpy_("L", m, m, &a[a_offset], lda, &u[u_offset], ldu);
- i__3 = *m - 1;
- i__2 = *m - 1;
- claset_("U", &i__3, &i__2, &c_b1, &c_b1, &u[(u_dim1 << 1)
- + 1], ldu);
-
- /* Generate Q in A */
- /* (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB) */
- /* (RWorkspace: 0) */
-
- i__3 = *lwork - iwork + 1;
- cunglq_(m, n, m, &a[a_offset], lda, &work[itau], &work[
- iwork], &i__3, &ierr);
- ie = 1;
- itauq = itau;
- itaup = itauq + *m;
- iwork = itaup + *m;
-
- /* Bidiagonalize L in U, copying result to WORK(IR) */
- /* (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB) */
- /* (RWorkspace: need M) */
-
- i__3 = *lwork - iwork + 1;
- cgebrd_(m, m, &u[u_offset], ldu, &s[1], &rwork[ie], &work[
- itauq], &work[itaup], &work[iwork], &i__3, &ierr);
- clacpy_("U", m, m, &u[u_offset], ldu, &work[ir], &ldwrkr);
-
- /* Generate right vectors bidiagonalizing L in WORK(IR) */
- /* (CWorkspace: need M*M+3*M-1, prefer M*M+2*M+(M-1)*NB) */
- /* (RWorkspace: 0) */
-
- i__3 = *lwork - iwork + 1;
- cungbr_("P", m, m, m, &work[ir], &ldwrkr, &work[itaup], &
- work[iwork], &i__3, &ierr);
-
- /* Generate left vectors bidiagonalizing L in U */
- /* (CWorkspace: need M*M+3*M, prefer M*M+2*M+M*NB) */
- /* (RWorkspace: 0) */
-
- i__3 = *lwork - iwork + 1;
- cungbr_("Q", m, m, m, &u[u_offset], ldu, &work[itauq], &
- work[iwork], &i__3, &ierr);
- irwork = ie + *m;
-
- /* Perform bidiagonal QR iteration, computing left */
- /* singular vectors of L in U, and computing right */
- /* singular vectors of L in WORK(IR) */
- /* (CWorkspace: need M*M) */
- /* (RWorkspace: need BDSPAC) */
-
- cbdsqr_("U", m, m, m, &c__0, &s[1], &rwork[ie], &work[ir],
- &ldwrkr, &u[u_offset], ldu, cdum, &c__1, &rwork[
- irwork], info);
- iu = itauq;
-
- /* Multiply right singular vectors of L in WORK(IR) by Q */
- /* in A, storing result in WORK(IU) and copying to A */
- /* (CWorkspace: need M*M+M, prefer M*M+M*N)) */
- /* (RWorkspace: 0) */
-
- i__3 = *n;
- i__2 = chunk;
- for (i__ = 1; i__2 < 0 ? i__ >= i__3 : i__ <= i__3; i__ +=
- i__2) {
- /* Computing MIN */
- i__4 = *n - i__ + 1;
- blk = f2cmin(i__4,chunk);
- cgemm_("N", "N", m, &blk, m, &c_b2, &work[ir], &
- ldwrkr, &a[i__ * a_dim1 + 1], lda, &c_b1, &
- work[iu], &ldwrku);
- clacpy_("F", m, &blk, &work[iu], &ldwrku, &a[i__ *
- a_dim1 + 1], lda);
- /* L40: */
- }
-
- } else {
-
- /* Insufficient workspace for a fast algorithm */
-
- itau = 1;
- iwork = itau + *m;
-
- /* Compute A=L*Q */
- /* (CWorkspace: need 2*M, prefer M+M*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork]
- , &i__2, &ierr);
-
- /* Copy L to U, zeroing out above it */
-
- clacpy_("L", m, m, &a[a_offset], lda, &u[u_offset], ldu);
- i__2 = *m - 1;
- i__3 = *m - 1;
- claset_("U", &i__2, &i__3, &c_b1, &c_b1, &u[(u_dim1 << 1)
- + 1], ldu);
-
- /* Generate Q in A */
- /* (CWorkspace: need 2*M, prefer M+M*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cunglq_(m, n, m, &a[a_offset], lda, &work[itau], &work[
- iwork], &i__2, &ierr);
- ie = 1;
- itauq = itau;
- itaup = itauq + *m;
- iwork = itaup + *m;
-
- /* Bidiagonalize L in U */
- /* (CWorkspace: need 3*M, prefer 2*M+2*M*NB) */
- /* (RWorkspace: need M) */
-
- i__2 = *lwork - iwork + 1;
- cgebrd_(m, m, &u[u_offset], ldu, &s[1], &rwork[ie], &work[
- itauq], &work[itaup], &work[iwork], &i__2, &ierr);
-
- /* Multiply right vectors bidiagonalizing L by Q in A */
- /* (CWorkspace: need 2*M+N, prefer 2*M+N*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cunmbr_("P", "L", "C", m, n, m, &u[u_offset], ldu, &work[
- itaup], &a[a_offset], lda, &work[iwork], &i__2, &
- ierr);
-
- /* Generate left vectors bidiagonalizing L in U */
- /* (CWorkspace: need 3*M, prefer 2*M+M*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cungbr_("Q", m, m, m, &u[u_offset], ldu, &work[itauq], &
- work[iwork], &i__2, &ierr);
- irwork = ie + *m;
-
- /* Perform bidiagonal QR iteration, computing left */
- /* singular vectors of A in U and computing right */
- /* singular vectors of A in A */
- /* (CWorkspace: 0) */
- /* (RWorkspace: need BDSPAC) */
-
- cbdsqr_("U", m, n, m, &c__0, &s[1], &rwork[ie], &a[
- a_offset], lda, &u[u_offset], ldu, cdum, &c__1, &
- rwork[irwork], info);
-
- }
-
- } else if (wntvs) {
-
- if (wntun) {
-
- /* Path 4t(N much larger than M, JOBU='N', JOBVT='S') */
- /* M right singular vectors to be computed in VT and */
- /* no left singular vectors to be computed */
-
- if (*lwork >= *m * *m + *m * 3) {
-
- /* Sufficient workspace for a fast algorithm */
-
- ir = 1;
- if (*lwork >= wrkbl + *lda * *m) {
-
- /* WORK(IR) is LDA by M */
-
- ldwrkr = *lda;
- } else {
-
- /* WORK(IR) is M by M */
-
- ldwrkr = *m;
- }
- itau = ir + ldwrkr * *m;
- iwork = itau + *m;
-
- /* Compute A=L*Q */
- /* (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[
- iwork], &i__2, &ierr);
-
- /* Copy L to WORK(IR), zeroing out above it */
-
- clacpy_("L", m, m, &a[a_offset], lda, &work[ir], &
- ldwrkr);
- i__2 = *m - 1;
- i__3 = *m - 1;
- claset_("U", &i__2, &i__3, &c_b1, &c_b1, &work[ir +
- ldwrkr], &ldwrkr);
-
- /* Generate Q in A */
- /* (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cunglq_(m, n, m, &a[a_offset], lda, &work[itau], &
- work[iwork], &i__2, &ierr);
- ie = 1;
- itauq = itau;
- itaup = itauq + *m;
- iwork = itaup + *m;
-
- /* Bidiagonalize L in WORK(IR) */
- /* (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB) */
- /* (RWorkspace: need M) */
-
- i__2 = *lwork - iwork + 1;
- cgebrd_(m, m, &work[ir], &ldwrkr, &s[1], &rwork[ie], &
- work[itauq], &work[itaup], &work[iwork], &
- i__2, &ierr);
-
- /* Generate right vectors bidiagonalizing L in */
- /* WORK(IR) */
- /* (CWorkspace: need M*M+3*M, prefer M*M+2*M+(M-1)*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cungbr_("P", m, m, m, &work[ir], &ldwrkr, &work[itaup]
- , &work[iwork], &i__2, &ierr);
- irwork = ie + *m;
-
- /* Perform bidiagonal QR iteration, computing right */
- /* singular vectors of L in WORK(IR) */
- /* (CWorkspace: need M*M) */
- /* (RWorkspace: need BDSPAC) */
-
- cbdsqr_("U", m, m, &c__0, &c__0, &s[1], &rwork[ie], &
- work[ir], &ldwrkr, cdum, &c__1, cdum, &c__1, &
- rwork[irwork], info);
-
- /* Multiply right singular vectors of L in WORK(IR) by */
- /* Q in A, storing result in VT */
- /* (CWorkspace: need M*M) */
- /* (RWorkspace: 0) */
-
- cgemm_("N", "N", m, n, m, &c_b2, &work[ir], &ldwrkr, &
- a[a_offset], lda, &c_b1, &vt[vt_offset], ldvt);
-
- } else {
-
- /* Insufficient workspace for a fast algorithm */
-
- itau = 1;
- iwork = itau + *m;
-
- /* Compute A=L*Q */
- /* (CWorkspace: need 2*M, prefer M+M*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[
- iwork], &i__2, &ierr);
-
- /* Copy result to VT */
-
- clacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset],
- ldvt);
-
- /* Generate Q in VT */
- /* (CWorkspace: need 2*M, prefer M+M*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cunglq_(m, n, m, &vt[vt_offset], ldvt, &work[itau], &
- work[iwork], &i__2, &ierr);
- ie = 1;
- itauq = itau;
- itaup = itauq + *m;
- iwork = itaup + *m;
-
- /* Zero out above L in A */
-
- i__2 = *m - 1;
- i__3 = *m - 1;
- claset_("U", &i__2, &i__3, &c_b1, &c_b1, &a[(a_dim1 <<
- 1) + 1], lda);
-
- /* Bidiagonalize L in A */
- /* (CWorkspace: need 3*M, prefer 2*M+2*M*NB) */
- /* (RWorkspace: need M) */
-
- i__2 = *lwork - iwork + 1;
- cgebrd_(m, m, &a[a_offset], lda, &s[1], &rwork[ie], &
- work[itauq], &work[itaup], &work[iwork], &
- i__2, &ierr);
-
- /* Multiply right vectors bidiagonalizing L by Q in VT */
- /* (CWorkspace: need 2*M+N, prefer 2*M+N*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cunmbr_("P", "L", "C", m, n, m, &a[a_offset], lda, &
- work[itaup], &vt[vt_offset], ldvt, &work[
- iwork], &i__2, &ierr);
- irwork = ie + *m;
-
- /* Perform bidiagonal QR iteration, computing right */
- /* singular vectors of A in VT */
- /* (CWorkspace: 0) */
- /* (RWorkspace: need BDSPAC) */
-
- cbdsqr_("U", m, n, &c__0, &c__0, &s[1], &rwork[ie], &
- vt[vt_offset], ldvt, cdum, &c__1, cdum, &c__1,
- &rwork[irwork], info);
-
- }
-
- } else if (wntuo) {
-
- /* Path 5t(N much larger than M, JOBU='O', JOBVT='S') */
- /* M right singular vectors to be computed in VT and */
- /* M left singular vectors to be overwritten on A */
-
- if (*lwork >= (*m << 1) * *m + *m * 3) {
-
- /* Sufficient workspace for a fast algorithm */
-
- iu = 1;
- if (*lwork >= wrkbl + (*lda << 1) * *m) {
-
- /* WORK(IU) is LDA by M and WORK(IR) is LDA by M */
-
- ldwrku = *lda;
- ir = iu + ldwrku * *m;
- ldwrkr = *lda;
- } else if (*lwork >= wrkbl + (*lda + *m) * *m) {
-
- /* WORK(IU) is LDA by M and WORK(IR) is M by M */
-
- ldwrku = *lda;
- ir = iu + ldwrku * *m;
- ldwrkr = *m;
- } else {
-
- /* WORK(IU) is M by M and WORK(IR) is M by M */
-
- ldwrku = *m;
- ir = iu + ldwrku * *m;
- ldwrkr = *m;
- }
- itau = ir + ldwrkr * *m;
- iwork = itau + *m;
-
- /* Compute A=L*Q */
- /* (CWorkspace: need 2*M*M+2*M, prefer 2*M*M+M+M*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[
- iwork], &i__2, &ierr);
-
- /* Copy L to WORK(IU), zeroing out below it */
-
- clacpy_("L", m, m, &a[a_offset], lda, &work[iu], &
- ldwrku);
- i__2 = *m - 1;
- i__3 = *m - 1;
- claset_("U", &i__2, &i__3, &c_b1, &c_b1, &work[iu +
- ldwrku], &ldwrku);
-
- /* Generate Q in A */
- /* (CWorkspace: need 2*M*M+2*M, prefer 2*M*M+M+M*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cunglq_(m, n, m, &a[a_offset], lda, &work[itau], &
- work[iwork], &i__2, &ierr);
- ie = 1;
- itauq = itau;
- itaup = itauq + *m;
- iwork = itaup + *m;
-
- /* Bidiagonalize L in WORK(IU), copying result to */
- /* WORK(IR) */
- /* (CWorkspace: need 2*M*M+3*M, */
- /* prefer 2*M*M+2*M+2*M*NB) */
- /* (RWorkspace: need M) */
-
- i__2 = *lwork - iwork + 1;
- cgebrd_(m, m, &work[iu], &ldwrku, &s[1], &rwork[ie], &
- work[itauq], &work[itaup], &work[iwork], &
- i__2, &ierr);
- clacpy_("L", m, m, &work[iu], &ldwrku, &work[ir], &
- ldwrkr);
-
- /* Generate right bidiagonalizing vectors in WORK(IU) */
- /* (CWorkspace: need 2*M*M+3*M-1, */
- /* prefer 2*M*M+2*M+(M-1)*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cungbr_("P", m, m, m, &work[iu], &ldwrku, &work[itaup]
- , &work[iwork], &i__2, &ierr);
-
- /* Generate left bidiagonalizing vectors in WORK(IR) */
- /* (CWorkspace: need 2*M*M+3*M, prefer 2*M*M+2*M+M*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cungbr_("Q", m, m, m, &work[ir], &ldwrkr, &work[itauq]
- , &work[iwork], &i__2, &ierr);
- irwork = ie + *m;
-
- /* Perform bidiagonal QR iteration, computing left */
- /* singular vectors of L in WORK(IR) and computing */
- /* right singular vectors of L in WORK(IU) */
- /* (CWorkspace: need 2*M*M) */
- /* (RWorkspace: need BDSPAC) */
-
- cbdsqr_("U", m, m, m, &c__0, &s[1], &rwork[ie], &work[
- iu], &ldwrku, &work[ir], &ldwrkr, cdum, &c__1,
- &rwork[irwork], info);
-
- /* Multiply right singular vectors of L in WORK(IU) by */
- /* Q in A, storing result in VT */
- /* (CWorkspace: need M*M) */
- /* (RWorkspace: 0) */
-
- cgemm_("N", "N", m, n, m, &c_b2, &work[iu], &ldwrku, &
- a[a_offset], lda, &c_b1, &vt[vt_offset], ldvt);
-
- /* Copy left singular vectors of L to A */
- /* (CWorkspace: need M*M) */
- /* (RWorkspace: 0) */
-
- clacpy_("F", m, m, &work[ir], &ldwrkr, &a[a_offset],
- lda);
-
- } else {
-
- /* Insufficient workspace for a fast algorithm */
-
- itau = 1;
- iwork = itau + *m;
-
- /* Compute A=L*Q, copying result to VT */
- /* (CWorkspace: need 2*M, prefer M+M*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[
- iwork], &i__2, &ierr);
- clacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset],
- ldvt);
-
- /* Generate Q in VT */
- /* (CWorkspace: need 2*M, prefer M+M*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cunglq_(m, n, m, &vt[vt_offset], ldvt, &work[itau], &
- work[iwork], &i__2, &ierr);
- ie = 1;
- itauq = itau;
- itaup = itauq + *m;
- iwork = itaup + *m;
-
- /* Zero out above L in A */
-
- i__2 = *m - 1;
- i__3 = *m - 1;
- claset_("U", &i__2, &i__3, &c_b1, &c_b1, &a[(a_dim1 <<
- 1) + 1], lda);
-
- /* Bidiagonalize L in A */
- /* (CWorkspace: need 3*M, prefer 2*M+2*M*NB) */
- /* (RWorkspace: need M) */
-
- i__2 = *lwork - iwork + 1;
- cgebrd_(m, m, &a[a_offset], lda, &s[1], &rwork[ie], &
- work[itauq], &work[itaup], &work[iwork], &
- i__2, &ierr);
-
- /* Multiply right vectors bidiagonalizing L by Q in VT */
- /* (CWorkspace: need 2*M+N, prefer 2*M+N*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cunmbr_("P", "L", "C", m, n, m, &a[a_offset], lda, &
- work[itaup], &vt[vt_offset], ldvt, &work[
- iwork], &i__2, &ierr);
-
- /* Generate left bidiagonalizing vectors of L in A */
- /* (CWorkspace: need 3*M, prefer 2*M+M*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cungbr_("Q", m, m, m, &a[a_offset], lda, &work[itauq],
- &work[iwork], &i__2, &ierr);
- irwork = ie + *m;
-
- /* Perform bidiagonal QR iteration, computing left */
- /* singular vectors of A in A and computing right */
- /* singular vectors of A in VT */
- /* (CWorkspace: 0) */
- /* (RWorkspace: need BDSPAC) */
-
- cbdsqr_("U", m, n, m, &c__0, &s[1], &rwork[ie], &vt[
- vt_offset], ldvt, &a[a_offset], lda, cdum, &
- c__1, &rwork[irwork], info);
-
- }
-
- } else if (wntuas) {
-
- /* Path 6t(N much larger than M, JOBU='S' or 'A', */
- /* JOBVT='S') */
- /* M right singular vectors to be computed in VT and */
- /* M left singular vectors to be computed in U */
-
- if (*lwork >= *m * *m + *m * 3) {
-
- /* Sufficient workspace for a fast algorithm */
-
- iu = 1;
- if (*lwork >= wrkbl + *lda * *m) {
-
- /* WORK(IU) is LDA by N */
-
- ldwrku = *lda;
- } else {
-
- /* WORK(IU) is LDA by M */
-
- ldwrku = *m;
- }
- itau = iu + ldwrku * *m;
- iwork = itau + *m;
-
- /* Compute A=L*Q */
- /* (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[
- iwork], &i__2, &ierr);
-
- /* Copy L to WORK(IU), zeroing out above it */
-
- clacpy_("L", m, m, &a[a_offset], lda, &work[iu], &
- ldwrku);
- i__2 = *m - 1;
- i__3 = *m - 1;
- claset_("U", &i__2, &i__3, &c_b1, &c_b1, &work[iu +
- ldwrku], &ldwrku);
-
- /* Generate Q in A */
- /* (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cunglq_(m, n, m, &a[a_offset], lda, &work[itau], &
- work[iwork], &i__2, &ierr);
- ie = 1;
- itauq = itau;
- itaup = itauq + *m;
- iwork = itaup + *m;
-
- /* Bidiagonalize L in WORK(IU), copying result to U */
- /* (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB) */
- /* (RWorkspace: need M) */
-
- i__2 = *lwork - iwork + 1;
- cgebrd_(m, m, &work[iu], &ldwrku, &s[1], &rwork[ie], &
- work[itauq], &work[itaup], &work[iwork], &
- i__2, &ierr);
- clacpy_("L", m, m, &work[iu], &ldwrku, &u[u_offset],
- ldu);
-
- /* Generate right bidiagonalizing vectors in WORK(IU) */
- /* (CWorkspace: need M*M+3*M-1, */
- /* prefer M*M+2*M+(M-1)*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cungbr_("P", m, m, m, &work[iu], &ldwrku, &work[itaup]
- , &work[iwork], &i__2, &ierr);
-
- /* Generate left bidiagonalizing vectors in U */
- /* (CWorkspace: need M*M+3*M, prefer M*M+2*M+M*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cungbr_("Q", m, m, m, &u[u_offset], ldu, &work[itauq],
- &work[iwork], &i__2, &ierr);
- irwork = ie + *m;
-
- /* Perform bidiagonal QR iteration, computing left */
- /* singular vectors of L in U and computing right */
- /* singular vectors of L in WORK(IU) */
- /* (CWorkspace: need M*M) */
- /* (RWorkspace: need BDSPAC) */
-
- cbdsqr_("U", m, m, m, &c__0, &s[1], &rwork[ie], &work[
- iu], &ldwrku, &u[u_offset], ldu, cdum, &c__1,
- &rwork[irwork], info);
-
- /* Multiply right singular vectors of L in WORK(IU) by */
- /* Q in A, storing result in VT */
- /* (CWorkspace: need M*M) */
- /* (RWorkspace: 0) */
-
- cgemm_("N", "N", m, n, m, &c_b2, &work[iu], &ldwrku, &
- a[a_offset], lda, &c_b1, &vt[vt_offset], ldvt);
-
- } else {
-
- /* Insufficient workspace for a fast algorithm */
-
- itau = 1;
- iwork = itau + *m;
-
- /* Compute A=L*Q, copying result to VT */
- /* (CWorkspace: need 2*M, prefer M+M*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[
- iwork], &i__2, &ierr);
- clacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset],
- ldvt);
-
- /* Generate Q in VT */
- /* (CWorkspace: need 2*M, prefer M+M*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cunglq_(m, n, m, &vt[vt_offset], ldvt, &work[itau], &
- work[iwork], &i__2, &ierr);
-
- /* Copy L to U, zeroing out above it */
-
- clacpy_("L", m, m, &a[a_offset], lda, &u[u_offset],
- ldu);
- i__2 = *m - 1;
- i__3 = *m - 1;
- claset_("U", &i__2, &i__3, &c_b1, &c_b1, &u[(u_dim1 <<
- 1) + 1], ldu);
- ie = 1;
- itauq = itau;
- itaup = itauq + *m;
- iwork = itaup + *m;
-
- /* Bidiagonalize L in U */
- /* (CWorkspace: need 3*M, prefer 2*M+2*M*NB) */
- /* (RWorkspace: need M) */
-
- i__2 = *lwork - iwork + 1;
- cgebrd_(m, m, &u[u_offset], ldu, &s[1], &rwork[ie], &
- work[itauq], &work[itaup], &work[iwork], &
- i__2, &ierr);
-
- /* Multiply right bidiagonalizing vectors in U by Q */
- /* in VT */
- /* (CWorkspace: need 2*M+N, prefer 2*M+N*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cunmbr_("P", "L", "C", m, n, m, &u[u_offset], ldu, &
- work[itaup], &vt[vt_offset], ldvt, &work[
- iwork], &i__2, &ierr);
-
- /* Generate left bidiagonalizing vectors in U */
- /* (CWorkspace: need 3*M, prefer 2*M+M*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cungbr_("Q", m, m, m, &u[u_offset], ldu, &work[itauq],
- &work[iwork], &i__2, &ierr);
- irwork = ie + *m;
-
- /* Perform bidiagonal QR iteration, computing left */
- /* singular vectors of A in U and computing right */
- /* singular vectors of A in VT */
- /* (CWorkspace: 0) */
- /* (RWorkspace: need BDSPAC) */
-
- cbdsqr_("U", m, n, m, &c__0, &s[1], &rwork[ie], &vt[
- vt_offset], ldvt, &u[u_offset], ldu, cdum, &
- c__1, &rwork[irwork], info);
-
- }
-
- }
-
- } else if (wntva) {
-
- if (wntun) {
-
- /* Path 7t(N much larger than M, JOBU='N', JOBVT='A') */
- /* N right singular vectors to be computed in VT and */
- /* no left singular vectors to be computed */
-
- /* Computing MAX */
- i__2 = *n + *m, i__3 = *m * 3;
- if (*lwork >= *m * *m + f2cmax(i__2,i__3)) {
-
- /* Sufficient workspace for a fast algorithm */
-
- ir = 1;
- if (*lwork >= wrkbl + *lda * *m) {
-
- /* WORK(IR) is LDA by M */
-
- ldwrkr = *lda;
- } else {
-
- /* WORK(IR) is M by M */
-
- ldwrkr = *m;
- }
- itau = ir + ldwrkr * *m;
- iwork = itau + *m;
-
- /* Compute A=L*Q, copying result to VT */
- /* (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[
- iwork], &i__2, &ierr);
- clacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset],
- ldvt);
-
- /* Copy L to WORK(IR), zeroing out above it */
-
- clacpy_("L", m, m, &a[a_offset], lda, &work[ir], &
- ldwrkr);
- i__2 = *m - 1;
- i__3 = *m - 1;
- claset_("U", &i__2, &i__3, &c_b1, &c_b1, &work[ir +
- ldwrkr], &ldwrkr);
-
- /* Generate Q in VT */
- /* (CWorkspace: need M*M+M+N, prefer M*M+M+N*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cunglq_(n, n, m, &vt[vt_offset], ldvt, &work[itau], &
- work[iwork], &i__2, &ierr);
- ie = 1;
- itauq = itau;
- itaup = itauq + *m;
- iwork = itaup + *m;
-
- /* Bidiagonalize L in WORK(IR) */
- /* (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB) */
- /* (RWorkspace: need M) */
-
- i__2 = *lwork - iwork + 1;
- cgebrd_(m, m, &work[ir], &ldwrkr, &s[1], &rwork[ie], &
- work[itauq], &work[itaup], &work[iwork], &
- i__2, &ierr);
-
- /* Generate right bidiagonalizing vectors in WORK(IR) */
- /* (CWorkspace: need M*M+3*M-1, */
- /* prefer M*M+2*M+(M-1)*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cungbr_("P", m, m, m, &work[ir], &ldwrkr, &work[itaup]
- , &work[iwork], &i__2, &ierr);
- irwork = ie + *m;
-
- /* Perform bidiagonal QR iteration, computing right */
- /* singular vectors of L in WORK(IR) */
- /* (CWorkspace: need M*M) */
- /* (RWorkspace: need BDSPAC) */
-
- cbdsqr_("U", m, m, &c__0, &c__0, &s[1], &rwork[ie], &
- work[ir], &ldwrkr, cdum, &c__1, cdum, &c__1, &
- rwork[irwork], info);
-
- /* Multiply right singular vectors of L in WORK(IR) by */
- /* Q in VT, storing result in A */
- /* (CWorkspace: need M*M) */
- /* (RWorkspace: 0) */
-
- cgemm_("N", "N", m, n, m, &c_b2, &work[ir], &ldwrkr, &
- vt[vt_offset], ldvt, &c_b1, &a[a_offset], lda);
-
- /* Copy right singular vectors of A from A to VT */
-
- clacpy_("F", m, n, &a[a_offset], lda, &vt[vt_offset],
- ldvt);
-
- } else {
-
- /* Insufficient workspace for a fast algorithm */
-
- itau = 1;
- iwork = itau + *m;
-
- /* Compute A=L*Q, copying result to VT */
- /* (CWorkspace: need 2*M, prefer M+M*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[
- iwork], &i__2, &ierr);
- clacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset],
- ldvt);
-
- /* Generate Q in VT */
- /* (CWorkspace: need M+N, prefer M+N*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cunglq_(n, n, m, &vt[vt_offset], ldvt, &work[itau], &
- work[iwork], &i__2, &ierr);
- ie = 1;
- itauq = itau;
- itaup = itauq + *m;
- iwork = itaup + *m;
-
- /* Zero out above L in A */
-
- i__2 = *m - 1;
- i__3 = *m - 1;
- claset_("U", &i__2, &i__3, &c_b1, &c_b1, &a[(a_dim1 <<
- 1) + 1], lda);
-
- /* Bidiagonalize L in A */
- /* (CWorkspace: need 3*M, prefer 2*M+2*M*NB) */
- /* (RWorkspace: need M) */
-
- i__2 = *lwork - iwork + 1;
- cgebrd_(m, m, &a[a_offset], lda, &s[1], &rwork[ie], &
- work[itauq], &work[itaup], &work[iwork], &
- i__2, &ierr);
-
- /* Multiply right bidiagonalizing vectors in A by Q */
- /* in VT */
- /* (CWorkspace: need 2*M+N, prefer 2*M+N*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cunmbr_("P", "L", "C", m, n, m, &a[a_offset], lda, &
- work[itaup], &vt[vt_offset], ldvt, &work[
- iwork], &i__2, &ierr);
- irwork = ie + *m;
-
- /* Perform bidiagonal QR iteration, computing right */
- /* singular vectors of A in VT */
- /* (CWorkspace: 0) */
- /* (RWorkspace: need BDSPAC) */
-
- cbdsqr_("U", m, n, &c__0, &c__0, &s[1], &rwork[ie], &
- vt[vt_offset], ldvt, cdum, &c__1, cdum, &c__1,
- &rwork[irwork], info);
-
- }
-
- } else if (wntuo) {
-
- /* Path 8t(N much larger than M, JOBU='O', JOBVT='A') */
- /* N right singular vectors to be computed in VT and */
- /* M left singular vectors to be overwritten on A */
-
- /* Computing MAX */
- i__2 = *n + *m, i__3 = *m * 3;
- if (*lwork >= (*m << 1) * *m + f2cmax(i__2,i__3)) {
-
- /* Sufficient workspace for a fast algorithm */
-
- iu = 1;
- if (*lwork >= wrkbl + (*lda << 1) * *m) {
-
- /* WORK(IU) is LDA by M and WORK(IR) is LDA by M */
-
- ldwrku = *lda;
- ir = iu + ldwrku * *m;
- ldwrkr = *lda;
- } else if (*lwork >= wrkbl + (*lda + *m) * *m) {
-
- /* WORK(IU) is LDA by M and WORK(IR) is M by M */
-
- ldwrku = *lda;
- ir = iu + ldwrku * *m;
- ldwrkr = *m;
- } else {
-
- /* WORK(IU) is M by M and WORK(IR) is M by M */
-
- ldwrku = *m;
- ir = iu + ldwrku * *m;
- ldwrkr = *m;
- }
- itau = ir + ldwrkr * *m;
- iwork = itau + *m;
-
- /* Compute A=L*Q, copying result to VT */
- /* (CWorkspace: need 2*M*M+2*M, prefer 2*M*M+M+M*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[
- iwork], &i__2, &ierr);
- clacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset],
- ldvt);
-
- /* Generate Q in VT */
- /* (CWorkspace: need 2*M*M+M+N, prefer 2*M*M+M+N*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cunglq_(n, n, m, &vt[vt_offset], ldvt, &work[itau], &
- work[iwork], &i__2, &ierr);
-
- /* Copy L to WORK(IU), zeroing out above it */
-
- clacpy_("L", m, m, &a[a_offset], lda, &work[iu], &
- ldwrku);
- i__2 = *m - 1;
- i__3 = *m - 1;
- claset_("U", &i__2, &i__3, &c_b1, &c_b1, &work[iu +
- ldwrku], &ldwrku);
- ie = 1;
- itauq = itau;
- itaup = itauq + *m;
- iwork = itaup + *m;
-
- /* Bidiagonalize L in WORK(IU), copying result to */
- /* WORK(IR) */
- /* (CWorkspace: need 2*M*M+3*M, */
- /* prefer 2*M*M+2*M+2*M*NB) */
- /* (RWorkspace: need M) */
-
- i__2 = *lwork - iwork + 1;
- cgebrd_(m, m, &work[iu], &ldwrku, &s[1], &rwork[ie], &
- work[itauq], &work[itaup], &work[iwork], &
- i__2, &ierr);
- clacpy_("L", m, m, &work[iu], &ldwrku, &work[ir], &
- ldwrkr);
-
- /* Generate right bidiagonalizing vectors in WORK(IU) */
- /* (CWorkspace: need 2*M*M+3*M-1, */
- /* prefer 2*M*M+2*M+(M-1)*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cungbr_("P", m, m, m, &work[iu], &ldwrku, &work[itaup]
- , &work[iwork], &i__2, &ierr);
-
- /* Generate left bidiagonalizing vectors in WORK(IR) */
- /* (CWorkspace: need 2*M*M+3*M, prefer 2*M*M+2*M+M*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cungbr_("Q", m, m, m, &work[ir], &ldwrkr, &work[itauq]
- , &work[iwork], &i__2, &ierr);
- irwork = ie + *m;
-
- /* Perform bidiagonal QR iteration, computing left */
- /* singular vectors of L in WORK(IR) and computing */
- /* right singular vectors of L in WORK(IU) */
- /* (CWorkspace: need 2*M*M) */
- /* (RWorkspace: need BDSPAC) */
-
- cbdsqr_("U", m, m, m, &c__0, &s[1], &rwork[ie], &work[
- iu], &ldwrku, &work[ir], &ldwrkr, cdum, &c__1,
- &rwork[irwork], info);
-
- /* Multiply right singular vectors of L in WORK(IU) by */
- /* Q in VT, storing result in A */
- /* (CWorkspace: need M*M) */
- /* (RWorkspace: 0) */
-
- cgemm_("N", "N", m, n, m, &c_b2, &work[iu], &ldwrku, &
- vt[vt_offset], ldvt, &c_b1, &a[a_offset], lda);
-
- /* Copy right singular vectors of A from A to VT */
-
- clacpy_("F", m, n, &a[a_offset], lda, &vt[vt_offset],
- ldvt);
-
- /* Copy left singular vectors of A from WORK(IR) to A */
-
- clacpy_("F", m, m, &work[ir], &ldwrkr, &a[a_offset],
- lda);
-
- } else {
-
- /* Insufficient workspace for a fast algorithm */
-
- itau = 1;
- iwork = itau + *m;
-
- /* Compute A=L*Q, copying result to VT */
- /* (CWorkspace: need 2*M, prefer M+M*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[
- iwork], &i__2, &ierr);
- clacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset],
- ldvt);
-
- /* Generate Q in VT */
- /* (CWorkspace: need M+N, prefer M+N*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cunglq_(n, n, m, &vt[vt_offset], ldvt, &work[itau], &
- work[iwork], &i__2, &ierr);
- ie = 1;
- itauq = itau;
- itaup = itauq + *m;
- iwork = itaup + *m;
-
- /* Zero out above L in A */
-
- i__2 = *m - 1;
- i__3 = *m - 1;
- claset_("U", &i__2, &i__3, &c_b1, &c_b1, &a[(a_dim1 <<
- 1) + 1], lda);
-
- /* Bidiagonalize L in A */
- /* (CWorkspace: need 3*M, prefer 2*M+2*M*NB) */
- /* (RWorkspace: need M) */
-
- i__2 = *lwork - iwork + 1;
- cgebrd_(m, m, &a[a_offset], lda, &s[1], &rwork[ie], &
- work[itauq], &work[itaup], &work[iwork], &
- i__2, &ierr);
-
- /* Multiply right bidiagonalizing vectors in A by Q */
- /* in VT */
- /* (CWorkspace: need 2*M+N, prefer 2*M+N*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cunmbr_("P", "L", "C", m, n, m, &a[a_offset], lda, &
- work[itaup], &vt[vt_offset], ldvt, &work[
- iwork], &i__2, &ierr);
-
- /* Generate left bidiagonalizing vectors in A */
- /* (CWorkspace: need 3*M, prefer 2*M+M*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cungbr_("Q", m, m, m, &a[a_offset], lda, &work[itauq],
- &work[iwork], &i__2, &ierr);
- irwork = ie + *m;
-
- /* Perform bidiagonal QR iteration, computing left */
- /* singular vectors of A in A and computing right */
- /* singular vectors of A in VT */
- /* (CWorkspace: 0) */
- /* (RWorkspace: need BDSPAC) */
-
- cbdsqr_("U", m, n, m, &c__0, &s[1], &rwork[ie], &vt[
- vt_offset], ldvt, &a[a_offset], lda, cdum, &
- c__1, &rwork[irwork], info);
-
- }
-
- } else if (wntuas) {
-
- /* Path 9t(N much larger than M, JOBU='S' or 'A', */
- /* JOBVT='A') */
- /* N right singular vectors to be computed in VT and */
- /* M left singular vectors to be computed in U */
-
- /* Computing MAX */
- i__2 = *n + *m, i__3 = *m * 3;
- if (*lwork >= *m * *m + f2cmax(i__2,i__3)) {
-
- /* Sufficient workspace for a fast algorithm */
-
- iu = 1;
- if (*lwork >= wrkbl + *lda * *m) {
-
- /* WORK(IU) is LDA by M */
-
- ldwrku = *lda;
- } else {
-
- /* WORK(IU) is M by M */
-
- ldwrku = *m;
- }
- itau = iu + ldwrku * *m;
- iwork = itau + *m;
-
- /* Compute A=L*Q, copying result to VT */
- /* (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[
- iwork], &i__2, &ierr);
- clacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset],
- ldvt);
-
- /* Generate Q in VT */
- /* (CWorkspace: need M*M+M+N, prefer M*M+M+N*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cunglq_(n, n, m, &vt[vt_offset], ldvt, &work[itau], &
- work[iwork], &i__2, &ierr);
-
- /* Copy L to WORK(IU), zeroing out above it */
-
- clacpy_("L", m, m, &a[a_offset], lda, &work[iu], &
- ldwrku);
- i__2 = *m - 1;
- i__3 = *m - 1;
- claset_("U", &i__2, &i__3, &c_b1, &c_b1, &work[iu +
- ldwrku], &ldwrku);
- ie = 1;
- itauq = itau;
- itaup = itauq + *m;
- iwork = itaup + *m;
-
- /* Bidiagonalize L in WORK(IU), copying result to U */
- /* (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB) */
- /* (RWorkspace: need M) */
-
- i__2 = *lwork - iwork + 1;
- cgebrd_(m, m, &work[iu], &ldwrku, &s[1], &rwork[ie], &
- work[itauq], &work[itaup], &work[iwork], &
- i__2, &ierr);
- clacpy_("L", m, m, &work[iu], &ldwrku, &u[u_offset],
- ldu);
-
- /* Generate right bidiagonalizing vectors in WORK(IU) */
- /* (CWorkspace: need M*M+3*M, prefer M*M+2*M+(M-1)*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cungbr_("P", m, m, m, &work[iu], &ldwrku, &work[itaup]
- , &work[iwork], &i__2, &ierr);
-
- /* Generate left bidiagonalizing vectors in U */
- /* (CWorkspace: need M*M+3*M, prefer M*M+2*M+M*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cungbr_("Q", m, m, m, &u[u_offset], ldu, &work[itauq],
- &work[iwork], &i__2, &ierr);
- irwork = ie + *m;
-
- /* Perform bidiagonal QR iteration, computing left */
- /* singular vectors of L in U and computing right */
- /* singular vectors of L in WORK(IU) */
- /* (CWorkspace: need M*M) */
- /* (RWorkspace: need BDSPAC) */
-
- cbdsqr_("U", m, m, m, &c__0, &s[1], &rwork[ie], &work[
- iu], &ldwrku, &u[u_offset], ldu, cdum, &c__1,
- &rwork[irwork], info);
-
- /* Multiply right singular vectors of L in WORK(IU) by */
- /* Q in VT, storing result in A */
- /* (CWorkspace: need M*M) */
- /* (RWorkspace: 0) */
-
- cgemm_("N", "N", m, n, m, &c_b2, &work[iu], &ldwrku, &
- vt[vt_offset], ldvt, &c_b1, &a[a_offset], lda);
-
- /* Copy right singular vectors of A from A to VT */
-
- clacpy_("F", m, n, &a[a_offset], lda, &vt[vt_offset],
- ldvt);
-
- } else {
-
- /* Insufficient workspace for a fast algorithm */
-
- itau = 1;
- iwork = itau + *m;
-
- /* Compute A=L*Q, copying result to VT */
- /* (CWorkspace: need 2*M, prefer M+M*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[
- iwork], &i__2, &ierr);
- clacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset],
- ldvt);
-
- /* Generate Q in VT */
- /* (CWorkspace: need M+N, prefer M+N*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cunglq_(n, n, m, &vt[vt_offset], ldvt, &work[itau], &
- work[iwork], &i__2, &ierr);
-
- /* Copy L to U, zeroing out above it */
-
- clacpy_("L", m, m, &a[a_offset], lda, &u[u_offset],
- ldu);
- i__2 = *m - 1;
- i__3 = *m - 1;
- claset_("U", &i__2, &i__3, &c_b1, &c_b1, &u[(u_dim1 <<
- 1) + 1], ldu);
- ie = 1;
- itauq = itau;
- itaup = itauq + *m;
- iwork = itaup + *m;
-
- /* Bidiagonalize L in U */
- /* (CWorkspace: need 3*M, prefer 2*M+2*M*NB) */
- /* (RWorkspace: need M) */
-
- i__2 = *lwork - iwork + 1;
- cgebrd_(m, m, &u[u_offset], ldu, &s[1], &rwork[ie], &
- work[itauq], &work[itaup], &work[iwork], &
- i__2, &ierr);
-
- /* Multiply right bidiagonalizing vectors in U by Q */
- /* in VT */
- /* (CWorkspace: need 2*M+N, prefer 2*M+N*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cunmbr_("P", "L", "C", m, n, m, &u[u_offset], ldu, &
- work[itaup], &vt[vt_offset], ldvt, &work[
- iwork], &i__2, &ierr);
-
- /* Generate left bidiagonalizing vectors in U */
- /* (CWorkspace: need 3*M, prefer 2*M+M*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cungbr_("Q", m, m, m, &u[u_offset], ldu, &work[itauq],
- &work[iwork], &i__2, &ierr);
- irwork = ie + *m;
-
- /* Perform bidiagonal QR iteration, computing left */
- /* singular vectors of A in U and computing right */
- /* singular vectors of A in VT */
- /* (CWorkspace: 0) */
- /* (RWorkspace: need BDSPAC) */
-
- cbdsqr_("U", m, n, m, &c__0, &s[1], &rwork[ie], &vt[
- vt_offset], ldvt, &u[u_offset], ldu, cdum, &
- c__1, &rwork[irwork], info);
-
- }
-
- }
-
- }
-
- } else {
-
- /* N .LT. MNTHR */
-
- /* Path 10t(N greater than M, but not much larger) */
- /* Reduce to bidiagonal form without LQ decomposition */
-
- ie = 1;
- itauq = 1;
- itaup = itauq + *m;
- iwork = itaup + *m;
-
- /* Bidiagonalize A */
- /* (CWorkspace: need 2*M+N, prefer 2*M+(M+N)*NB) */
- /* (RWorkspace: M) */
-
- i__2 = *lwork - iwork + 1;
- cgebrd_(m, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq],
- &work[itaup], &work[iwork], &i__2, &ierr);
- if (wntuas) {
-
- /* If left singular vectors desired in U, copy result to U */
- /* and generate left bidiagonalizing vectors in U */
- /* (CWorkspace: need 3*M-1, prefer 2*M+(M-1)*NB) */
- /* (RWorkspace: 0) */
-
- clacpy_("L", m, m, &a[a_offset], lda, &u[u_offset], ldu);
- i__2 = *lwork - iwork + 1;
- cungbr_("Q", m, m, n, &u[u_offset], ldu, &work[itauq], &work[
- iwork], &i__2, &ierr);
- }
- if (wntvas) {
-
- /* If right singular vectors desired in VT, copy result to */
- /* VT and generate right bidiagonalizing vectors in VT */
- /* (CWorkspace: need 2*M+NRVT, prefer 2*M+NRVT*NB) */
- /* (RWorkspace: 0) */
-
- clacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt);
- if (wntva) {
- nrvt = *n;
- }
- if (wntvs) {
- nrvt = *m;
- }
- i__2 = *lwork - iwork + 1;
- cungbr_("P", &nrvt, n, m, &vt[vt_offset], ldvt, &work[itaup],
- &work[iwork], &i__2, &ierr);
- }
- if (wntuo) {
-
- /* If left singular vectors desired in A, generate left */
- /* bidiagonalizing vectors in A */
- /* (CWorkspace: need 3*M-1, prefer 2*M+(M-1)*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cungbr_("Q", m, m, n, &a[a_offset], lda, &work[itauq], &work[
- iwork], &i__2, &ierr);
- }
- if (wntvo) {
-
- /* If right singular vectors desired in A, generate right */
- /* bidiagonalizing vectors in A */
- /* (CWorkspace: need 3*M, prefer 2*M+M*NB) */
- /* (RWorkspace: 0) */
-
- i__2 = *lwork - iwork + 1;
- cungbr_("P", m, n, m, &a[a_offset], lda, &work[itaup], &work[
- iwork], &i__2, &ierr);
- }
- irwork = ie + *m;
- if (wntuas || wntuo) {
- nru = *m;
- }
- if (wntun) {
- nru = 0;
- }
- if (wntvas || wntvo) {
- ncvt = *n;
- }
- if (wntvn) {
- ncvt = 0;
- }
- if (! wntuo && ! wntvo) {
-
- /* Perform bidiagonal QR iteration, if desired, computing */
- /* left singular vectors in U and computing right singular */
- /* vectors in VT */
- /* (CWorkspace: 0) */
- /* (RWorkspace: need BDSPAC) */
-
- cbdsqr_("L", m, &ncvt, &nru, &c__0, &s[1], &rwork[ie], &vt[
- vt_offset], ldvt, &u[u_offset], ldu, cdum, &c__1, &
- rwork[irwork], info);
- } else if (! wntuo && wntvo) {
-
- /* Perform bidiagonal QR iteration, if desired, computing */
- /* left singular vectors in U and computing right singular */
- /* vectors in A */
- /* (CWorkspace: 0) */
- /* (RWorkspace: need BDSPAC) */
-
- cbdsqr_("L", m, &ncvt, &nru, &c__0, &s[1], &rwork[ie], &a[
- a_offset], lda, &u[u_offset], ldu, cdum, &c__1, &
- rwork[irwork], info);
- } else {
-
- /* Perform bidiagonal QR iteration, if desired, computing */
- /* left singular vectors in A and computing right singular */
- /* vectors in VT */
- /* (CWorkspace: 0) */
- /* (RWorkspace: need BDSPAC) */
-
- cbdsqr_("L", m, &ncvt, &nru, &c__0, &s[1], &rwork[ie], &vt[
- vt_offset], ldvt, &a[a_offset], lda, cdum, &c__1, &
- rwork[irwork], info);
- }
-
- }
-
- }
-
- /* Undo scaling if necessary */
-
- if (iscl == 1) {
- if (anrm > bignum) {
- slascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], &
- minmn, &ierr);
- }
- if (*info != 0 && anrm > bignum) {
- i__2 = minmn - 1;
- slascl_("G", &c__0, &c__0, &bignum, &anrm, &i__2, &c__1, &rwork[
- ie], &minmn, &ierr);
- }
- if (anrm < smlnum) {
- slascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], &
- minmn, &ierr);
- }
- if (*info != 0 && anrm < smlnum) {
- i__2 = minmn - 1;
- slascl_("G", &c__0, &c__0, &smlnum, &anrm, &i__2, &c__1, &rwork[
- ie], &minmn, &ierr);
- }
- }
-
- /* Return optimal workspace in WORK(1) */
-
- work[1].r = (real) maxwrk, work[1].i = 0.f;
-
- return;
-
- /* End of CGESVD */
-
- } /* cgesvd_ */
-
|