You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* > \brief \b SLASR applies a sequence of plane rotations to a general rectangular matrix. */
  484. /* =========== DOCUMENTATION =========== */
  485. /* Online html documentation available at */
  486. /* http://www.netlib.org/lapack/explore-html/ */
  487. /* > \htmlonly */
  488. /* > Download SLASR + dependencies */
  489. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasr.f
  490. "> */
  491. /* > [TGZ]</a> */
  492. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasr.f
  493. "> */
  494. /* > [ZIP]</a> */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasr.f
  496. "> */
  497. /* > [TXT]</a> */
  498. /* > \endhtmlonly */
  499. /* Definition: */
  500. /* =========== */
  501. /* SUBROUTINE SLASR( SIDE, PIVOT, DIRECT, M, N, C, S, A, LDA ) */
  502. /* CHARACTER DIRECT, PIVOT, SIDE */
  503. /* INTEGER LDA, M, N */
  504. /* REAL A( LDA, * ), C( * ), S( * ) */
  505. /* > \par Purpose: */
  506. /* ============= */
  507. /* > */
  508. /* > \verbatim */
  509. /* > */
  510. /* > SLASR applies a sequence of plane rotations to a real matrix A, */
  511. /* > from either the left or the right. */
  512. /* > */
  513. /* > When SIDE = 'L', the transformation takes the form */
  514. /* > */
  515. /* > A := P*A */
  516. /* > */
  517. /* > and when SIDE = 'R', the transformation takes the form */
  518. /* > */
  519. /* > A := A*P**T */
  520. /* > */
  521. /* > where P is an orthogonal matrix consisting of a sequence of z plane */
  522. /* > rotations, with z = M when SIDE = 'L' and z = N when SIDE = 'R', */
  523. /* > and P**T is the transpose of P. */
  524. /* > */
  525. /* > When DIRECT = 'F' (Forward sequence), then */
  526. /* > */
  527. /* > P = P(z-1) * ... * P(2) * P(1) */
  528. /* > */
  529. /* > and when DIRECT = 'B' (Backward sequence), then */
  530. /* > */
  531. /* > P = P(1) * P(2) * ... * P(z-1) */
  532. /* > */
  533. /* > where P(k) is a plane rotation matrix defined by the 2-by-2 rotation */
  534. /* > */
  535. /* > R(k) = ( c(k) s(k) ) */
  536. /* > = ( -s(k) c(k) ). */
  537. /* > */
  538. /* > When PIVOT = 'V' (Variable pivot), the rotation is performed */
  539. /* > for the plane (k,k+1), i.e., P(k) has the form */
  540. /* > */
  541. /* > P(k) = ( 1 ) */
  542. /* > ( ... ) */
  543. /* > ( 1 ) */
  544. /* > ( c(k) s(k) ) */
  545. /* > ( -s(k) c(k) ) */
  546. /* > ( 1 ) */
  547. /* > ( ... ) */
  548. /* > ( 1 ) */
  549. /* > */
  550. /* > where R(k) appears as a rank-2 modification to the identity matrix in */
  551. /* > rows and columns k and k+1. */
  552. /* > */
  553. /* > When PIVOT = 'T' (Top pivot), the rotation is performed for the */
  554. /* > plane (1,k+1), so P(k) has the form */
  555. /* > */
  556. /* > P(k) = ( c(k) s(k) ) */
  557. /* > ( 1 ) */
  558. /* > ( ... ) */
  559. /* > ( 1 ) */
  560. /* > ( -s(k) c(k) ) */
  561. /* > ( 1 ) */
  562. /* > ( ... ) */
  563. /* > ( 1 ) */
  564. /* > */
  565. /* > where R(k) appears in rows and columns 1 and k+1. */
  566. /* > */
  567. /* > Similarly, when PIVOT = 'B' (Bottom pivot), the rotation is */
  568. /* > performed for the plane (k,z), giving P(k) the form */
  569. /* > */
  570. /* > P(k) = ( 1 ) */
  571. /* > ( ... ) */
  572. /* > ( 1 ) */
  573. /* > ( c(k) s(k) ) */
  574. /* > ( 1 ) */
  575. /* > ( ... ) */
  576. /* > ( 1 ) */
  577. /* > ( -s(k) c(k) ) */
  578. /* > */
  579. /* > where R(k) appears in rows and columns k and z. The rotations are */
  580. /* > performed without ever forming P(k) explicitly. */
  581. /* > \endverbatim */
  582. /* Arguments: */
  583. /* ========== */
  584. /* > \param[in] SIDE */
  585. /* > \verbatim */
  586. /* > SIDE is CHARACTER*1 */
  587. /* > Specifies whether the plane rotation matrix P is applied to */
  588. /* > A on the left or the right. */
  589. /* > = 'L': Left, compute A := P*A */
  590. /* > = 'R': Right, compute A:= A*P**T */
  591. /* > \endverbatim */
  592. /* > */
  593. /* > \param[in] PIVOT */
  594. /* > \verbatim */
  595. /* > PIVOT is CHARACTER*1 */
  596. /* > Specifies the plane for which P(k) is a plane rotation */
  597. /* > matrix. */
  598. /* > = 'V': Variable pivot, the plane (k,k+1) */
  599. /* > = 'T': Top pivot, the plane (1,k+1) */
  600. /* > = 'B': Bottom pivot, the plane (k,z) */
  601. /* > \endverbatim */
  602. /* > */
  603. /* > \param[in] DIRECT */
  604. /* > \verbatim */
  605. /* > DIRECT is CHARACTER*1 */
  606. /* > Specifies whether P is a forward or backward sequence of */
  607. /* > plane rotations. */
  608. /* > = 'F': Forward, P = P(z-1)*...*P(2)*P(1) */
  609. /* > = 'B': Backward, P = P(1)*P(2)*...*P(z-1) */
  610. /* > \endverbatim */
  611. /* > */
  612. /* > \param[in] M */
  613. /* > \verbatim */
  614. /* > M is INTEGER */
  615. /* > The number of rows of the matrix A. If m <= 1, an immediate */
  616. /* > return is effected. */
  617. /* > \endverbatim */
  618. /* > */
  619. /* > \param[in] N */
  620. /* > \verbatim */
  621. /* > N is INTEGER */
  622. /* > The number of columns of the matrix A. If n <= 1, an */
  623. /* > immediate return is effected. */
  624. /* > \endverbatim */
  625. /* > */
  626. /* > \param[in] C */
  627. /* > \verbatim */
  628. /* > C is REAL array, dimension */
  629. /* > (M-1) if SIDE = 'L' */
  630. /* > (N-1) if SIDE = 'R' */
  631. /* > The cosines c(k) of the plane rotations. */
  632. /* > \endverbatim */
  633. /* > */
  634. /* > \param[in] S */
  635. /* > \verbatim */
  636. /* > S is REAL array, dimension */
  637. /* > (M-1) if SIDE = 'L' */
  638. /* > (N-1) if SIDE = 'R' */
  639. /* > The sines s(k) of the plane rotations. The 2-by-2 plane */
  640. /* > rotation part of the matrix P(k), R(k), has the form */
  641. /* > R(k) = ( c(k) s(k) ) */
  642. /* > ( -s(k) c(k) ). */
  643. /* > \endverbatim */
  644. /* > */
  645. /* > \param[in,out] A */
  646. /* > \verbatim */
  647. /* > A is REAL array, dimension (LDA,N) */
  648. /* > The M-by-N matrix A. On exit, A is overwritten by P*A if */
  649. /* > SIDE = 'R' or by A*P**T if SIDE = 'L'. */
  650. /* > \endverbatim */
  651. /* > */
  652. /* > \param[in] LDA */
  653. /* > \verbatim */
  654. /* > LDA is INTEGER */
  655. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  656. /* > \endverbatim */
  657. /* Authors: */
  658. /* ======== */
  659. /* > \author Univ. of Tennessee */
  660. /* > \author Univ. of California Berkeley */
  661. /* > \author Univ. of Colorado Denver */
  662. /* > \author NAG Ltd. */
  663. /* > \date December 2016 */
  664. /* > \ingroup OTHERauxiliary */
  665. /* ===================================================================== */
  666. /* Subroutine */ void slasr_(char *side, char *pivot, char *direct, integer *m,
  667. integer *n, real *c__, real *s, real *a, integer *lda)
  668. {
  669. /* System generated locals */
  670. integer a_dim1, a_offset, i__1, i__2;
  671. /* Local variables */
  672. integer info;
  673. real temp;
  674. integer i__, j;
  675. extern logical lsame_(char *, char *);
  676. real ctemp, stemp;
  677. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  678. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  679. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  680. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  681. /* December 2016 */
  682. /* ===================================================================== */
  683. /* Test the input parameters */
  684. /* Parameter adjustments */
  685. --c__;
  686. --s;
  687. a_dim1 = *lda;
  688. a_offset = 1 + a_dim1 * 1;
  689. a -= a_offset;
  690. /* Function Body */
  691. info = 0;
  692. if (! (lsame_(side, "L") || lsame_(side, "R"))) {
  693. info = 1;
  694. } else if (! (lsame_(pivot, "V") || lsame_(pivot,
  695. "T") || lsame_(pivot, "B"))) {
  696. info = 2;
  697. } else if (! (lsame_(direct, "F") || lsame_(direct,
  698. "B"))) {
  699. info = 3;
  700. } else if (*m < 0) {
  701. info = 4;
  702. } else if (*n < 0) {
  703. info = 5;
  704. } else if (*lda < f2cmax(1,*m)) {
  705. info = 9;
  706. }
  707. if (info != 0) {
  708. xerbla_("SLASR ", &info, (ftnlen)5);
  709. return;
  710. }
  711. /* Quick return if possible */
  712. if (*m == 0 || *n == 0) {
  713. return;
  714. }
  715. if (lsame_(side, "L")) {
  716. /* Form P * A */
  717. if (lsame_(pivot, "V")) {
  718. if (lsame_(direct, "F")) {
  719. i__1 = *m - 1;
  720. for (j = 1; j <= i__1; ++j) {
  721. ctemp = c__[j];
  722. stemp = s[j];
  723. if (ctemp != 1.f || stemp != 0.f) {
  724. i__2 = *n;
  725. for (i__ = 1; i__ <= i__2; ++i__) {
  726. temp = a[j + 1 + i__ * a_dim1];
  727. a[j + 1 + i__ * a_dim1] = ctemp * temp - stemp *
  728. a[j + i__ * a_dim1];
  729. a[j + i__ * a_dim1] = stemp * temp + ctemp * a[j
  730. + i__ * a_dim1];
  731. /* L10: */
  732. }
  733. }
  734. /* L20: */
  735. }
  736. } else if (lsame_(direct, "B")) {
  737. for (j = *m - 1; j >= 1; --j) {
  738. ctemp = c__[j];
  739. stemp = s[j];
  740. if (ctemp != 1.f || stemp != 0.f) {
  741. i__1 = *n;
  742. for (i__ = 1; i__ <= i__1; ++i__) {
  743. temp = a[j + 1 + i__ * a_dim1];
  744. a[j + 1 + i__ * a_dim1] = ctemp * temp - stemp *
  745. a[j + i__ * a_dim1];
  746. a[j + i__ * a_dim1] = stemp * temp + ctemp * a[j
  747. + i__ * a_dim1];
  748. /* L30: */
  749. }
  750. }
  751. /* L40: */
  752. }
  753. }
  754. } else if (lsame_(pivot, "T")) {
  755. if (lsame_(direct, "F")) {
  756. i__1 = *m;
  757. for (j = 2; j <= i__1; ++j) {
  758. ctemp = c__[j - 1];
  759. stemp = s[j - 1];
  760. if (ctemp != 1.f || stemp != 0.f) {
  761. i__2 = *n;
  762. for (i__ = 1; i__ <= i__2; ++i__) {
  763. temp = a[j + i__ * a_dim1];
  764. a[j + i__ * a_dim1] = ctemp * temp - stemp * a[
  765. i__ * a_dim1 + 1];
  766. a[i__ * a_dim1 + 1] = stemp * temp + ctemp * a[
  767. i__ * a_dim1 + 1];
  768. /* L50: */
  769. }
  770. }
  771. /* L60: */
  772. }
  773. } else if (lsame_(direct, "B")) {
  774. for (j = *m; j >= 2; --j) {
  775. ctemp = c__[j - 1];
  776. stemp = s[j - 1];
  777. if (ctemp != 1.f || stemp != 0.f) {
  778. i__1 = *n;
  779. for (i__ = 1; i__ <= i__1; ++i__) {
  780. temp = a[j + i__ * a_dim1];
  781. a[j + i__ * a_dim1] = ctemp * temp - stemp * a[
  782. i__ * a_dim1 + 1];
  783. a[i__ * a_dim1 + 1] = stemp * temp + ctemp * a[
  784. i__ * a_dim1 + 1];
  785. /* L70: */
  786. }
  787. }
  788. /* L80: */
  789. }
  790. }
  791. } else if (lsame_(pivot, "B")) {
  792. if (lsame_(direct, "F")) {
  793. i__1 = *m - 1;
  794. for (j = 1; j <= i__1; ++j) {
  795. ctemp = c__[j];
  796. stemp = s[j];
  797. if (ctemp != 1.f || stemp != 0.f) {
  798. i__2 = *n;
  799. for (i__ = 1; i__ <= i__2; ++i__) {
  800. temp = a[j + i__ * a_dim1];
  801. a[j + i__ * a_dim1] = stemp * a[*m + i__ * a_dim1]
  802. + ctemp * temp;
  803. a[*m + i__ * a_dim1] = ctemp * a[*m + i__ *
  804. a_dim1] - stemp * temp;
  805. /* L90: */
  806. }
  807. }
  808. /* L100: */
  809. }
  810. } else if (lsame_(direct, "B")) {
  811. for (j = *m - 1; j >= 1; --j) {
  812. ctemp = c__[j];
  813. stemp = s[j];
  814. if (ctemp != 1.f || stemp != 0.f) {
  815. i__1 = *n;
  816. for (i__ = 1; i__ <= i__1; ++i__) {
  817. temp = a[j + i__ * a_dim1];
  818. a[j + i__ * a_dim1] = stemp * a[*m + i__ * a_dim1]
  819. + ctemp * temp;
  820. a[*m + i__ * a_dim1] = ctemp * a[*m + i__ *
  821. a_dim1] - stemp * temp;
  822. /* L110: */
  823. }
  824. }
  825. /* L120: */
  826. }
  827. }
  828. }
  829. } else if (lsame_(side, "R")) {
  830. /* Form A * P**T */
  831. if (lsame_(pivot, "V")) {
  832. if (lsame_(direct, "F")) {
  833. i__1 = *n - 1;
  834. for (j = 1; j <= i__1; ++j) {
  835. ctemp = c__[j];
  836. stemp = s[j];
  837. if (ctemp != 1.f || stemp != 0.f) {
  838. i__2 = *m;
  839. for (i__ = 1; i__ <= i__2; ++i__) {
  840. temp = a[i__ + (j + 1) * a_dim1];
  841. a[i__ + (j + 1) * a_dim1] = ctemp * temp - stemp *
  842. a[i__ + j * a_dim1];
  843. a[i__ + j * a_dim1] = stemp * temp + ctemp * a[
  844. i__ + j * a_dim1];
  845. /* L130: */
  846. }
  847. }
  848. /* L140: */
  849. }
  850. } else if (lsame_(direct, "B")) {
  851. for (j = *n - 1; j >= 1; --j) {
  852. ctemp = c__[j];
  853. stemp = s[j];
  854. if (ctemp != 1.f || stemp != 0.f) {
  855. i__1 = *m;
  856. for (i__ = 1; i__ <= i__1; ++i__) {
  857. temp = a[i__ + (j + 1) * a_dim1];
  858. a[i__ + (j + 1) * a_dim1] = ctemp * temp - stemp *
  859. a[i__ + j * a_dim1];
  860. a[i__ + j * a_dim1] = stemp * temp + ctemp * a[
  861. i__ + j * a_dim1];
  862. /* L150: */
  863. }
  864. }
  865. /* L160: */
  866. }
  867. }
  868. } else if (lsame_(pivot, "T")) {
  869. if (lsame_(direct, "F")) {
  870. i__1 = *n;
  871. for (j = 2; j <= i__1; ++j) {
  872. ctemp = c__[j - 1];
  873. stemp = s[j - 1];
  874. if (ctemp != 1.f || stemp != 0.f) {
  875. i__2 = *m;
  876. for (i__ = 1; i__ <= i__2; ++i__) {
  877. temp = a[i__ + j * a_dim1];
  878. a[i__ + j * a_dim1] = ctemp * temp - stemp * a[
  879. i__ + a_dim1];
  880. a[i__ + a_dim1] = stemp * temp + ctemp * a[i__ +
  881. a_dim1];
  882. /* L170: */
  883. }
  884. }
  885. /* L180: */
  886. }
  887. } else if (lsame_(direct, "B")) {
  888. for (j = *n; j >= 2; --j) {
  889. ctemp = c__[j - 1];
  890. stemp = s[j - 1];
  891. if (ctemp != 1.f || stemp != 0.f) {
  892. i__1 = *m;
  893. for (i__ = 1; i__ <= i__1; ++i__) {
  894. temp = a[i__ + j * a_dim1];
  895. a[i__ + j * a_dim1] = ctemp * temp - stemp * a[
  896. i__ + a_dim1];
  897. a[i__ + a_dim1] = stemp * temp + ctemp * a[i__ +
  898. a_dim1];
  899. /* L190: */
  900. }
  901. }
  902. /* L200: */
  903. }
  904. }
  905. } else if (lsame_(pivot, "B")) {
  906. if (lsame_(direct, "F")) {
  907. i__1 = *n - 1;
  908. for (j = 1; j <= i__1; ++j) {
  909. ctemp = c__[j];
  910. stemp = s[j];
  911. if (ctemp != 1.f || stemp != 0.f) {
  912. i__2 = *m;
  913. for (i__ = 1; i__ <= i__2; ++i__) {
  914. temp = a[i__ + j * a_dim1];
  915. a[i__ + j * a_dim1] = stemp * a[i__ + *n * a_dim1]
  916. + ctemp * temp;
  917. a[i__ + *n * a_dim1] = ctemp * a[i__ + *n *
  918. a_dim1] - stemp * temp;
  919. /* L210: */
  920. }
  921. }
  922. /* L220: */
  923. }
  924. } else if (lsame_(direct, "B")) {
  925. for (j = *n - 1; j >= 1; --j) {
  926. ctemp = c__[j];
  927. stemp = s[j];
  928. if (ctemp != 1.f || stemp != 0.f) {
  929. i__1 = *m;
  930. for (i__ = 1; i__ <= i__1; ++i__) {
  931. temp = a[i__ + j * a_dim1];
  932. a[i__ + j * a_dim1] = stemp * a[i__ + *n * a_dim1]
  933. + ctemp * temp;
  934. a[i__ + *n * a_dim1] = ctemp * a[i__ + *n *
  935. a_dim1] - stemp * temp;
  936. /* L230: */
  937. }
  938. }
  939. /* L240: */
  940. }
  941. }
  942. }
  943. }
  944. return;
  945. /* End of SLASR */
  946. } /* slasr_ */