You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

strsen.c 33 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c_n1 = -1;
  485. /* > \brief \b STRSEN */
  486. /* =========== DOCUMENTATION =========== */
  487. /* Online html documentation available at */
  488. /* http://www.netlib.org/lapack/explore-html/ */
  489. /* > \htmlonly */
  490. /* > Download STRSEN + dependencies */
  491. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/strsen.
  492. f"> */
  493. /* > [TGZ]</a> */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/strsen.
  495. f"> */
  496. /* > [ZIP]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/strsen.
  498. f"> */
  499. /* > [TXT]</a> */
  500. /* > \endhtmlonly */
  501. /* Definition: */
  502. /* =========== */
  503. /* SUBROUTINE STRSEN( JOB, COMPQ, SELECT, N, T, LDT, Q, LDQ, WR, WI, */
  504. /* M, S, SEP, WORK, LWORK, IWORK, LIWORK, INFO ) */
  505. /* CHARACTER COMPQ, JOB */
  506. /* INTEGER INFO, LDQ, LDT, LIWORK, LWORK, M, N */
  507. /* REAL S, SEP */
  508. /* LOGICAL SELECT( * ) */
  509. /* INTEGER IWORK( * ) */
  510. /* REAL Q( LDQ, * ), T( LDT, * ), WI( * ), WORK( * ), */
  511. /* $ WR( * ) */
  512. /* > \par Purpose: */
  513. /* ============= */
  514. /* > */
  515. /* > \verbatim */
  516. /* > */
  517. /* > STRSEN reorders the real Schur factorization of a real matrix */
  518. /* > A = Q*T*Q**T, so that a selected cluster of eigenvalues appears in */
  519. /* > the leading diagonal blocks of the upper quasi-triangular matrix T, */
  520. /* > and the leading columns of Q form an orthonormal basis of the */
  521. /* > corresponding right invariant subspace. */
  522. /* > */
  523. /* > Optionally the routine computes the reciprocal condition numbers of */
  524. /* > the cluster of eigenvalues and/or the invariant subspace. */
  525. /* > */
  526. /* > T must be in Schur canonical form (as returned by SHSEQR), that is, */
  527. /* > block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each */
  528. /* > 2-by-2 diagonal block has its diagonal elements equal and its */
  529. /* > off-diagonal elements of opposite sign. */
  530. /* > \endverbatim */
  531. /* Arguments: */
  532. /* ========== */
  533. /* > \param[in] JOB */
  534. /* > \verbatim */
  535. /* > JOB is CHARACTER*1 */
  536. /* > Specifies whether condition numbers are required for the */
  537. /* > cluster of eigenvalues (S) or the invariant subspace (SEP): */
  538. /* > = 'N': none; */
  539. /* > = 'E': for eigenvalues only (S); */
  540. /* > = 'V': for invariant subspace only (SEP); */
  541. /* > = 'B': for both eigenvalues and invariant subspace (S and */
  542. /* > SEP). */
  543. /* > \endverbatim */
  544. /* > */
  545. /* > \param[in] COMPQ */
  546. /* > \verbatim */
  547. /* > COMPQ is CHARACTER*1 */
  548. /* > = 'V': update the matrix Q of Schur vectors; */
  549. /* > = 'N': do not update Q. */
  550. /* > \endverbatim */
  551. /* > */
  552. /* > \param[in] SELECT */
  553. /* > \verbatim */
  554. /* > SELECT is LOGICAL array, dimension (N) */
  555. /* > SELECT specifies the eigenvalues in the selected cluster. To */
  556. /* > select a real eigenvalue w(j), SELECT(j) must be set to */
  557. /* > .TRUE.. To select a complex conjugate pair of eigenvalues */
  558. /* > w(j) and w(j+1), corresponding to a 2-by-2 diagonal block, */
  559. /* > either SELECT(j) or SELECT(j+1) or both must be set to */
  560. /* > .TRUE.; a complex conjugate pair of eigenvalues must be */
  561. /* > either both included in the cluster or both excluded. */
  562. /* > \endverbatim */
  563. /* > */
  564. /* > \param[in] N */
  565. /* > \verbatim */
  566. /* > N is INTEGER */
  567. /* > The order of the matrix T. N >= 0. */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[in,out] T */
  571. /* > \verbatim */
  572. /* > T is REAL array, dimension (LDT,N) */
  573. /* > On entry, the upper quasi-triangular matrix T, in Schur */
  574. /* > canonical form. */
  575. /* > On exit, T is overwritten by the reordered matrix T, again in */
  576. /* > Schur canonical form, with the selected eigenvalues in the */
  577. /* > leading diagonal blocks. */
  578. /* > \endverbatim */
  579. /* > */
  580. /* > \param[in] LDT */
  581. /* > \verbatim */
  582. /* > LDT is INTEGER */
  583. /* > The leading dimension of the array T. LDT >= f2cmax(1,N). */
  584. /* > \endverbatim */
  585. /* > */
  586. /* > \param[in,out] Q */
  587. /* > \verbatim */
  588. /* > Q is REAL array, dimension (LDQ,N) */
  589. /* > On entry, if COMPQ = 'V', the matrix Q of Schur vectors. */
  590. /* > On exit, if COMPQ = 'V', Q has been postmultiplied by the */
  591. /* > orthogonal transformation matrix which reorders T; the */
  592. /* > leading M columns of Q form an orthonormal basis for the */
  593. /* > specified invariant subspace. */
  594. /* > If COMPQ = 'N', Q is not referenced. */
  595. /* > \endverbatim */
  596. /* > */
  597. /* > \param[in] LDQ */
  598. /* > \verbatim */
  599. /* > LDQ is INTEGER */
  600. /* > The leading dimension of the array Q. */
  601. /* > LDQ >= 1; and if COMPQ = 'V', LDQ >= N. */
  602. /* > \endverbatim */
  603. /* > */
  604. /* > \param[out] WR */
  605. /* > \verbatim */
  606. /* > WR is REAL array, dimension (N) */
  607. /* > \endverbatim */
  608. /* > */
  609. /* > \param[out] WI */
  610. /* > \verbatim */
  611. /* > WI is REAL array, dimension (N) */
  612. /* > */
  613. /* > The real and imaginary parts, respectively, of the reordered */
  614. /* > eigenvalues of T. The eigenvalues are stored in the same */
  615. /* > order as on the diagonal of T, with WR(i) = T(i,i) and, if */
  616. /* > T(i:i+1,i:i+1) is a 2-by-2 diagonal block, WI(i) > 0 and */
  617. /* > WI(i+1) = -WI(i). Note that if a complex eigenvalue is */
  618. /* > sufficiently ill-conditioned, then its value may differ */
  619. /* > significantly from its value before reordering. */
  620. /* > \endverbatim */
  621. /* > */
  622. /* > \param[out] M */
  623. /* > \verbatim */
  624. /* > M is INTEGER */
  625. /* > The dimension of the specified invariant subspace. */
  626. /* > 0 < = M <= N. */
  627. /* > \endverbatim */
  628. /* > */
  629. /* > \param[out] S */
  630. /* > \verbatim */
  631. /* > S is REAL */
  632. /* > If JOB = 'E' or 'B', S is a lower bound on the reciprocal */
  633. /* > condition number for the selected cluster of eigenvalues. */
  634. /* > S cannot underestimate the true reciprocal condition number */
  635. /* > by more than a factor of sqrt(N). If M = 0 or N, S = 1. */
  636. /* > If JOB = 'N' or 'V', S is not referenced. */
  637. /* > \endverbatim */
  638. /* > */
  639. /* > \param[out] SEP */
  640. /* > \verbatim */
  641. /* > SEP is REAL */
  642. /* > If JOB = 'V' or 'B', SEP is the estimated reciprocal */
  643. /* > condition number of the specified invariant subspace. If */
  644. /* > M = 0 or N, SEP = norm(T). */
  645. /* > If JOB = 'N' or 'E', SEP is not referenced. */
  646. /* > \endverbatim */
  647. /* > */
  648. /* > \param[out] WORK */
  649. /* > \verbatim */
  650. /* > WORK is REAL array, dimension (MAX(1,LWORK)) */
  651. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  652. /* > \endverbatim */
  653. /* > */
  654. /* > \param[in] LWORK */
  655. /* > \verbatim */
  656. /* > LWORK is INTEGER */
  657. /* > The dimension of the array WORK. */
  658. /* > If JOB = 'N', LWORK >= f2cmax(1,N); */
  659. /* > if JOB = 'E', LWORK >= f2cmax(1,M*(N-M)); */
  660. /* > if JOB = 'V' or 'B', LWORK >= f2cmax(1,2*M*(N-M)). */
  661. /* > */
  662. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  663. /* > only calculates the optimal size of the WORK array, returns */
  664. /* > this value as the first entry of the WORK array, and no error */
  665. /* > message related to LWORK is issued by XERBLA. */
  666. /* > \endverbatim */
  667. /* > */
  668. /* > \param[out] IWORK */
  669. /* > \verbatim */
  670. /* > IWORK is INTEGER array, dimension (MAX(1,LIWORK)) */
  671. /* > On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */
  672. /* > \endverbatim */
  673. /* > */
  674. /* > \param[in] LIWORK */
  675. /* > \verbatim */
  676. /* > LIWORK is INTEGER */
  677. /* > The dimension of the array IWORK. */
  678. /* > If JOB = 'N' or 'E', LIWORK >= 1; */
  679. /* > if JOB = 'V' or 'B', LIWORK >= f2cmax(1,M*(N-M)). */
  680. /* > */
  681. /* > If LIWORK = -1, then a workspace query is assumed; the */
  682. /* > routine only calculates the optimal size of the IWORK array, */
  683. /* > returns this value as the first entry of the IWORK array, and */
  684. /* > no error message related to LIWORK is issued by XERBLA. */
  685. /* > \endverbatim */
  686. /* > */
  687. /* > \param[out] INFO */
  688. /* > \verbatim */
  689. /* > INFO is INTEGER */
  690. /* > = 0: successful exit */
  691. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  692. /* > = 1: reordering of T failed because some eigenvalues are too */
  693. /* > close to separate (the problem is very ill-conditioned); */
  694. /* > T may have been partially reordered, and WR and WI */
  695. /* > contain the eigenvalues in the same order as in T; S and */
  696. /* > SEP (if requested) are set to zero. */
  697. /* > \endverbatim */
  698. /* Authors: */
  699. /* ======== */
  700. /* > \author Univ. of Tennessee */
  701. /* > \author Univ. of California Berkeley */
  702. /* > \author Univ. of Colorado Denver */
  703. /* > \author NAG Ltd. */
  704. /* > \date April 2012 */
  705. /* > \ingroup realOTHERcomputational */
  706. /* > \par Further Details: */
  707. /* ===================== */
  708. /* > */
  709. /* > \verbatim */
  710. /* > */
  711. /* > STRSEN first collects the selected eigenvalues by computing an */
  712. /* > orthogonal transformation Z to move them to the top left corner of T. */
  713. /* > In other words, the selected eigenvalues are the eigenvalues of T11 */
  714. /* > in: */
  715. /* > */
  716. /* > Z**T * T * Z = ( T11 T12 ) n1 */
  717. /* > ( 0 T22 ) n2 */
  718. /* > n1 n2 */
  719. /* > */
  720. /* > where N = n1+n2 and Z**T means the transpose of Z. The first n1 columns */
  721. /* > of Z span the specified invariant subspace of T. */
  722. /* > */
  723. /* > If T has been obtained from the real Schur factorization of a matrix */
  724. /* > A = Q*T*Q**T, then the reordered real Schur factorization of A is given */
  725. /* > by A = (Q*Z)*(Z**T*T*Z)*(Q*Z)**T, and the first n1 columns of Q*Z span */
  726. /* > the corresponding invariant subspace of A. */
  727. /* > */
  728. /* > The reciprocal condition number of the average of the eigenvalues of */
  729. /* > T11 may be returned in S. S lies between 0 (very badly conditioned) */
  730. /* > and 1 (very well conditioned). It is computed as follows. First we */
  731. /* > compute R so that */
  732. /* > */
  733. /* > P = ( I R ) n1 */
  734. /* > ( 0 0 ) n2 */
  735. /* > n1 n2 */
  736. /* > */
  737. /* > is the projector on the invariant subspace associated with T11. */
  738. /* > R is the solution of the Sylvester equation: */
  739. /* > */
  740. /* > T11*R - R*T22 = T12. */
  741. /* > */
  742. /* > Let F-norm(M) denote the Frobenius-norm of M and 2-norm(M) denote */
  743. /* > the two-norm of M. Then S is computed as the lower bound */
  744. /* > */
  745. /* > (1 + F-norm(R)**2)**(-1/2) */
  746. /* > */
  747. /* > on the reciprocal of 2-norm(P), the true reciprocal condition number. */
  748. /* > S cannot underestimate 1 / 2-norm(P) by more than a factor of */
  749. /* > sqrt(N). */
  750. /* > */
  751. /* > An approximate error bound for the computed average of the */
  752. /* > eigenvalues of T11 is */
  753. /* > */
  754. /* > EPS * norm(T) / S */
  755. /* > */
  756. /* > where EPS is the machine precision. */
  757. /* > */
  758. /* > The reciprocal condition number of the right invariant subspace */
  759. /* > spanned by the first n1 columns of Z (or of Q*Z) is returned in SEP. */
  760. /* > SEP is defined as the separation of T11 and T22: */
  761. /* > */
  762. /* > sep( T11, T22 ) = sigma-f2cmin( C ) */
  763. /* > */
  764. /* > where sigma-f2cmin(C) is the smallest singular value of the */
  765. /* > n1*n2-by-n1*n2 matrix */
  766. /* > */
  767. /* > C = kprod( I(n2), T11 ) - kprod( transpose(T22), I(n1) ) */
  768. /* > */
  769. /* > I(m) is an m by m identity matrix, and kprod denotes the Kronecker */
  770. /* > product. We estimate sigma-f2cmin(C) by the reciprocal of an estimate of */
  771. /* > the 1-norm of inverse(C). The true reciprocal 1-norm of inverse(C) */
  772. /* > cannot differ from sigma-f2cmin(C) by more than a factor of sqrt(n1*n2). */
  773. /* > */
  774. /* > When SEP is small, small changes in T can cause large changes in */
  775. /* > the invariant subspace. An approximate bound on the maximum angular */
  776. /* > error in the computed right invariant subspace is */
  777. /* > */
  778. /* > EPS * norm(T) / SEP */
  779. /* > \endverbatim */
  780. /* > */
  781. /* ===================================================================== */
  782. /* Subroutine */ void strsen_(char *job, char *compq, logical *select, integer
  783. *n, real *t, integer *ldt, real *q, integer *ldq, real *wr, real *wi,
  784. integer *m, real *s, real *sep, real *work, integer *lwork, integer *
  785. iwork, integer *liwork, integer *info)
  786. {
  787. /* System generated locals */
  788. integer q_dim1, q_offset, t_dim1, t_offset, i__1, i__2;
  789. real r__1, r__2;
  790. /* Local variables */
  791. integer kase;
  792. logical pair;
  793. integer ierr;
  794. logical swap;
  795. integer k;
  796. real scale;
  797. extern logical lsame_(char *, char *);
  798. integer isave[3], lwmin;
  799. logical wantq, wants;
  800. real rnorm;
  801. integer n1, n2;
  802. extern /* Subroutine */ void slacn2_(integer *, real *, real *, integer *,
  803. real *, integer *, integer *);
  804. integer kk, nn, ks;
  805. extern real slange_(char *, integer *, integer *, real *, integer *, real
  806. *);
  807. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  808. logical wantbh;
  809. extern /* Subroutine */ void slacpy_(char *, integer *, integer *, real *,
  810. integer *, real *, integer *);
  811. integer liwmin;
  812. extern /* Subroutine */ void strexc_(char *, integer *, real *, integer *,
  813. real *, integer *, integer *, integer *, real *, integer *);
  814. logical wantsp, lquery;
  815. extern /* Subroutine */ void strsyl_(char *, char *, integer *, integer *,
  816. integer *, real *, integer *, real *, integer *, real *, integer *
  817. , real *, integer *);
  818. real est;
  819. /* -- LAPACK computational routine (version 3.7.0) -- */
  820. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  821. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  822. /* April 2012 */
  823. /* ===================================================================== */
  824. /* Decode and test the input parameters */
  825. /* Parameter adjustments */
  826. --select;
  827. t_dim1 = *ldt;
  828. t_offset = 1 + t_dim1 * 1;
  829. t -= t_offset;
  830. q_dim1 = *ldq;
  831. q_offset = 1 + q_dim1 * 1;
  832. q -= q_offset;
  833. --wr;
  834. --wi;
  835. --work;
  836. --iwork;
  837. /* Function Body */
  838. wantbh = lsame_(job, "B");
  839. wants = lsame_(job, "E") || wantbh;
  840. wantsp = lsame_(job, "V") || wantbh;
  841. wantq = lsame_(compq, "V");
  842. *info = 0;
  843. lquery = *lwork == -1;
  844. if (! lsame_(job, "N") && ! wants && ! wantsp) {
  845. *info = -1;
  846. } else if (! lsame_(compq, "N") && ! wantq) {
  847. *info = -2;
  848. } else if (*n < 0) {
  849. *info = -4;
  850. } else if (*ldt < f2cmax(1,*n)) {
  851. *info = -6;
  852. } else if (*ldq < 1 || wantq && *ldq < *n) {
  853. *info = -8;
  854. } else {
  855. /* Set M to the dimension of the specified invariant subspace, */
  856. /* and test LWORK and LIWORK. */
  857. *m = 0;
  858. pair = FALSE_;
  859. i__1 = *n;
  860. for (k = 1; k <= i__1; ++k) {
  861. if (pair) {
  862. pair = FALSE_;
  863. } else {
  864. if (k < *n) {
  865. if (t[k + 1 + k * t_dim1] == 0.f) {
  866. if (select[k]) {
  867. ++(*m);
  868. }
  869. } else {
  870. pair = TRUE_;
  871. if (select[k] || select[k + 1]) {
  872. *m += 2;
  873. }
  874. }
  875. } else {
  876. if (select[*n]) {
  877. ++(*m);
  878. }
  879. }
  880. }
  881. /* L10: */
  882. }
  883. n1 = *m;
  884. n2 = *n - *m;
  885. nn = n1 * n2;
  886. if (wantsp) {
  887. /* Computing MAX */
  888. i__1 = 1, i__2 = nn << 1;
  889. lwmin = f2cmax(i__1,i__2);
  890. liwmin = f2cmax(1,nn);
  891. } else if (lsame_(job, "N")) {
  892. lwmin = f2cmax(1,*n);
  893. liwmin = 1;
  894. } else if (lsame_(job, "E")) {
  895. lwmin = f2cmax(1,nn);
  896. liwmin = 1;
  897. }
  898. if (*lwork < lwmin && ! lquery) {
  899. *info = -15;
  900. } else if (*liwork < liwmin && ! lquery) {
  901. *info = -17;
  902. }
  903. }
  904. if (*info == 0) {
  905. work[1] = (real) lwmin;
  906. iwork[1] = liwmin;
  907. }
  908. if (*info != 0) {
  909. i__1 = -(*info);
  910. xerbla_("STRSEN", &i__1, (ftnlen)6);
  911. return;
  912. } else if (lquery) {
  913. return;
  914. }
  915. /* Quick return if possible. */
  916. if (*m == *n || *m == 0) {
  917. if (wants) {
  918. *s = 1.f;
  919. }
  920. if (wantsp) {
  921. *sep = slange_("1", n, n, &t[t_offset], ldt, &work[1]);
  922. }
  923. goto L40;
  924. }
  925. /* Collect the selected blocks at the top-left corner of T. */
  926. ks = 0;
  927. pair = FALSE_;
  928. i__1 = *n;
  929. for (k = 1; k <= i__1; ++k) {
  930. if (pair) {
  931. pair = FALSE_;
  932. } else {
  933. swap = select[k];
  934. if (k < *n) {
  935. if (t[k + 1 + k * t_dim1] != 0.f) {
  936. pair = TRUE_;
  937. swap = swap || select[k + 1];
  938. }
  939. }
  940. if (swap) {
  941. ++ks;
  942. /* Swap the K-th block to position KS. */
  943. ierr = 0;
  944. kk = k;
  945. if (k != ks) {
  946. strexc_(compq, n, &t[t_offset], ldt, &q[q_offset], ldq, &
  947. kk, &ks, &work[1], &ierr);
  948. }
  949. if (ierr == 1 || ierr == 2) {
  950. /* Blocks too close to swap: exit. */
  951. *info = 1;
  952. if (wants) {
  953. *s = 0.f;
  954. }
  955. if (wantsp) {
  956. *sep = 0.f;
  957. }
  958. goto L40;
  959. }
  960. if (pair) {
  961. ++ks;
  962. }
  963. }
  964. }
  965. /* L20: */
  966. }
  967. if (wants) {
  968. /* Solve Sylvester equation for R: */
  969. /* T11*R - R*T22 = scale*T12 */
  970. slacpy_("F", &n1, &n2, &t[(n1 + 1) * t_dim1 + 1], ldt, &work[1], &n1);
  971. strsyl_("N", "N", &c_n1, &n1, &n2, &t[t_offset], ldt, &t[n1 + 1 + (n1
  972. + 1) * t_dim1], ldt, &work[1], &n1, &scale, &ierr);
  973. /* Estimate the reciprocal of the condition number of the cluster */
  974. /* of eigenvalues. */
  975. rnorm = slange_("F", &n1, &n2, &work[1], &n1, &work[1]);
  976. if (rnorm == 0.f) {
  977. *s = 1.f;
  978. } else {
  979. *s = scale / (sqrt(scale * scale / rnorm + rnorm) * sqrt(rnorm));
  980. }
  981. }
  982. if (wantsp) {
  983. /* Estimate sep(T11,T22). */
  984. est = 0.f;
  985. kase = 0;
  986. L30:
  987. slacn2_(&nn, &work[nn + 1], &work[1], &iwork[1], &est, &kase, isave);
  988. if (kase != 0) {
  989. if (kase == 1) {
  990. /* Solve T11*R - R*T22 = scale*X. */
  991. strsyl_("N", "N", &c_n1, &n1, &n2, &t[t_offset], ldt, &t[n1 +
  992. 1 + (n1 + 1) * t_dim1], ldt, &work[1], &n1, &scale, &
  993. ierr);
  994. } else {
  995. /* Solve T11**T*R - R*T22**T = scale*X. */
  996. strsyl_("T", "T", &c_n1, &n1, &n2, &t[t_offset], ldt, &t[n1 +
  997. 1 + (n1 + 1) * t_dim1], ldt, &work[1], &n1, &scale, &
  998. ierr);
  999. }
  1000. goto L30;
  1001. }
  1002. *sep = scale / est;
  1003. }
  1004. L40:
  1005. /* Store the output eigenvalues in WR and WI. */
  1006. i__1 = *n;
  1007. for (k = 1; k <= i__1; ++k) {
  1008. wr[k] = t[k + k * t_dim1];
  1009. wi[k] = 0.f;
  1010. /* L50: */
  1011. }
  1012. i__1 = *n - 1;
  1013. for (k = 1; k <= i__1; ++k) {
  1014. if (t[k + 1 + k * t_dim1] != 0.f) {
  1015. wi[k] = sqrt((r__1 = t[k + (k + 1) * t_dim1], abs(r__1))) * sqrt((
  1016. r__2 = t[k + 1 + k * t_dim1], abs(r__2)));
  1017. wi[k + 1] = -wi[k];
  1018. }
  1019. /* L60: */
  1020. }
  1021. work[1] = (real) lwmin;
  1022. iwork[1] = liwmin;
  1023. return;
  1024. /* End of STRSEN */
  1025. } /* strsen_ */