You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dtrsyl.c 52 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. static logical c_false = FALSE_;
  486. static integer c__2 = 2;
  487. static doublereal c_b26 = 1.;
  488. static doublereal c_b30 = 0.;
  489. static logical c_true = TRUE_;
  490. /* > \brief \b DTRSYL */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* > \htmlonly */
  495. /* > Download DTRSYL + dependencies */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtrsyl.
  497. f"> */
  498. /* > [TGZ]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtrsyl.
  500. f"> */
  501. /* > [ZIP]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtrsyl.
  503. f"> */
  504. /* > [TXT]</a> */
  505. /* > \endhtmlonly */
  506. /* Definition: */
  507. /* =========== */
  508. /* SUBROUTINE DTRSYL( TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB, C, */
  509. /* LDC, SCALE, INFO ) */
  510. /* CHARACTER TRANA, TRANB */
  511. /* INTEGER INFO, ISGN, LDA, LDB, LDC, M, N */
  512. /* DOUBLE PRECISION SCALE */
  513. /* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( LDC, * ) */
  514. /* > \par Purpose: */
  515. /* ============= */
  516. /* > */
  517. /* > \verbatim */
  518. /* > */
  519. /* > DTRSYL solves the real Sylvester matrix equation: */
  520. /* > */
  521. /* > op(A)*X + X*op(B) = scale*C or */
  522. /* > op(A)*X - X*op(B) = scale*C, */
  523. /* > */
  524. /* > where op(A) = A or A**T, and A and B are both upper quasi- */
  525. /* > triangular. A is M-by-M and B is N-by-N; the right hand side C and */
  526. /* > the solution X are M-by-N; and scale is an output scale factor, set */
  527. /* > <= 1 to avoid overflow in X. */
  528. /* > */
  529. /* > A and B must be in Schur canonical form (as returned by DHSEQR), that */
  530. /* > is, block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; */
  531. /* > each 2-by-2 diagonal block has its diagonal elements equal and its */
  532. /* > off-diagonal elements of opposite sign. */
  533. /* > \endverbatim */
  534. /* Arguments: */
  535. /* ========== */
  536. /* > \param[in] TRANA */
  537. /* > \verbatim */
  538. /* > TRANA is CHARACTER*1 */
  539. /* > Specifies the option op(A): */
  540. /* > = 'N': op(A) = A (No transpose) */
  541. /* > = 'T': op(A) = A**T (Transpose) */
  542. /* > = 'C': op(A) = A**H (Conjugate transpose = Transpose) */
  543. /* > \endverbatim */
  544. /* > */
  545. /* > \param[in] TRANB */
  546. /* > \verbatim */
  547. /* > TRANB is CHARACTER*1 */
  548. /* > Specifies the option op(B): */
  549. /* > = 'N': op(B) = B (No transpose) */
  550. /* > = 'T': op(B) = B**T (Transpose) */
  551. /* > = 'C': op(B) = B**H (Conjugate transpose = Transpose) */
  552. /* > \endverbatim */
  553. /* > */
  554. /* > \param[in] ISGN */
  555. /* > \verbatim */
  556. /* > ISGN is INTEGER */
  557. /* > Specifies the sign in the equation: */
  558. /* > = +1: solve op(A)*X + X*op(B) = scale*C */
  559. /* > = -1: solve op(A)*X - X*op(B) = scale*C */
  560. /* > \endverbatim */
  561. /* > */
  562. /* > \param[in] M */
  563. /* > \verbatim */
  564. /* > M is INTEGER */
  565. /* > The order of the matrix A, and the number of rows in the */
  566. /* > matrices X and C. M >= 0. */
  567. /* > \endverbatim */
  568. /* > */
  569. /* > \param[in] N */
  570. /* > \verbatim */
  571. /* > N is INTEGER */
  572. /* > The order of the matrix B, and the number of columns in the */
  573. /* > matrices X and C. N >= 0. */
  574. /* > \endverbatim */
  575. /* > */
  576. /* > \param[in] A */
  577. /* > \verbatim */
  578. /* > A is DOUBLE PRECISION array, dimension (LDA,M) */
  579. /* > The upper quasi-triangular matrix A, in Schur canonical form. */
  580. /* > \endverbatim */
  581. /* > */
  582. /* > \param[in] LDA */
  583. /* > \verbatim */
  584. /* > LDA is INTEGER */
  585. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  586. /* > \endverbatim */
  587. /* > */
  588. /* > \param[in] B */
  589. /* > \verbatim */
  590. /* > B is DOUBLE PRECISION array, dimension (LDB,N) */
  591. /* > The upper quasi-triangular matrix B, in Schur canonical form. */
  592. /* > \endverbatim */
  593. /* > */
  594. /* > \param[in] LDB */
  595. /* > \verbatim */
  596. /* > LDB is INTEGER */
  597. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  598. /* > \endverbatim */
  599. /* > */
  600. /* > \param[in,out] C */
  601. /* > \verbatim */
  602. /* > C is DOUBLE PRECISION array, dimension (LDC,N) */
  603. /* > On entry, the M-by-N right hand side matrix C. */
  604. /* > On exit, C is overwritten by the solution matrix X. */
  605. /* > \endverbatim */
  606. /* > */
  607. /* > \param[in] LDC */
  608. /* > \verbatim */
  609. /* > LDC is INTEGER */
  610. /* > The leading dimension of the array C. LDC >= f2cmax(1,M) */
  611. /* > \endverbatim */
  612. /* > */
  613. /* > \param[out] SCALE */
  614. /* > \verbatim */
  615. /* > SCALE is DOUBLE PRECISION */
  616. /* > The scale factor, scale, set <= 1 to avoid overflow in X. */
  617. /* > \endverbatim */
  618. /* > */
  619. /* > \param[out] INFO */
  620. /* > \verbatim */
  621. /* > INFO is INTEGER */
  622. /* > = 0: successful exit */
  623. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  624. /* > = 1: A and B have common or very close eigenvalues; perturbed */
  625. /* > values were used to solve the equation (but the matrices */
  626. /* > A and B are unchanged). */
  627. /* > \endverbatim */
  628. /* Authors: */
  629. /* ======== */
  630. /* > \author Univ. of Tennessee */
  631. /* > \author Univ. of California Berkeley */
  632. /* > \author Univ. of Colorado Denver */
  633. /* > \author NAG Ltd. */
  634. /* > \date December 2016 */
  635. /* > \ingroup doubleSYcomputational */
  636. /* ===================================================================== */
  637. /* Subroutine */ void dtrsyl_(char *trana, char *tranb, integer *isgn, integer
  638. *m, integer *n, doublereal *a, integer *lda, doublereal *b, integer *
  639. ldb, doublereal *c__, integer *ldc, doublereal *scale, integer *info)
  640. {
  641. /* System generated locals */
  642. integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2,
  643. i__3, i__4;
  644. doublereal d__1, d__2;
  645. /* Local variables */
  646. extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *,
  647. integer *);
  648. integer ierr;
  649. doublereal smin, suml, sumr;
  650. integer j, k, l;
  651. extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *,
  652. integer *);
  653. doublereal x[4] /* was [2][2] */;
  654. extern logical lsame_(char *, char *);
  655. integer knext, lnext, k1, k2, l1, l2;
  656. doublereal xnorm;
  657. extern /* Subroutine */ void dlaln2_(logical *, integer *, integer *,
  658. doublereal *, doublereal *, doublereal *, integer *, doublereal *,
  659. doublereal *, doublereal *, integer *, doublereal *, doublereal *
  660. , doublereal *, integer *, doublereal *, doublereal *, integer *),
  661. dlasy2_(logical *, logical *, integer *, integer *, integer *,
  662. doublereal *, integer *, doublereal *, integer *, doublereal *,
  663. integer *, doublereal *, doublereal *, integer *, doublereal *,
  664. integer *);
  665. doublereal a11, db;
  666. extern /* Subroutine */ void dlabad_(doublereal *, doublereal *);
  667. extern doublereal dlamch_(char *), dlange_(char *, integer *,
  668. integer *, doublereal *, integer *, doublereal *);
  669. doublereal scaloc;
  670. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  671. doublereal bignum;
  672. logical notrna, notrnb;
  673. doublereal smlnum, da11, vec[4] /* was [2][2] */, dum[1], eps, sgn;
  674. /* -- LAPACK computational routine (version 3.7.0) -- */
  675. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  676. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  677. /* December 2016 */
  678. /* ===================================================================== */
  679. /* Decode and Test input parameters */
  680. /* Parameter adjustments */
  681. a_dim1 = *lda;
  682. a_offset = 1 + a_dim1 * 1;
  683. a -= a_offset;
  684. b_dim1 = *ldb;
  685. b_offset = 1 + b_dim1 * 1;
  686. b -= b_offset;
  687. c_dim1 = *ldc;
  688. c_offset = 1 + c_dim1 * 1;
  689. c__ -= c_offset;
  690. /* Function Body */
  691. notrna = lsame_(trana, "N");
  692. notrnb = lsame_(tranb, "N");
  693. *info = 0;
  694. if (! notrna && ! lsame_(trana, "T") && ! lsame_(
  695. trana, "C")) {
  696. *info = -1;
  697. } else if (! notrnb && ! lsame_(tranb, "T") && !
  698. lsame_(tranb, "C")) {
  699. *info = -2;
  700. } else if (*isgn != 1 && *isgn != -1) {
  701. *info = -3;
  702. } else if (*m < 0) {
  703. *info = -4;
  704. } else if (*n < 0) {
  705. *info = -5;
  706. } else if (*lda < f2cmax(1,*m)) {
  707. *info = -7;
  708. } else if (*ldb < f2cmax(1,*n)) {
  709. *info = -9;
  710. } else if (*ldc < f2cmax(1,*m)) {
  711. *info = -11;
  712. }
  713. if (*info != 0) {
  714. i__1 = -(*info);
  715. xerbla_("DTRSYL", &i__1, (ftnlen)6);
  716. return;
  717. }
  718. /* Quick return if possible */
  719. *scale = 1.;
  720. if (*m == 0 || *n == 0) {
  721. return;
  722. }
  723. /* Set constants to control overflow */
  724. eps = dlamch_("P");
  725. smlnum = dlamch_("S");
  726. bignum = 1. / smlnum;
  727. dlabad_(&smlnum, &bignum);
  728. smlnum = smlnum * (doublereal) (*m * *n) / eps;
  729. bignum = 1. / smlnum;
  730. /* Computing MAX */
  731. d__1 = smlnum, d__2 = eps * dlange_("M", m, m, &a[a_offset], lda, dum), d__1 = f2cmax(d__1,d__2), d__2 = eps * dlange_("M", n, n,
  732. &b[b_offset], ldb, dum);
  733. smin = f2cmax(d__1,d__2);
  734. sgn = (doublereal) (*isgn);
  735. if (notrna && notrnb) {
  736. /* Solve A*X + ISGN*X*B = scale*C. */
  737. /* The (K,L)th block of X is determined starting from */
  738. /* bottom-left corner column by column by */
  739. /* A(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L) */
  740. /* Where */
  741. /* M L-1 */
  742. /* R(K,L) = SUM [A(K,I)*X(I,L)] + ISGN*SUM [X(K,J)*B(J,L)]. */
  743. /* I=K+1 J=1 */
  744. /* Start column loop (index = L) */
  745. /* L1 (L2) : column index of the first (first) row of X(K,L). */
  746. lnext = 1;
  747. i__1 = *n;
  748. for (l = 1; l <= i__1; ++l) {
  749. if (l < lnext) {
  750. goto L60;
  751. }
  752. if (l == *n) {
  753. l1 = l;
  754. l2 = l;
  755. } else {
  756. if (b[l + 1 + l * b_dim1] != 0.) {
  757. l1 = l;
  758. l2 = l + 1;
  759. lnext = l + 2;
  760. } else {
  761. l1 = l;
  762. l2 = l;
  763. lnext = l + 1;
  764. }
  765. }
  766. /* Start row loop (index = K) */
  767. /* K1 (K2): row index of the first (last) row of X(K,L). */
  768. knext = *m;
  769. for (k = *m; k >= 1; --k) {
  770. if (k > knext) {
  771. goto L50;
  772. }
  773. if (k == 1) {
  774. k1 = k;
  775. k2 = k;
  776. } else {
  777. if (a[k + (k - 1) * a_dim1] != 0.) {
  778. k1 = k - 1;
  779. k2 = k;
  780. knext = k - 2;
  781. } else {
  782. k1 = k;
  783. k2 = k;
  784. knext = k - 1;
  785. }
  786. }
  787. if (l1 == l2 && k1 == k2) {
  788. i__2 = *m - k1;
  789. /* Computing MIN */
  790. i__3 = k1 + 1;
  791. /* Computing MIN */
  792. i__4 = k1 + 1;
  793. suml = ddot_(&i__2, &a[k1 + f2cmin(i__3,*m) * a_dim1], lda, &
  794. c__[f2cmin(i__4,*m) + l1 * c_dim1], &c__1);
  795. i__2 = l1 - 1;
  796. sumr = ddot_(&i__2, &c__[k1 + c_dim1], ldc, &b[l1 *
  797. b_dim1 + 1], &c__1);
  798. vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
  799. scaloc = 1.;
  800. a11 = a[k1 + k1 * a_dim1] + sgn * b[l1 + l1 * b_dim1];
  801. da11 = abs(a11);
  802. if (da11 <= smin) {
  803. a11 = smin;
  804. da11 = smin;
  805. *info = 1;
  806. }
  807. db = abs(vec[0]);
  808. if (da11 < 1. && db > 1.) {
  809. if (db > bignum * da11) {
  810. scaloc = 1. / db;
  811. }
  812. }
  813. x[0] = vec[0] * scaloc / a11;
  814. if (scaloc != 1.) {
  815. i__2 = *n;
  816. for (j = 1; j <= i__2; ++j) {
  817. dscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  818. /* L10: */
  819. }
  820. *scale *= scaloc;
  821. }
  822. c__[k1 + l1 * c_dim1] = x[0];
  823. } else if (l1 == l2 && k1 != k2) {
  824. i__2 = *m - k2;
  825. /* Computing MIN */
  826. i__3 = k2 + 1;
  827. /* Computing MIN */
  828. i__4 = k2 + 1;
  829. suml = ddot_(&i__2, &a[k1 + f2cmin(i__3,*m) * a_dim1], lda, &
  830. c__[f2cmin(i__4,*m) + l1 * c_dim1], &c__1);
  831. i__2 = l1 - 1;
  832. sumr = ddot_(&i__2, &c__[k1 + c_dim1], ldc, &b[l1 *
  833. b_dim1 + 1], &c__1);
  834. vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
  835. i__2 = *m - k2;
  836. /* Computing MIN */
  837. i__3 = k2 + 1;
  838. /* Computing MIN */
  839. i__4 = k2 + 1;
  840. suml = ddot_(&i__2, &a[k2 + f2cmin(i__3,*m) * a_dim1], lda, &
  841. c__[f2cmin(i__4,*m) + l1 * c_dim1], &c__1);
  842. i__2 = l1 - 1;
  843. sumr = ddot_(&i__2, &c__[k2 + c_dim1], ldc, &b[l1 *
  844. b_dim1 + 1], &c__1);
  845. vec[1] = c__[k2 + l1 * c_dim1] - (suml + sgn * sumr);
  846. d__1 = -sgn * b[l1 + l1 * b_dim1];
  847. dlaln2_(&c_false, &c__2, &c__1, &smin, &c_b26, &a[k1 + k1
  848. * a_dim1], lda, &c_b26, &c_b26, vec, &c__2, &d__1,
  849. &c_b30, x, &c__2, &scaloc, &xnorm, &ierr);
  850. if (ierr != 0) {
  851. *info = 1;
  852. }
  853. if (scaloc != 1.) {
  854. i__2 = *n;
  855. for (j = 1; j <= i__2; ++j) {
  856. dscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  857. /* L20: */
  858. }
  859. *scale *= scaloc;
  860. }
  861. c__[k1 + l1 * c_dim1] = x[0];
  862. c__[k2 + l1 * c_dim1] = x[1];
  863. } else if (l1 != l2 && k1 == k2) {
  864. i__2 = *m - k1;
  865. /* Computing MIN */
  866. i__3 = k1 + 1;
  867. /* Computing MIN */
  868. i__4 = k1 + 1;
  869. suml = ddot_(&i__2, &a[k1 + f2cmin(i__3,*m) * a_dim1], lda, &
  870. c__[f2cmin(i__4,*m) + l1 * c_dim1], &c__1);
  871. i__2 = l1 - 1;
  872. sumr = ddot_(&i__2, &c__[k1 + c_dim1], ldc, &b[l1 *
  873. b_dim1 + 1], &c__1);
  874. vec[0] = sgn * (c__[k1 + l1 * c_dim1] - (suml + sgn *
  875. sumr));
  876. i__2 = *m - k1;
  877. /* Computing MIN */
  878. i__3 = k1 + 1;
  879. /* Computing MIN */
  880. i__4 = k1 + 1;
  881. suml = ddot_(&i__2, &a[k1 + f2cmin(i__3,*m) * a_dim1], lda, &
  882. c__[f2cmin(i__4,*m) + l2 * c_dim1], &c__1);
  883. i__2 = l1 - 1;
  884. sumr = ddot_(&i__2, &c__[k1 + c_dim1], ldc, &b[l2 *
  885. b_dim1 + 1], &c__1);
  886. vec[1] = sgn * (c__[k1 + l2 * c_dim1] - (suml + sgn *
  887. sumr));
  888. d__1 = -sgn * a[k1 + k1 * a_dim1];
  889. dlaln2_(&c_true, &c__2, &c__1, &smin, &c_b26, &b[l1 + l1 *
  890. b_dim1], ldb, &c_b26, &c_b26, vec, &c__2, &d__1,
  891. &c_b30, x, &c__2, &scaloc, &xnorm, &ierr);
  892. if (ierr != 0) {
  893. *info = 1;
  894. }
  895. if (scaloc != 1.) {
  896. i__2 = *n;
  897. for (j = 1; j <= i__2; ++j) {
  898. dscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  899. /* L30: */
  900. }
  901. *scale *= scaloc;
  902. }
  903. c__[k1 + l1 * c_dim1] = x[0];
  904. c__[k1 + l2 * c_dim1] = x[1];
  905. } else if (l1 != l2 && k1 != k2) {
  906. i__2 = *m - k2;
  907. /* Computing MIN */
  908. i__3 = k2 + 1;
  909. /* Computing MIN */
  910. i__4 = k2 + 1;
  911. suml = ddot_(&i__2, &a[k1 + f2cmin(i__3,*m) * a_dim1], lda, &
  912. c__[f2cmin(i__4,*m) + l1 * c_dim1], &c__1);
  913. i__2 = l1 - 1;
  914. sumr = ddot_(&i__2, &c__[k1 + c_dim1], ldc, &b[l1 *
  915. b_dim1 + 1], &c__1);
  916. vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
  917. i__2 = *m - k2;
  918. /* Computing MIN */
  919. i__3 = k2 + 1;
  920. /* Computing MIN */
  921. i__4 = k2 + 1;
  922. suml = ddot_(&i__2, &a[k1 + f2cmin(i__3,*m) * a_dim1], lda, &
  923. c__[f2cmin(i__4,*m) + l2 * c_dim1], &c__1);
  924. i__2 = l1 - 1;
  925. sumr = ddot_(&i__2, &c__[k1 + c_dim1], ldc, &b[l2 *
  926. b_dim1 + 1], &c__1);
  927. vec[2] = c__[k1 + l2 * c_dim1] - (suml + sgn * sumr);
  928. i__2 = *m - k2;
  929. /* Computing MIN */
  930. i__3 = k2 + 1;
  931. /* Computing MIN */
  932. i__4 = k2 + 1;
  933. suml = ddot_(&i__2, &a[k2 + f2cmin(i__3,*m) * a_dim1], lda, &
  934. c__[f2cmin(i__4,*m) + l1 * c_dim1], &c__1);
  935. i__2 = l1 - 1;
  936. sumr = ddot_(&i__2, &c__[k2 + c_dim1], ldc, &b[l1 *
  937. b_dim1 + 1], &c__1);
  938. vec[1] = c__[k2 + l1 * c_dim1] - (suml + sgn * sumr);
  939. i__2 = *m - k2;
  940. /* Computing MIN */
  941. i__3 = k2 + 1;
  942. /* Computing MIN */
  943. i__4 = k2 + 1;
  944. suml = ddot_(&i__2, &a[k2 + f2cmin(i__3,*m) * a_dim1], lda, &
  945. c__[f2cmin(i__4,*m) + l2 * c_dim1], &c__1);
  946. i__2 = l1 - 1;
  947. sumr = ddot_(&i__2, &c__[k2 + c_dim1], ldc, &b[l2 *
  948. b_dim1 + 1], &c__1);
  949. vec[3] = c__[k2 + l2 * c_dim1] - (suml + sgn * sumr);
  950. dlasy2_(&c_false, &c_false, isgn, &c__2, &c__2, &a[k1 +
  951. k1 * a_dim1], lda, &b[l1 + l1 * b_dim1], ldb, vec,
  952. &c__2, &scaloc, x, &c__2, &xnorm, &ierr);
  953. if (ierr != 0) {
  954. *info = 1;
  955. }
  956. if (scaloc != 1.) {
  957. i__2 = *n;
  958. for (j = 1; j <= i__2; ++j) {
  959. dscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  960. /* L40: */
  961. }
  962. *scale *= scaloc;
  963. }
  964. c__[k1 + l1 * c_dim1] = x[0];
  965. c__[k1 + l2 * c_dim1] = x[2];
  966. c__[k2 + l1 * c_dim1] = x[1];
  967. c__[k2 + l2 * c_dim1] = x[3];
  968. }
  969. L50:
  970. ;
  971. }
  972. L60:
  973. ;
  974. }
  975. } else if (! notrna && notrnb) {
  976. /* Solve A**T *X + ISGN*X*B = scale*C. */
  977. /* The (K,L)th block of X is determined starting from */
  978. /* upper-left corner column by column by */
  979. /* A(K,K)**T*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L) */
  980. /* Where */
  981. /* K-1 T L-1 */
  982. /* R(K,L) = SUM [A(I,K)**T*X(I,L)] +ISGN*SUM [X(K,J)*B(J,L)] */
  983. /* I=1 J=1 */
  984. /* Start column loop (index = L) */
  985. /* L1 (L2): column index of the first (last) row of X(K,L) */
  986. lnext = 1;
  987. i__1 = *n;
  988. for (l = 1; l <= i__1; ++l) {
  989. if (l < lnext) {
  990. goto L120;
  991. }
  992. if (l == *n) {
  993. l1 = l;
  994. l2 = l;
  995. } else {
  996. if (b[l + 1 + l * b_dim1] != 0.) {
  997. l1 = l;
  998. l2 = l + 1;
  999. lnext = l + 2;
  1000. } else {
  1001. l1 = l;
  1002. l2 = l;
  1003. lnext = l + 1;
  1004. }
  1005. }
  1006. /* Start row loop (index = K) */
  1007. /* K1 (K2): row index of the first (last) row of X(K,L) */
  1008. knext = 1;
  1009. i__2 = *m;
  1010. for (k = 1; k <= i__2; ++k) {
  1011. if (k < knext) {
  1012. goto L110;
  1013. }
  1014. if (k == *m) {
  1015. k1 = k;
  1016. k2 = k;
  1017. } else {
  1018. if (a[k + 1 + k * a_dim1] != 0.) {
  1019. k1 = k;
  1020. k2 = k + 1;
  1021. knext = k + 2;
  1022. } else {
  1023. k1 = k;
  1024. k2 = k;
  1025. knext = k + 1;
  1026. }
  1027. }
  1028. if (l1 == l2 && k1 == k2) {
  1029. i__3 = k1 - 1;
  1030. suml = ddot_(&i__3, &a[k1 * a_dim1 + 1], &c__1, &c__[l1 *
  1031. c_dim1 + 1], &c__1);
  1032. i__3 = l1 - 1;
  1033. sumr = ddot_(&i__3, &c__[k1 + c_dim1], ldc, &b[l1 *
  1034. b_dim1 + 1], &c__1);
  1035. vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
  1036. scaloc = 1.;
  1037. a11 = a[k1 + k1 * a_dim1] + sgn * b[l1 + l1 * b_dim1];
  1038. da11 = abs(a11);
  1039. if (da11 <= smin) {
  1040. a11 = smin;
  1041. da11 = smin;
  1042. *info = 1;
  1043. }
  1044. db = abs(vec[0]);
  1045. if (da11 < 1. && db > 1.) {
  1046. if (db > bignum * da11) {
  1047. scaloc = 1. / db;
  1048. }
  1049. }
  1050. x[0] = vec[0] * scaloc / a11;
  1051. if (scaloc != 1.) {
  1052. i__3 = *n;
  1053. for (j = 1; j <= i__3; ++j) {
  1054. dscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  1055. /* L70: */
  1056. }
  1057. *scale *= scaloc;
  1058. }
  1059. c__[k1 + l1 * c_dim1] = x[0];
  1060. } else if (l1 == l2 && k1 != k2) {
  1061. i__3 = k1 - 1;
  1062. suml = ddot_(&i__3, &a[k1 * a_dim1 + 1], &c__1, &c__[l1 *
  1063. c_dim1 + 1], &c__1);
  1064. i__3 = l1 - 1;
  1065. sumr = ddot_(&i__3, &c__[k1 + c_dim1], ldc, &b[l1 *
  1066. b_dim1 + 1], &c__1);
  1067. vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
  1068. i__3 = k1 - 1;
  1069. suml = ddot_(&i__3, &a[k2 * a_dim1 + 1], &c__1, &c__[l1 *
  1070. c_dim1 + 1], &c__1);
  1071. i__3 = l1 - 1;
  1072. sumr = ddot_(&i__3, &c__[k2 + c_dim1], ldc, &b[l1 *
  1073. b_dim1 + 1], &c__1);
  1074. vec[1] = c__[k2 + l1 * c_dim1] - (suml + sgn * sumr);
  1075. d__1 = -sgn * b[l1 + l1 * b_dim1];
  1076. dlaln2_(&c_true, &c__2, &c__1, &smin, &c_b26, &a[k1 + k1 *
  1077. a_dim1], lda, &c_b26, &c_b26, vec, &c__2, &d__1,
  1078. &c_b30, x, &c__2, &scaloc, &xnorm, &ierr);
  1079. if (ierr != 0) {
  1080. *info = 1;
  1081. }
  1082. if (scaloc != 1.) {
  1083. i__3 = *n;
  1084. for (j = 1; j <= i__3; ++j) {
  1085. dscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  1086. /* L80: */
  1087. }
  1088. *scale *= scaloc;
  1089. }
  1090. c__[k1 + l1 * c_dim1] = x[0];
  1091. c__[k2 + l1 * c_dim1] = x[1];
  1092. } else if (l1 != l2 && k1 == k2) {
  1093. i__3 = k1 - 1;
  1094. suml = ddot_(&i__3, &a[k1 * a_dim1 + 1], &c__1, &c__[l1 *
  1095. c_dim1 + 1], &c__1);
  1096. i__3 = l1 - 1;
  1097. sumr = ddot_(&i__3, &c__[k1 + c_dim1], ldc, &b[l1 *
  1098. b_dim1 + 1], &c__1);
  1099. vec[0] = sgn * (c__[k1 + l1 * c_dim1] - (suml + sgn *
  1100. sumr));
  1101. i__3 = k1 - 1;
  1102. suml = ddot_(&i__3, &a[k1 * a_dim1 + 1], &c__1, &c__[l2 *
  1103. c_dim1 + 1], &c__1);
  1104. i__3 = l1 - 1;
  1105. sumr = ddot_(&i__3, &c__[k1 + c_dim1], ldc, &b[l2 *
  1106. b_dim1 + 1], &c__1);
  1107. vec[1] = sgn * (c__[k1 + l2 * c_dim1] - (suml + sgn *
  1108. sumr));
  1109. d__1 = -sgn * a[k1 + k1 * a_dim1];
  1110. dlaln2_(&c_true, &c__2, &c__1, &smin, &c_b26, &b[l1 + l1 *
  1111. b_dim1], ldb, &c_b26, &c_b26, vec, &c__2, &d__1,
  1112. &c_b30, x, &c__2, &scaloc, &xnorm, &ierr);
  1113. if (ierr != 0) {
  1114. *info = 1;
  1115. }
  1116. if (scaloc != 1.) {
  1117. i__3 = *n;
  1118. for (j = 1; j <= i__3; ++j) {
  1119. dscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  1120. /* L90: */
  1121. }
  1122. *scale *= scaloc;
  1123. }
  1124. c__[k1 + l1 * c_dim1] = x[0];
  1125. c__[k1 + l2 * c_dim1] = x[1];
  1126. } else if (l1 != l2 && k1 != k2) {
  1127. i__3 = k1 - 1;
  1128. suml = ddot_(&i__3, &a[k1 * a_dim1 + 1], &c__1, &c__[l1 *
  1129. c_dim1 + 1], &c__1);
  1130. i__3 = l1 - 1;
  1131. sumr = ddot_(&i__3, &c__[k1 + c_dim1], ldc, &b[l1 *
  1132. b_dim1 + 1], &c__1);
  1133. vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
  1134. i__3 = k1 - 1;
  1135. suml = ddot_(&i__3, &a[k1 * a_dim1 + 1], &c__1, &c__[l2 *
  1136. c_dim1 + 1], &c__1);
  1137. i__3 = l1 - 1;
  1138. sumr = ddot_(&i__3, &c__[k1 + c_dim1], ldc, &b[l2 *
  1139. b_dim1 + 1], &c__1);
  1140. vec[2] = c__[k1 + l2 * c_dim1] - (suml + sgn * sumr);
  1141. i__3 = k1 - 1;
  1142. suml = ddot_(&i__3, &a[k2 * a_dim1 + 1], &c__1, &c__[l1 *
  1143. c_dim1 + 1], &c__1);
  1144. i__3 = l1 - 1;
  1145. sumr = ddot_(&i__3, &c__[k2 + c_dim1], ldc, &b[l1 *
  1146. b_dim1 + 1], &c__1);
  1147. vec[1] = c__[k2 + l1 * c_dim1] - (suml + sgn * sumr);
  1148. i__3 = k1 - 1;
  1149. suml = ddot_(&i__3, &a[k2 * a_dim1 + 1], &c__1, &c__[l2 *
  1150. c_dim1 + 1], &c__1);
  1151. i__3 = l1 - 1;
  1152. sumr = ddot_(&i__3, &c__[k2 + c_dim1], ldc, &b[l2 *
  1153. b_dim1 + 1], &c__1);
  1154. vec[3] = c__[k2 + l2 * c_dim1] - (suml + sgn * sumr);
  1155. dlasy2_(&c_true, &c_false, isgn, &c__2, &c__2, &a[k1 + k1
  1156. * a_dim1], lda, &b[l1 + l1 * b_dim1], ldb, vec, &
  1157. c__2, &scaloc, x, &c__2, &xnorm, &ierr);
  1158. if (ierr != 0) {
  1159. *info = 1;
  1160. }
  1161. if (scaloc != 1.) {
  1162. i__3 = *n;
  1163. for (j = 1; j <= i__3; ++j) {
  1164. dscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  1165. /* L100: */
  1166. }
  1167. *scale *= scaloc;
  1168. }
  1169. c__[k1 + l1 * c_dim1] = x[0];
  1170. c__[k1 + l2 * c_dim1] = x[2];
  1171. c__[k2 + l1 * c_dim1] = x[1];
  1172. c__[k2 + l2 * c_dim1] = x[3];
  1173. }
  1174. L110:
  1175. ;
  1176. }
  1177. L120:
  1178. ;
  1179. }
  1180. } else if (! notrna && ! notrnb) {
  1181. /* Solve A**T*X + ISGN*X*B**T = scale*C. */
  1182. /* The (K,L)th block of X is determined starting from */
  1183. /* top-right corner column by column by */
  1184. /* A(K,K)**T*X(K,L) + ISGN*X(K,L)*B(L,L)**T = C(K,L) - R(K,L) */
  1185. /* Where */
  1186. /* K-1 N */
  1187. /* R(K,L) = SUM [A(I,K)**T*X(I,L)] + ISGN*SUM [X(K,J)*B(L,J)**T]. */
  1188. /* I=1 J=L+1 */
  1189. /* Start column loop (index = L) */
  1190. /* L1 (L2): column index of the first (last) row of X(K,L) */
  1191. lnext = *n;
  1192. for (l = *n; l >= 1; --l) {
  1193. if (l > lnext) {
  1194. goto L180;
  1195. }
  1196. if (l == 1) {
  1197. l1 = l;
  1198. l2 = l;
  1199. } else {
  1200. if (b[l + (l - 1) * b_dim1] != 0.) {
  1201. l1 = l - 1;
  1202. l2 = l;
  1203. lnext = l - 2;
  1204. } else {
  1205. l1 = l;
  1206. l2 = l;
  1207. lnext = l - 1;
  1208. }
  1209. }
  1210. /* Start row loop (index = K) */
  1211. /* K1 (K2): row index of the first (last) row of X(K,L) */
  1212. knext = 1;
  1213. i__1 = *m;
  1214. for (k = 1; k <= i__1; ++k) {
  1215. if (k < knext) {
  1216. goto L170;
  1217. }
  1218. if (k == *m) {
  1219. k1 = k;
  1220. k2 = k;
  1221. } else {
  1222. if (a[k + 1 + k * a_dim1] != 0.) {
  1223. k1 = k;
  1224. k2 = k + 1;
  1225. knext = k + 2;
  1226. } else {
  1227. k1 = k;
  1228. k2 = k;
  1229. knext = k + 1;
  1230. }
  1231. }
  1232. if (l1 == l2 && k1 == k2) {
  1233. i__2 = k1 - 1;
  1234. suml = ddot_(&i__2, &a[k1 * a_dim1 + 1], &c__1, &c__[l1 *
  1235. c_dim1 + 1], &c__1);
  1236. i__2 = *n - l1;
  1237. /* Computing MIN */
  1238. i__3 = l1 + 1;
  1239. /* Computing MIN */
  1240. i__4 = l1 + 1;
  1241. sumr = ddot_(&i__2, &c__[k1 + f2cmin(i__3,*n) * c_dim1], ldc,
  1242. &b[l1 + f2cmin(i__4,*n) * b_dim1], ldb);
  1243. vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
  1244. scaloc = 1.;
  1245. a11 = a[k1 + k1 * a_dim1] + sgn * b[l1 + l1 * b_dim1];
  1246. da11 = abs(a11);
  1247. if (da11 <= smin) {
  1248. a11 = smin;
  1249. da11 = smin;
  1250. *info = 1;
  1251. }
  1252. db = abs(vec[0]);
  1253. if (da11 < 1. && db > 1.) {
  1254. if (db > bignum * da11) {
  1255. scaloc = 1. / db;
  1256. }
  1257. }
  1258. x[0] = vec[0] * scaloc / a11;
  1259. if (scaloc != 1.) {
  1260. i__2 = *n;
  1261. for (j = 1; j <= i__2; ++j) {
  1262. dscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  1263. /* L130: */
  1264. }
  1265. *scale *= scaloc;
  1266. }
  1267. c__[k1 + l1 * c_dim1] = x[0];
  1268. } else if (l1 == l2 && k1 != k2) {
  1269. i__2 = k1 - 1;
  1270. suml = ddot_(&i__2, &a[k1 * a_dim1 + 1], &c__1, &c__[l1 *
  1271. c_dim1 + 1], &c__1);
  1272. i__2 = *n - l2;
  1273. /* Computing MIN */
  1274. i__3 = l2 + 1;
  1275. /* Computing MIN */
  1276. i__4 = l2 + 1;
  1277. sumr = ddot_(&i__2, &c__[k1 + f2cmin(i__3,*n) * c_dim1], ldc,
  1278. &b[l1 + f2cmin(i__4,*n) * b_dim1], ldb);
  1279. vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
  1280. i__2 = k1 - 1;
  1281. suml = ddot_(&i__2, &a[k2 * a_dim1 + 1], &c__1, &c__[l1 *
  1282. c_dim1 + 1], &c__1);
  1283. i__2 = *n - l2;
  1284. /* Computing MIN */
  1285. i__3 = l2 + 1;
  1286. /* Computing MIN */
  1287. i__4 = l2 + 1;
  1288. sumr = ddot_(&i__2, &c__[k2 + f2cmin(i__3,*n) * c_dim1], ldc,
  1289. &b[l1 + f2cmin(i__4,*n) * b_dim1], ldb);
  1290. vec[1] = c__[k2 + l1 * c_dim1] - (suml + sgn * sumr);
  1291. d__1 = -sgn * b[l1 + l1 * b_dim1];
  1292. dlaln2_(&c_true, &c__2, &c__1, &smin, &c_b26, &a[k1 + k1 *
  1293. a_dim1], lda, &c_b26, &c_b26, vec, &c__2, &d__1,
  1294. &c_b30, x, &c__2, &scaloc, &xnorm, &ierr);
  1295. if (ierr != 0) {
  1296. *info = 1;
  1297. }
  1298. if (scaloc != 1.) {
  1299. i__2 = *n;
  1300. for (j = 1; j <= i__2; ++j) {
  1301. dscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  1302. /* L140: */
  1303. }
  1304. *scale *= scaloc;
  1305. }
  1306. c__[k1 + l1 * c_dim1] = x[0];
  1307. c__[k2 + l1 * c_dim1] = x[1];
  1308. } else if (l1 != l2 && k1 == k2) {
  1309. i__2 = k1 - 1;
  1310. suml = ddot_(&i__2, &a[k1 * a_dim1 + 1], &c__1, &c__[l1 *
  1311. c_dim1 + 1], &c__1);
  1312. i__2 = *n - l2;
  1313. /* Computing MIN */
  1314. i__3 = l2 + 1;
  1315. /* Computing MIN */
  1316. i__4 = l2 + 1;
  1317. sumr = ddot_(&i__2, &c__[k1 + f2cmin(i__3,*n) * c_dim1], ldc,
  1318. &b[l1 + f2cmin(i__4,*n) * b_dim1], ldb);
  1319. vec[0] = sgn * (c__[k1 + l1 * c_dim1] - (suml + sgn *
  1320. sumr));
  1321. i__2 = k1 - 1;
  1322. suml = ddot_(&i__2, &a[k1 * a_dim1 + 1], &c__1, &c__[l2 *
  1323. c_dim1 + 1], &c__1);
  1324. i__2 = *n - l2;
  1325. /* Computing MIN */
  1326. i__3 = l2 + 1;
  1327. /* Computing MIN */
  1328. i__4 = l2 + 1;
  1329. sumr = ddot_(&i__2, &c__[k1 + f2cmin(i__3,*n) * c_dim1], ldc,
  1330. &b[l2 + f2cmin(i__4,*n) * b_dim1], ldb);
  1331. vec[1] = sgn * (c__[k1 + l2 * c_dim1] - (suml + sgn *
  1332. sumr));
  1333. d__1 = -sgn * a[k1 + k1 * a_dim1];
  1334. dlaln2_(&c_false, &c__2, &c__1, &smin, &c_b26, &b[l1 + l1
  1335. * b_dim1], ldb, &c_b26, &c_b26, vec, &c__2, &d__1,
  1336. &c_b30, x, &c__2, &scaloc, &xnorm, &ierr);
  1337. if (ierr != 0) {
  1338. *info = 1;
  1339. }
  1340. if (scaloc != 1.) {
  1341. i__2 = *n;
  1342. for (j = 1; j <= i__2; ++j) {
  1343. dscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  1344. /* L150: */
  1345. }
  1346. *scale *= scaloc;
  1347. }
  1348. c__[k1 + l1 * c_dim1] = x[0];
  1349. c__[k1 + l2 * c_dim1] = x[1];
  1350. } else if (l1 != l2 && k1 != k2) {
  1351. i__2 = k1 - 1;
  1352. suml = ddot_(&i__2, &a[k1 * a_dim1 + 1], &c__1, &c__[l1 *
  1353. c_dim1 + 1], &c__1);
  1354. i__2 = *n - l2;
  1355. /* Computing MIN */
  1356. i__3 = l2 + 1;
  1357. /* Computing MIN */
  1358. i__4 = l2 + 1;
  1359. sumr = ddot_(&i__2, &c__[k1 + f2cmin(i__3,*n) * c_dim1], ldc,
  1360. &b[l1 + f2cmin(i__4,*n) * b_dim1], ldb);
  1361. vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
  1362. i__2 = k1 - 1;
  1363. suml = ddot_(&i__2, &a[k1 * a_dim1 + 1], &c__1, &c__[l2 *
  1364. c_dim1 + 1], &c__1);
  1365. i__2 = *n - l2;
  1366. /* Computing MIN */
  1367. i__3 = l2 + 1;
  1368. /* Computing MIN */
  1369. i__4 = l2 + 1;
  1370. sumr = ddot_(&i__2, &c__[k1 + f2cmin(i__3,*n) * c_dim1], ldc,
  1371. &b[l2 + f2cmin(i__4,*n) * b_dim1], ldb);
  1372. vec[2] = c__[k1 + l2 * c_dim1] - (suml + sgn * sumr);
  1373. i__2 = k1 - 1;
  1374. suml = ddot_(&i__2, &a[k2 * a_dim1 + 1], &c__1, &c__[l1 *
  1375. c_dim1 + 1], &c__1);
  1376. i__2 = *n - l2;
  1377. /* Computing MIN */
  1378. i__3 = l2 + 1;
  1379. /* Computing MIN */
  1380. i__4 = l2 + 1;
  1381. sumr = ddot_(&i__2, &c__[k2 + f2cmin(i__3,*n) * c_dim1], ldc,
  1382. &b[l1 + f2cmin(i__4,*n) * b_dim1], ldb);
  1383. vec[1] = c__[k2 + l1 * c_dim1] - (suml + sgn * sumr);
  1384. i__2 = k1 - 1;
  1385. suml = ddot_(&i__2, &a[k2 * a_dim1 + 1], &c__1, &c__[l2 *
  1386. c_dim1 + 1], &c__1);
  1387. i__2 = *n - l2;
  1388. /* Computing MIN */
  1389. i__3 = l2 + 1;
  1390. /* Computing MIN */
  1391. i__4 = l2 + 1;
  1392. sumr = ddot_(&i__2, &c__[k2 + f2cmin(i__3,*n) * c_dim1], ldc,
  1393. &b[l2 + f2cmin(i__4,*n) * b_dim1], ldb);
  1394. vec[3] = c__[k2 + l2 * c_dim1] - (suml + sgn * sumr);
  1395. dlasy2_(&c_true, &c_true, isgn, &c__2, &c__2, &a[k1 + k1 *
  1396. a_dim1], lda, &b[l1 + l1 * b_dim1], ldb, vec, &
  1397. c__2, &scaloc, x, &c__2, &xnorm, &ierr);
  1398. if (ierr != 0) {
  1399. *info = 1;
  1400. }
  1401. if (scaloc != 1.) {
  1402. i__2 = *n;
  1403. for (j = 1; j <= i__2; ++j) {
  1404. dscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  1405. /* L160: */
  1406. }
  1407. *scale *= scaloc;
  1408. }
  1409. c__[k1 + l1 * c_dim1] = x[0];
  1410. c__[k1 + l2 * c_dim1] = x[2];
  1411. c__[k2 + l1 * c_dim1] = x[1];
  1412. c__[k2 + l2 * c_dim1] = x[3];
  1413. }
  1414. L170:
  1415. ;
  1416. }
  1417. L180:
  1418. ;
  1419. }
  1420. } else if (notrna && ! notrnb) {
  1421. /* Solve A*X + ISGN*X*B**T = scale*C. */
  1422. /* The (K,L)th block of X is determined starting from */
  1423. /* bottom-right corner column by column by */
  1424. /* A(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L)**T = C(K,L) - R(K,L) */
  1425. /* Where */
  1426. /* M N */
  1427. /* R(K,L) = SUM [A(K,I)*X(I,L)] + ISGN*SUM [X(K,J)*B(L,J)**T]. */
  1428. /* I=K+1 J=L+1 */
  1429. /* Start column loop (index = L) */
  1430. /* L1 (L2): column index of the first (last) row of X(K,L) */
  1431. lnext = *n;
  1432. for (l = *n; l >= 1; --l) {
  1433. if (l > lnext) {
  1434. goto L240;
  1435. }
  1436. if (l == 1) {
  1437. l1 = l;
  1438. l2 = l;
  1439. } else {
  1440. if (b[l + (l - 1) * b_dim1] != 0.) {
  1441. l1 = l - 1;
  1442. l2 = l;
  1443. lnext = l - 2;
  1444. } else {
  1445. l1 = l;
  1446. l2 = l;
  1447. lnext = l - 1;
  1448. }
  1449. }
  1450. /* Start row loop (index = K) */
  1451. /* K1 (K2): row index of the first (last) row of X(K,L) */
  1452. knext = *m;
  1453. for (k = *m; k >= 1; --k) {
  1454. if (k > knext) {
  1455. goto L230;
  1456. }
  1457. if (k == 1) {
  1458. k1 = k;
  1459. k2 = k;
  1460. } else {
  1461. if (a[k + (k - 1) * a_dim1] != 0.) {
  1462. k1 = k - 1;
  1463. k2 = k;
  1464. knext = k - 2;
  1465. } else {
  1466. k1 = k;
  1467. k2 = k;
  1468. knext = k - 1;
  1469. }
  1470. }
  1471. if (l1 == l2 && k1 == k2) {
  1472. i__1 = *m - k1;
  1473. /* Computing MIN */
  1474. i__2 = k1 + 1;
  1475. /* Computing MIN */
  1476. i__3 = k1 + 1;
  1477. suml = ddot_(&i__1, &a[k1 + f2cmin(i__2,*m) * a_dim1], lda, &
  1478. c__[f2cmin(i__3,*m) + l1 * c_dim1], &c__1);
  1479. i__1 = *n - l1;
  1480. /* Computing MIN */
  1481. i__2 = l1 + 1;
  1482. /* Computing MIN */
  1483. i__3 = l1 + 1;
  1484. sumr = ddot_(&i__1, &c__[k1 + f2cmin(i__2,*n) * c_dim1], ldc,
  1485. &b[l1 + f2cmin(i__3,*n) * b_dim1], ldb);
  1486. vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
  1487. scaloc = 1.;
  1488. a11 = a[k1 + k1 * a_dim1] + sgn * b[l1 + l1 * b_dim1];
  1489. da11 = abs(a11);
  1490. if (da11 <= smin) {
  1491. a11 = smin;
  1492. da11 = smin;
  1493. *info = 1;
  1494. }
  1495. db = abs(vec[0]);
  1496. if (da11 < 1. && db > 1.) {
  1497. if (db > bignum * da11) {
  1498. scaloc = 1. / db;
  1499. }
  1500. }
  1501. x[0] = vec[0] * scaloc / a11;
  1502. if (scaloc != 1.) {
  1503. i__1 = *n;
  1504. for (j = 1; j <= i__1; ++j) {
  1505. dscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  1506. /* L190: */
  1507. }
  1508. *scale *= scaloc;
  1509. }
  1510. c__[k1 + l1 * c_dim1] = x[0];
  1511. } else if (l1 == l2 && k1 != k2) {
  1512. i__1 = *m - k2;
  1513. /* Computing MIN */
  1514. i__2 = k2 + 1;
  1515. /* Computing MIN */
  1516. i__3 = k2 + 1;
  1517. suml = ddot_(&i__1, &a[k1 + f2cmin(i__2,*m) * a_dim1], lda, &
  1518. c__[f2cmin(i__3,*m) + l1 * c_dim1], &c__1);
  1519. i__1 = *n - l2;
  1520. /* Computing MIN */
  1521. i__2 = l2 + 1;
  1522. /* Computing MIN */
  1523. i__3 = l2 + 1;
  1524. sumr = ddot_(&i__1, &c__[k1 + f2cmin(i__2,*n) * c_dim1], ldc,
  1525. &b[l1 + f2cmin(i__3,*n) * b_dim1], ldb);
  1526. vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
  1527. i__1 = *m - k2;
  1528. /* Computing MIN */
  1529. i__2 = k2 + 1;
  1530. /* Computing MIN */
  1531. i__3 = k2 + 1;
  1532. suml = ddot_(&i__1, &a[k2 + f2cmin(i__2,*m) * a_dim1], lda, &
  1533. c__[f2cmin(i__3,*m) + l1 * c_dim1], &c__1);
  1534. i__1 = *n - l2;
  1535. /* Computing MIN */
  1536. i__2 = l2 + 1;
  1537. /* Computing MIN */
  1538. i__3 = l2 + 1;
  1539. sumr = ddot_(&i__1, &c__[k2 + f2cmin(i__2,*n) * c_dim1], ldc,
  1540. &b[l1 + f2cmin(i__3,*n) * b_dim1], ldb);
  1541. vec[1] = c__[k2 + l1 * c_dim1] - (suml + sgn * sumr);
  1542. d__1 = -sgn * b[l1 + l1 * b_dim1];
  1543. dlaln2_(&c_false, &c__2, &c__1, &smin, &c_b26, &a[k1 + k1
  1544. * a_dim1], lda, &c_b26, &c_b26, vec, &c__2, &d__1,
  1545. &c_b30, x, &c__2, &scaloc, &xnorm, &ierr);
  1546. if (ierr != 0) {
  1547. *info = 1;
  1548. }
  1549. if (scaloc != 1.) {
  1550. i__1 = *n;
  1551. for (j = 1; j <= i__1; ++j) {
  1552. dscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  1553. /* L200: */
  1554. }
  1555. *scale *= scaloc;
  1556. }
  1557. c__[k1 + l1 * c_dim1] = x[0];
  1558. c__[k2 + l1 * c_dim1] = x[1];
  1559. } else if (l1 != l2 && k1 == k2) {
  1560. i__1 = *m - k1;
  1561. /* Computing MIN */
  1562. i__2 = k1 + 1;
  1563. /* Computing MIN */
  1564. i__3 = k1 + 1;
  1565. suml = ddot_(&i__1, &a[k1 + f2cmin(i__2,*m) * a_dim1], lda, &
  1566. c__[f2cmin(i__3,*m) + l1 * c_dim1], &c__1);
  1567. i__1 = *n - l2;
  1568. /* Computing MIN */
  1569. i__2 = l2 + 1;
  1570. /* Computing MIN */
  1571. i__3 = l2 + 1;
  1572. sumr = ddot_(&i__1, &c__[k1 + f2cmin(i__2,*n) * c_dim1], ldc,
  1573. &b[l1 + f2cmin(i__3,*n) * b_dim1], ldb);
  1574. vec[0] = sgn * (c__[k1 + l1 * c_dim1] - (suml + sgn *
  1575. sumr));
  1576. i__1 = *m - k1;
  1577. /* Computing MIN */
  1578. i__2 = k1 + 1;
  1579. /* Computing MIN */
  1580. i__3 = k1 + 1;
  1581. suml = ddot_(&i__1, &a[k1 + f2cmin(i__2,*m) * a_dim1], lda, &
  1582. c__[f2cmin(i__3,*m) + l2 * c_dim1], &c__1);
  1583. i__1 = *n - l2;
  1584. /* Computing MIN */
  1585. i__2 = l2 + 1;
  1586. /* Computing MIN */
  1587. i__3 = l2 + 1;
  1588. sumr = ddot_(&i__1, &c__[k1 + f2cmin(i__2,*n) * c_dim1], ldc,
  1589. &b[l2 + f2cmin(i__3,*n) * b_dim1], ldb);
  1590. vec[1] = sgn * (c__[k1 + l2 * c_dim1] - (suml + sgn *
  1591. sumr));
  1592. d__1 = -sgn * a[k1 + k1 * a_dim1];
  1593. dlaln2_(&c_false, &c__2, &c__1, &smin, &c_b26, &b[l1 + l1
  1594. * b_dim1], ldb, &c_b26, &c_b26, vec, &c__2, &d__1,
  1595. &c_b30, x, &c__2, &scaloc, &xnorm, &ierr);
  1596. if (ierr != 0) {
  1597. *info = 1;
  1598. }
  1599. if (scaloc != 1.) {
  1600. i__1 = *n;
  1601. for (j = 1; j <= i__1; ++j) {
  1602. dscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  1603. /* L210: */
  1604. }
  1605. *scale *= scaloc;
  1606. }
  1607. c__[k1 + l1 * c_dim1] = x[0];
  1608. c__[k1 + l2 * c_dim1] = x[1];
  1609. } else if (l1 != l2 && k1 != k2) {
  1610. i__1 = *m - k2;
  1611. /* Computing MIN */
  1612. i__2 = k2 + 1;
  1613. /* Computing MIN */
  1614. i__3 = k2 + 1;
  1615. suml = ddot_(&i__1, &a[k1 + f2cmin(i__2,*m) * a_dim1], lda, &
  1616. c__[f2cmin(i__3,*m) + l1 * c_dim1], &c__1);
  1617. i__1 = *n - l2;
  1618. /* Computing MIN */
  1619. i__2 = l2 + 1;
  1620. /* Computing MIN */
  1621. i__3 = l2 + 1;
  1622. sumr = ddot_(&i__1, &c__[k1 + f2cmin(i__2,*n) * c_dim1], ldc,
  1623. &b[l1 + f2cmin(i__3,*n) * b_dim1], ldb);
  1624. vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
  1625. i__1 = *m - k2;
  1626. /* Computing MIN */
  1627. i__2 = k2 + 1;
  1628. /* Computing MIN */
  1629. i__3 = k2 + 1;
  1630. suml = ddot_(&i__1, &a[k1 + f2cmin(i__2,*m) * a_dim1], lda, &
  1631. c__[f2cmin(i__3,*m) + l2 * c_dim1], &c__1);
  1632. i__1 = *n - l2;
  1633. /* Computing MIN */
  1634. i__2 = l2 + 1;
  1635. /* Computing MIN */
  1636. i__3 = l2 + 1;
  1637. sumr = ddot_(&i__1, &c__[k1 + f2cmin(i__2,*n) * c_dim1], ldc,
  1638. &b[l2 + f2cmin(i__3,*n) * b_dim1], ldb);
  1639. vec[2] = c__[k1 + l2 * c_dim1] - (suml + sgn * sumr);
  1640. i__1 = *m - k2;
  1641. /* Computing MIN */
  1642. i__2 = k2 + 1;
  1643. /* Computing MIN */
  1644. i__3 = k2 + 1;
  1645. suml = ddot_(&i__1, &a[k2 + f2cmin(i__2,*m) * a_dim1], lda, &
  1646. c__[f2cmin(i__3,*m) + l1 * c_dim1], &c__1);
  1647. i__1 = *n - l2;
  1648. /* Computing MIN */
  1649. i__2 = l2 + 1;
  1650. /* Computing MIN */
  1651. i__3 = l2 + 1;
  1652. sumr = ddot_(&i__1, &c__[k2 + f2cmin(i__2,*n) * c_dim1], ldc,
  1653. &b[l1 + f2cmin(i__3,*n) * b_dim1], ldb);
  1654. vec[1] = c__[k2 + l1 * c_dim1] - (suml + sgn * sumr);
  1655. i__1 = *m - k2;
  1656. /* Computing MIN */
  1657. i__2 = k2 + 1;
  1658. /* Computing MIN */
  1659. i__3 = k2 + 1;
  1660. suml = ddot_(&i__1, &a[k2 + f2cmin(i__2,*m) * a_dim1], lda, &
  1661. c__[f2cmin(i__3,*m) + l2 * c_dim1], &c__1);
  1662. i__1 = *n - l2;
  1663. /* Computing MIN */
  1664. i__2 = l2 + 1;
  1665. /* Computing MIN */
  1666. i__3 = l2 + 1;
  1667. sumr = ddot_(&i__1, &c__[k2 + f2cmin(i__2,*n) * c_dim1], ldc,
  1668. &b[l2 + f2cmin(i__3,*n) * b_dim1], ldb);
  1669. vec[3] = c__[k2 + l2 * c_dim1] - (suml + sgn * sumr);
  1670. dlasy2_(&c_false, &c_true, isgn, &c__2, &c__2, &a[k1 + k1
  1671. * a_dim1], lda, &b[l1 + l1 * b_dim1], ldb, vec, &
  1672. c__2, &scaloc, x, &c__2, &xnorm, &ierr);
  1673. if (ierr != 0) {
  1674. *info = 1;
  1675. }
  1676. if (scaloc != 1.) {
  1677. i__1 = *n;
  1678. for (j = 1; j <= i__1; ++j) {
  1679. dscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  1680. /* L220: */
  1681. }
  1682. *scale *= scaloc;
  1683. }
  1684. c__[k1 + l1 * c_dim1] = x[0];
  1685. c__[k1 + l2 * c_dim1] = x[2];
  1686. c__[k2 + l1 * c_dim1] = x[1];
  1687. c__[k2 + l2 * c_dim1] = x[3];
  1688. }
  1689. L230:
  1690. ;
  1691. }
  1692. L240:
  1693. ;
  1694. }
  1695. }
  1696. return;
  1697. /* End of DTRSYL */
  1698. } /* dtrsyl_ */