You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cbbcsd.c 54 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* -- translated by f2c (version 20000121).
  484. You must link the resulting object file with the libraries:
  485. -lf2c -lm (in that order)
  486. */
  487. /* Table of constant values */
  488. static complex c_b1 = {-1.f,0.f};
  489. static doublereal c_b11 = -.125;
  490. static integer c__1 = 1;
  491. /* > \brief \b CBBCSD */
  492. /* =========== DOCUMENTATION =========== */
  493. /* Online html documentation available at */
  494. /* http://www.netlib.org/lapack/explore-html/ */
  495. /* > \htmlonly */
  496. /* > Download CBBCSD + dependencies */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cbbcsd.
  498. f"> */
  499. /* > [TGZ]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cbbcsd.
  501. f"> */
  502. /* > [ZIP]</a> */
  503. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cbbcsd.
  504. f"> */
  505. /* > [TXT]</a> */
  506. /* > \endhtmlonly */
  507. /* Definition: */
  508. /* =========== */
  509. /* SUBROUTINE CBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q, */
  510. /* THETA, PHI, U1, LDU1, U2, LDU2, V1T, LDV1T, */
  511. /* V2T, LDV2T, B11D, B11E, B12D, B12E, B21D, B21E, */
  512. /* B22D, B22E, RWORK, LRWORK, INFO ) */
  513. /* CHARACTER JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS */
  514. /* INTEGER INFO, LDU1, LDU2, LDV1T, LDV2T, LRWORK, M, P, Q */
  515. /* REAL B11D( * ), B11E( * ), B12D( * ), B12E( * ), */
  516. /* $ B21D( * ), B21E( * ), B22D( * ), B22E( * ), */
  517. /* $ PHI( * ), THETA( * ), RWORK( * ) */
  518. /* COMPLEX U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ), */
  519. /* $ V2T( LDV2T, * ) */
  520. /* > \par Purpose: */
  521. /* ============= */
  522. /* > */
  523. /* > \verbatim */
  524. /* > */
  525. /* > CBBCSD computes the CS decomposition of a unitary matrix in */
  526. /* > bidiagonal-block form, */
  527. /* > */
  528. /* > */
  529. /* > [ B11 | B12 0 0 ] */
  530. /* > [ 0 | 0 -I 0 ] */
  531. /* > X = [----------------] */
  532. /* > [ B21 | B22 0 0 ] */
  533. /* > [ 0 | 0 0 I ] */
  534. /* > */
  535. /* > [ C | -S 0 0 ] */
  536. /* > [ U1 | ] [ 0 | 0 -I 0 ] [ V1 | ]**H */
  537. /* > = [---------] [---------------] [---------] . */
  538. /* > [ | U2 ] [ S | C 0 0 ] [ | V2 ] */
  539. /* > [ 0 | 0 0 I ] */
  540. /* > */
  541. /* > X is M-by-M, its top-left block is P-by-Q, and Q must be no larger */
  542. /* > than P, M-P, or M-Q. (If Q is not the smallest index, then X must be */
  543. /* > transposed and/or permuted. This can be done in constant time using */
  544. /* > the TRANS and SIGNS options. See CUNCSD for details.) */
  545. /* > */
  546. /* > The bidiagonal matrices B11, B12, B21, and B22 are represented */
  547. /* > implicitly by angles THETA(1:Q) and PHI(1:Q-1). */
  548. /* > */
  549. /* > The unitary matrices U1, U2, V1T, and V2T are input/output. */
  550. /* > The input matrices are pre- or post-multiplied by the appropriate */
  551. /* > singular vector matrices. */
  552. /* > \endverbatim */
  553. /* Arguments: */
  554. /* ========== */
  555. /* > \param[in] JOBU1 */
  556. /* > \verbatim */
  557. /* > JOBU1 is CHARACTER */
  558. /* > = 'Y': U1 is updated; */
  559. /* > otherwise: U1 is not updated. */
  560. /* > \endverbatim */
  561. /* > */
  562. /* > \param[in] JOBU2 */
  563. /* > \verbatim */
  564. /* > JOBU2 is CHARACTER */
  565. /* > = 'Y': U2 is updated; */
  566. /* > otherwise: U2 is not updated. */
  567. /* > \endverbatim */
  568. /* > */
  569. /* > \param[in] JOBV1T */
  570. /* > \verbatim */
  571. /* > JOBV1T is CHARACTER */
  572. /* > = 'Y': V1T is updated; */
  573. /* > otherwise: V1T is not updated. */
  574. /* > \endverbatim */
  575. /* > */
  576. /* > \param[in] JOBV2T */
  577. /* > \verbatim */
  578. /* > JOBV2T is CHARACTER */
  579. /* > = 'Y': V2T is updated; */
  580. /* > otherwise: V2T is not updated. */
  581. /* > \endverbatim */
  582. /* > */
  583. /* > \param[in] TRANS */
  584. /* > \verbatim */
  585. /* > TRANS is CHARACTER */
  586. /* > = 'T': X, U1, U2, V1T, and V2T are stored in row-major */
  587. /* > order; */
  588. /* > otherwise: X, U1, U2, V1T, and V2T are stored in column- */
  589. /* > major order. */
  590. /* > \endverbatim */
  591. /* > */
  592. /* > \param[in] M */
  593. /* > \verbatim */
  594. /* > M is INTEGER */
  595. /* > The number of rows and columns in X, the unitary matrix in */
  596. /* > bidiagonal-block form. */
  597. /* > \endverbatim */
  598. /* > */
  599. /* > \param[in] P */
  600. /* > \verbatim */
  601. /* > P is INTEGER */
  602. /* > The number of rows in the top-left block of X. 0 <= P <= M. */
  603. /* > \endverbatim */
  604. /* > */
  605. /* > \param[in] Q */
  606. /* > \verbatim */
  607. /* > Q is INTEGER */
  608. /* > The number of columns in the top-left block of X. */
  609. /* > 0 <= Q <= MIN(P,M-P,M-Q). */
  610. /* > \endverbatim */
  611. /* > */
  612. /* > \param[in,out] THETA */
  613. /* > \verbatim */
  614. /* > THETA is REAL array, dimension (Q) */
  615. /* > On entry, the angles THETA(1),...,THETA(Q) that, along with */
  616. /* > PHI(1), ...,PHI(Q-1), define the matrix in bidiagonal-block */
  617. /* > form. On exit, the angles whose cosines and sines define the */
  618. /* > diagonal blocks in the CS decomposition. */
  619. /* > \endverbatim */
  620. /* > */
  621. /* > \param[in,out] PHI */
  622. /* > \verbatim */
  623. /* > PHI is REAL array, dimension (Q-1) */
  624. /* > The angles PHI(1),...,PHI(Q-1) that, along with THETA(1),..., */
  625. /* > THETA(Q), define the matrix in bidiagonal-block form. */
  626. /* > \endverbatim */
  627. /* > */
  628. /* > \param[in,out] U1 */
  629. /* > \verbatim */
  630. /* > U1 is COMPLEX array, dimension (LDU1,P) */
  631. /* > On entry, a P-by-P matrix. On exit, U1 is postmultiplied */
  632. /* > by the left singular vector matrix common to [ B11 ; 0 ] and */
  633. /* > [ B12 0 0 ; 0 -I 0 0 ]. */
  634. /* > \endverbatim */
  635. /* > */
  636. /* > \param[in] LDU1 */
  637. /* > \verbatim */
  638. /* > LDU1 is INTEGER */
  639. /* > The leading dimension of the array U1, LDU1 >= MAX(1,P). */
  640. /* > \endverbatim */
  641. /* > */
  642. /* > \param[in,out] U2 */
  643. /* > \verbatim */
  644. /* > U2 is COMPLEX array, dimension (LDU2,M-P) */
  645. /* > On entry, an (M-P)-by-(M-P) matrix. On exit, U2 is */
  646. /* > postmultiplied by the left singular vector matrix common to */
  647. /* > [ B21 ; 0 ] and [ B22 0 0 ; 0 0 I ]. */
  648. /* > \endverbatim */
  649. /* > */
  650. /* > \param[in] LDU2 */
  651. /* > \verbatim */
  652. /* > LDU2 is INTEGER */
  653. /* > The leading dimension of the array U2, LDU2 >= MAX(1,M-P). */
  654. /* > \endverbatim */
  655. /* > */
  656. /* > \param[in,out] V1T */
  657. /* > \verbatim */
  658. /* > V1T is COMPLEX array, dimension (LDV1T,Q) */
  659. /* > On entry, a Q-by-Q matrix. On exit, V1T is premultiplied */
  660. /* > by the conjugate transpose of the right singular vector */
  661. /* > matrix common to [ B11 ; 0 ] and [ B21 ; 0 ]. */
  662. /* > \endverbatim */
  663. /* > */
  664. /* > \param[in] LDV1T */
  665. /* > \verbatim */
  666. /* > LDV1T is INTEGER */
  667. /* > The leading dimension of the array V1T, LDV1T >= MAX(1,Q). */
  668. /* > \endverbatim */
  669. /* > */
  670. /* > \param[in,out] V2T */
  671. /* > \verbatim */
  672. /* > V2T is COMPLEX array, dimension (LDV2T,M-Q) */
  673. /* > On entry, an (M-Q)-by-(M-Q) matrix. On exit, V2T is */
  674. /* > premultiplied by the conjugate transpose of the right */
  675. /* > singular vector matrix common to [ B12 0 0 ; 0 -I 0 ] and */
  676. /* > [ B22 0 0 ; 0 0 I ]. */
  677. /* > \endverbatim */
  678. /* > */
  679. /* > \param[in] LDV2T */
  680. /* > \verbatim */
  681. /* > LDV2T is INTEGER */
  682. /* > The leading dimension of the array V2T, LDV2T >= MAX(1,M-Q). */
  683. /* > \endverbatim */
  684. /* > */
  685. /* > \param[out] B11D */
  686. /* > \verbatim */
  687. /* > B11D is REAL array, dimension (Q) */
  688. /* > When CBBCSD converges, B11D contains the cosines of THETA(1), */
  689. /* > ..., THETA(Q). If CBBCSD fails to converge, then B11D */
  690. /* > contains the diagonal of the partially reduced top-left */
  691. /* > block. */
  692. /* > \endverbatim */
  693. /* > */
  694. /* > \param[out] B11E */
  695. /* > \verbatim */
  696. /* > B11E is REAL array, dimension (Q-1) */
  697. /* > When CBBCSD converges, B11E contains zeros. If CBBCSD fails */
  698. /* > to converge, then B11E contains the superdiagonal of the */
  699. /* > partially reduced top-left block. */
  700. /* > \endverbatim */
  701. /* > */
  702. /* > \param[out] B12D */
  703. /* > \verbatim */
  704. /* > B12D is REAL array, dimension (Q) */
  705. /* > When CBBCSD converges, B12D contains the negative sines of */
  706. /* > THETA(1), ..., THETA(Q). If CBBCSD fails to converge, then */
  707. /* > B12D contains the diagonal of the partially reduced top-right */
  708. /* > block. */
  709. /* > \endverbatim */
  710. /* > */
  711. /* > \param[out] B12E */
  712. /* > \verbatim */
  713. /* > B12E is REAL array, dimension (Q-1) */
  714. /* > When CBBCSD converges, B12E contains zeros. If CBBCSD fails */
  715. /* > to converge, then B12E contains the subdiagonal of the */
  716. /* > partially reduced top-right block. */
  717. /* > \endverbatim */
  718. /* > */
  719. /* > \param[out] B21D */
  720. /* > \verbatim */
  721. /* > B21D is REAL array, dimension (Q) */
  722. /* > When CBBCSD converges, B21D contains the negative sines of */
  723. /* > THETA(1), ..., THETA(Q). If CBBCSD fails to converge, then */
  724. /* > B21D contains the diagonal of the partially reduced bottom-left */
  725. /* > block. */
  726. /* > \endverbatim */
  727. /* > */
  728. /* > \param[out] B21E */
  729. /* > \verbatim */
  730. /* > B21E is REAL array, dimension (Q-1) */
  731. /* > When CBBCSD converges, B21E contains zeros. If CBBCSD fails */
  732. /* > to converge, then B21E contains the subdiagonal of the */
  733. /* > partially reduced bottom-left block. */
  734. /* > \endverbatim */
  735. /* > */
  736. /* > \param[out] B22D */
  737. /* > \verbatim */
  738. /* > B22D is REAL array, dimension (Q) */
  739. /* > When CBBCSD converges, B22D contains the negative sines of */
  740. /* > THETA(1), ..., THETA(Q). If CBBCSD fails to converge, then */
  741. /* > B22D contains the diagonal of the partially reduced bottom-right */
  742. /* > block. */
  743. /* > \endverbatim */
  744. /* > */
  745. /* > \param[out] B22E */
  746. /* > \verbatim */
  747. /* > B22E is REAL array, dimension (Q-1) */
  748. /* > When CBBCSD converges, B22E contains zeros. If CBBCSD fails */
  749. /* > to converge, then B22E contains the subdiagonal of the */
  750. /* > partially reduced bottom-right block. */
  751. /* > \endverbatim */
  752. /* > */
  753. /* > \param[out] RWORK */
  754. /* > \verbatim */
  755. /* > RWORK is REAL array, dimension (MAX(1,LRWORK)) */
  756. /* > On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK. */
  757. /* > \endverbatim */
  758. /* > */
  759. /* > \param[in] LRWORK */
  760. /* > \verbatim */
  761. /* > LRWORK is INTEGER */
  762. /* > The dimension of the array RWORK. LRWORK >= MAX(1,8*Q). */
  763. /* > */
  764. /* > If LRWORK = -1, then a workspace query is assumed; the */
  765. /* > routine only calculates the optimal size of the RWORK array, */
  766. /* > returns this value as the first entry of the work array, and */
  767. /* > no error message related to LRWORK is issued by XERBLA. */
  768. /* > \endverbatim */
  769. /* > */
  770. /* > \param[out] INFO */
  771. /* > \verbatim */
  772. /* > INFO is INTEGER */
  773. /* > = 0: successful exit. */
  774. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  775. /* > > 0: if CBBCSD did not converge, INFO specifies the number */
  776. /* > of nonzero entries in PHI, and B11D, B11E, etc., */
  777. /* > contain the partially reduced matrix. */
  778. /* > \endverbatim */
  779. /* > \par Internal Parameters: */
  780. /* ========================= */
  781. /* > */
  782. /* > \verbatim */
  783. /* > TOLMUL REAL, default = MAX(10,MIN(100,EPS**(-1/8))) */
  784. /* > TOLMUL controls the convergence criterion of the QR loop. */
  785. /* > Angles THETA(i), PHI(i) are rounded to 0 or PI/2 when they */
  786. /* > are within TOLMUL*EPS of either bound. */
  787. /* > \endverbatim */
  788. /* > \par References: */
  789. /* ================ */
  790. /* > */
  791. /* > [1] Brian D. Sutton. Computing the complete CS decomposition. Numer. */
  792. /* > Algorithms, 50(1):33-65, 2009. */
  793. /* Authors: */
  794. /* ======== */
  795. /* > \author Univ. of Tennessee */
  796. /* > \author Univ. of California Berkeley */
  797. /* > \author Univ. of Colorado Denver */
  798. /* > \author NAG Ltd. */
  799. /* > \date June 2016 */
  800. /* > \ingroup complexOTHERcomputational */
  801. /* ===================================================================== */
  802. /* Subroutine */ void cbbcsd_(char *jobu1, char *jobu2, char *jobv1t, char *
  803. jobv2t, char *trans, integer *m, integer *p, integer *q, real *theta,
  804. real *phi, complex *u1, integer *ldu1, complex *u2, integer *ldu2,
  805. complex *v1t, integer *ldv1t, complex *v2t, integer *ldv2t, real *
  806. b11d, real *b11e, real *b12d, real *b12e, real *b21d, real *b21e,
  807. real *b22d, real *b22e, real *rwork, integer *lrwork, integer *info)
  808. {
  809. /* System generated locals */
  810. integer u1_dim1, u1_offset, u2_dim1, u2_offset, v1t_dim1, v1t_offset,
  811. v2t_dim1, v2t_offset, i__1, i__2;
  812. real r__1, r__2, r__3, r__4;
  813. doublereal d__1;
  814. /* Local variables */
  815. integer imin, mini, imax, iter;
  816. real unfl, temp;
  817. logical colmajor;
  818. real thetamin, thetamax;
  819. logical restart11, restart12, restart21, restart22;
  820. integer iu1cs, iu2cs;
  821. extern /* Subroutine */ void slas2_(real *, real *, real *, real *, real *)
  822. ;
  823. integer iu1sn, iu2sn, i__, j;
  824. real r__;
  825. extern /* Subroutine */ void cscal_(integer *, complex *, complex *,
  826. integer *);
  827. extern logical lsame_(char *, char *);
  828. extern /* Subroutine */ void clasr_(char *, char *, char *, integer *,
  829. integer *, real *, real *, complex *, integer *), cswap_(integer *, complex *, integer *, complex *,
  830. integer *);
  831. integer maxit;
  832. real dummy, x1, x2, y1, y2;
  833. integer lrworkmin, iv1tcs, iv2tcs;
  834. logical wantu1, wantu2;
  835. integer lrworkopt, iv1tsn, iv2tsn;
  836. real mu, nu, sigma11, sigma21;
  837. extern real slamch_(char *);
  838. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  839. real thresh, tolmul;
  840. extern /* Subroutine */ void mecago_();
  841. logical lquery;
  842. real b11bulge;
  843. logical wantv1t, wantv2t;
  844. real b12bulge, b21bulge, b22bulge, eps, tol;
  845. extern /* Subroutine */ void slartgp_(real *, real *, real *, real *, real
  846. *), slartgs_(real *, real *, real *, real *, real *);
  847. /* -- LAPACK computational routine (version 3.7.1) -- */
  848. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  849. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  850. /* June 2016 */
  851. /* =================================================================== */
  852. /* Test input arguments */
  853. /* Parameter adjustments */
  854. --theta;
  855. --phi;
  856. u1_dim1 = *ldu1;
  857. u1_offset = 1 + u1_dim1 * 1;
  858. u1 -= u1_offset;
  859. u2_dim1 = *ldu2;
  860. u2_offset = 1 + u2_dim1 * 1;
  861. u2 -= u2_offset;
  862. v1t_dim1 = *ldv1t;
  863. v1t_offset = 1 + v1t_dim1 * 1;
  864. v1t -= v1t_offset;
  865. v2t_dim1 = *ldv2t;
  866. v2t_offset = 1 + v2t_dim1 * 1;
  867. v2t -= v2t_offset;
  868. --b11d;
  869. --b11e;
  870. --b12d;
  871. --b12e;
  872. --b21d;
  873. --b21e;
  874. --b22d;
  875. --b22e;
  876. --rwork;
  877. /* Function Body */
  878. *info = 0;
  879. lquery = *lrwork == -1;
  880. wantu1 = lsame_(jobu1, "Y");
  881. wantu2 = lsame_(jobu2, "Y");
  882. wantv1t = lsame_(jobv1t, "Y");
  883. wantv2t = lsame_(jobv2t, "Y");
  884. colmajor = ! lsame_(trans, "T");
  885. if (*m < 0) {
  886. *info = -6;
  887. } else if (*p < 0 || *p > *m) {
  888. *info = -7;
  889. } else if (*q < 0 || *q > *m) {
  890. *info = -8;
  891. } else if (*q > *p || *q > *m - *p || *q > *m - *q) {
  892. *info = -8;
  893. } else if (wantu1 && *ldu1 < *p) {
  894. *info = -12;
  895. } else if (wantu2 && *ldu2 < *m - *p) {
  896. *info = -14;
  897. } else if (wantv1t && *ldv1t < *q) {
  898. *info = -16;
  899. } else if (wantv2t && *ldv2t < *m - *q) {
  900. *info = -18;
  901. }
  902. /* Quick return if Q = 0 */
  903. if (*info == 0 && *q == 0) {
  904. lrworkmin = 1;
  905. rwork[1] = (real) lrworkmin;
  906. return;
  907. }
  908. /* Compute workspace */
  909. if (*info == 0) {
  910. iu1cs = 1;
  911. iu1sn = iu1cs + *q;
  912. iu2cs = iu1sn + *q;
  913. iu2sn = iu2cs + *q;
  914. iv1tcs = iu2sn + *q;
  915. iv1tsn = iv1tcs + *q;
  916. iv2tcs = iv1tsn + *q;
  917. iv2tsn = iv2tcs + *q;
  918. lrworkopt = iv2tsn + *q - 1;
  919. lrworkmin = lrworkopt;
  920. rwork[1] = (real) lrworkopt;
  921. if (*lrwork < lrworkmin && ! lquery) {
  922. *info = -28;
  923. }
  924. }
  925. if (*info != 0) {
  926. i__1 = -(*info);
  927. xerbla_("CBBCSD", &i__1, (ftnlen)6);
  928. return;
  929. } else if (lquery) {
  930. return;
  931. }
  932. /* Get machine constants */
  933. eps = slamch_("Epsilon");
  934. unfl = slamch_("Safe minimum");
  935. /* Computing MAX */
  936. /* Computing MIN */
  937. d__1 = (doublereal) eps;
  938. r__3 = 100.f, r__4 = pow_dd(&d__1, &c_b11);
  939. r__1 = 10.f, r__2 = f2cmin(r__3,r__4);
  940. tolmul = f2cmax(r__1,r__2);
  941. tol = tolmul * eps;
  942. /* Computing MAX */
  943. r__1 = tol, r__2 = *q * 6 * *q * unfl;
  944. thresh = f2cmax(r__1,r__2);
  945. /* Test for negligible sines or cosines */
  946. i__1 = *q;
  947. for (i__ = 1; i__ <= i__1; ++i__) {
  948. if (theta[i__] < thresh) {
  949. theta[i__] = 0.f;
  950. } else if (theta[i__] > 1.57079632679489662f - thresh) {
  951. theta[i__] = 1.57079632679489662f;
  952. }
  953. }
  954. i__1 = *q - 1;
  955. for (i__ = 1; i__ <= i__1; ++i__) {
  956. if (phi[i__] < thresh) {
  957. phi[i__] = 0.f;
  958. } else if (phi[i__] > 1.57079632679489662f - thresh) {
  959. phi[i__] = 1.57079632679489662f;
  960. }
  961. }
  962. /* Initial deflation */
  963. imax = *q;
  964. while(imax > 1) {
  965. if (phi[imax - 1] != 0.f) {
  966. myexit_();
  967. }
  968. --imax;
  969. }
  970. imin = imax - 1;
  971. if (imin > 1) {
  972. while(phi[imin - 1] != 0.f) {
  973. --imin;
  974. if (imin <= 1) {
  975. myexit_();
  976. }
  977. }
  978. }
  979. /* Initialize iteration counter */
  980. maxit = *q * 6 * *q;
  981. iter = 0;
  982. /* Begin main iteration loop */
  983. while(imax > 1) {
  984. /* Compute the matrix entries */
  985. b11d[imin] = cos(theta[imin]);
  986. b21d[imin] = -sin(theta[imin]);
  987. i__1 = imax - 1;
  988. for (i__ = imin; i__ <= i__1; ++i__) {
  989. b11e[i__] = -sin(theta[i__]) * sin(phi[i__]);
  990. b11d[i__ + 1] = cos(theta[i__ + 1]) * cos(phi[i__]);
  991. b12d[i__] = sin(theta[i__]) * cos(phi[i__]);
  992. b12e[i__] = cos(theta[i__ + 1]) * sin(phi[i__]);
  993. b21e[i__] = -cos(theta[i__]) * sin(phi[i__]);
  994. b21d[i__ + 1] = -sin(theta[i__ + 1]) * cos(phi[i__]);
  995. b22d[i__] = cos(theta[i__]) * cos(phi[i__]);
  996. b22e[i__] = -sin(theta[i__ + 1]) * sin(phi[i__]);
  997. }
  998. b12d[imax] = sin(theta[imax]);
  999. b22d[imax] = cos(theta[imax]);
  1000. /* Abort if not converging; otherwise, increment ITER */
  1001. if (iter > maxit) {
  1002. *info = 0;
  1003. i__1 = *q;
  1004. for (i__ = 1; i__ <= i__1; ++i__) {
  1005. if (phi[i__] != 0.f) {
  1006. ++(*info);
  1007. }
  1008. }
  1009. return;
  1010. }
  1011. iter = iter + imax - imin;
  1012. /* Compute shifts */
  1013. thetamax = theta[imin];
  1014. thetamin = theta[imin];
  1015. i__1 = imax;
  1016. for (i__ = imin + 1; i__ <= i__1; ++i__) {
  1017. if (theta[i__] > thetamax) {
  1018. thetamax = theta[i__];
  1019. }
  1020. if (theta[i__] < thetamin) {
  1021. thetamin = theta[i__];
  1022. }
  1023. }
  1024. if (thetamax > 1.57079632679489662f - thresh) {
  1025. /* Zero on diagonals of B11 and B22; induce deflation with a */
  1026. /* zero shift */
  1027. mu = 0.f;
  1028. nu = 1.f;
  1029. } else if (thetamin < thresh) {
  1030. /* Zero on diagonals of B12 and B22; induce deflation with a */
  1031. /* zero shift */
  1032. mu = 1.f;
  1033. nu = 0.f;
  1034. } else {
  1035. /* Compute shifts for B11 and B21 and use the lesser */
  1036. slas2_(&b11d[imax - 1], &b11e[imax - 1], &b11d[imax], &sigma11, &
  1037. dummy);
  1038. slas2_(&b21d[imax - 1], &b21e[imax - 1], &b21d[imax], &sigma21, &
  1039. dummy);
  1040. if (sigma11 <= sigma21) {
  1041. mu = sigma11;
  1042. /* Computing 2nd power */
  1043. r__1 = mu;
  1044. nu = sqrt(1.f - r__1 * r__1);
  1045. if (mu < thresh) {
  1046. mu = 0.f;
  1047. nu = 1.f;
  1048. }
  1049. } else {
  1050. nu = sigma21;
  1051. /* Computing 2nd power */
  1052. r__1 = nu;
  1053. mu = sqrt(1.f - r__1 * r__1);
  1054. if (nu < thresh) {
  1055. mu = 1.f;
  1056. nu = 0.f;
  1057. }
  1058. }
  1059. }
  1060. /* Rotate to produce bulges in B11 and B21 */
  1061. if (mu <= nu) {
  1062. slartgs_(&b11d[imin], &b11e[imin], &mu, &rwork[iv1tcs + imin - 1],
  1063. &rwork[iv1tsn + imin - 1]);
  1064. } else {
  1065. slartgs_(&b21d[imin], &b21e[imin], &nu, &rwork[iv1tcs + imin - 1],
  1066. &rwork[iv1tsn + imin - 1]);
  1067. }
  1068. temp = rwork[iv1tcs + imin - 1] * b11d[imin] + rwork[iv1tsn + imin -
  1069. 1] * b11e[imin];
  1070. b11e[imin] = rwork[iv1tcs + imin - 1] * b11e[imin] - rwork[iv1tsn +
  1071. imin - 1] * b11d[imin];
  1072. b11d[imin] = temp;
  1073. b11bulge = rwork[iv1tsn + imin - 1] * b11d[imin + 1];
  1074. b11d[imin + 1] = rwork[iv1tcs + imin - 1] * b11d[imin + 1];
  1075. temp = rwork[iv1tcs + imin - 1] * b21d[imin] + rwork[iv1tsn + imin -
  1076. 1] * b21e[imin];
  1077. b21e[imin] = rwork[iv1tcs + imin - 1] * b21e[imin] - rwork[iv1tsn +
  1078. imin - 1] * b21d[imin];
  1079. b21d[imin] = temp;
  1080. b21bulge = rwork[iv1tsn + imin - 1] * b21d[imin + 1];
  1081. b21d[imin + 1] = rwork[iv1tcs + imin - 1] * b21d[imin + 1];
  1082. /* Compute THETA(IMIN) */
  1083. /* Computing 2nd power */
  1084. r__1 = b21d[imin];
  1085. /* Computing 2nd power */
  1086. r__2 = b21bulge;
  1087. /* Computing 2nd power */
  1088. r__3 = b11d[imin];
  1089. /* Computing 2nd power */
  1090. r__4 = b11bulge;
  1091. theta[imin] = atan2(sqrt(r__1 * r__1 + r__2 * r__2), sqrt(r__3 * r__3
  1092. + r__4 * r__4));
  1093. /* Chase the bulges in B11(IMIN+1,IMIN) and B21(IMIN+1,IMIN) */
  1094. /* Computing 2nd power */
  1095. r__1 = b11d[imin];
  1096. /* Computing 2nd power */
  1097. r__2 = b11bulge;
  1098. /* Computing 2nd power */
  1099. r__3 = thresh;
  1100. if (r__1 * r__1 + r__2 * r__2 > r__3 * r__3) {
  1101. slartgp_(&b11bulge, &b11d[imin], &rwork[iu1sn + imin - 1], &rwork[
  1102. iu1cs + imin - 1], &r__);
  1103. } else if (mu <= nu) {
  1104. slartgs_(&b11e[imin], &b11d[imin + 1], &mu, &rwork[iu1cs + imin -
  1105. 1], &rwork[iu1sn + imin - 1]);
  1106. } else {
  1107. slartgs_(&b12d[imin], &b12e[imin], &nu, &rwork[iu1cs + imin - 1],
  1108. &rwork[iu1sn + imin - 1]);
  1109. }
  1110. /* Computing 2nd power */
  1111. r__1 = b21d[imin];
  1112. /* Computing 2nd power */
  1113. r__2 = b21bulge;
  1114. /* Computing 2nd power */
  1115. r__3 = thresh;
  1116. if (r__1 * r__1 + r__2 * r__2 > r__3 * r__3) {
  1117. slartgp_(&b21bulge, &b21d[imin], &rwork[iu2sn + imin - 1], &rwork[
  1118. iu2cs + imin - 1], &r__);
  1119. } else if (nu < mu) {
  1120. slartgs_(&b21e[imin], &b21d[imin + 1], &nu, &rwork[iu2cs + imin -
  1121. 1], &rwork[iu2sn + imin - 1]);
  1122. } else {
  1123. slartgs_(&b22d[imin], &b22e[imin], &mu, &rwork[iu2cs + imin - 1],
  1124. &rwork[iu2sn + imin - 1]);
  1125. }
  1126. rwork[iu2cs + imin - 1] = -rwork[iu2cs + imin - 1];
  1127. rwork[iu2sn + imin - 1] = -rwork[iu2sn + imin - 1];
  1128. temp = rwork[iu1cs + imin - 1] * b11e[imin] + rwork[iu1sn + imin - 1]
  1129. * b11d[imin + 1];
  1130. b11d[imin + 1] = rwork[iu1cs + imin - 1] * b11d[imin + 1] - rwork[
  1131. iu1sn + imin - 1] * b11e[imin];
  1132. b11e[imin] = temp;
  1133. if (imax > imin + 1) {
  1134. b11bulge = rwork[iu1sn + imin - 1] * b11e[imin + 1];
  1135. b11e[imin + 1] = rwork[iu1cs + imin - 1] * b11e[imin + 1];
  1136. }
  1137. temp = rwork[iu1cs + imin - 1] * b12d[imin] + rwork[iu1sn + imin - 1]
  1138. * b12e[imin];
  1139. b12e[imin] = rwork[iu1cs + imin - 1] * b12e[imin] - rwork[iu1sn +
  1140. imin - 1] * b12d[imin];
  1141. b12d[imin] = temp;
  1142. b12bulge = rwork[iu1sn + imin - 1] * b12d[imin + 1];
  1143. b12d[imin + 1] = rwork[iu1cs + imin - 1] * b12d[imin + 1];
  1144. temp = rwork[iu2cs + imin - 1] * b21e[imin] + rwork[iu2sn + imin - 1]
  1145. * b21d[imin + 1];
  1146. b21d[imin + 1] = rwork[iu2cs + imin - 1] * b21d[imin + 1] - rwork[
  1147. iu2sn + imin - 1] * b21e[imin];
  1148. b21e[imin] = temp;
  1149. if (imax > imin + 1) {
  1150. b21bulge = rwork[iu2sn + imin - 1] * b21e[imin + 1];
  1151. b21e[imin + 1] = rwork[iu2cs + imin - 1] * b21e[imin + 1];
  1152. }
  1153. temp = rwork[iu2cs + imin - 1] * b22d[imin] + rwork[iu2sn + imin - 1]
  1154. * b22e[imin];
  1155. b22e[imin] = rwork[iu2cs + imin - 1] * b22e[imin] - rwork[iu2sn +
  1156. imin - 1] * b22d[imin];
  1157. b22d[imin] = temp;
  1158. b22bulge = rwork[iu2sn + imin - 1] * b22d[imin + 1];
  1159. b22d[imin + 1] = rwork[iu2cs + imin - 1] * b22d[imin + 1];
  1160. /* Inner loop: chase bulges from B11(IMIN,IMIN+2), */
  1161. /* B12(IMIN,IMIN+1), B21(IMIN,IMIN+2), and B22(IMIN,IMIN+1) to */
  1162. /* bottom-right */
  1163. i__1 = imax - 1;
  1164. for (i__ = imin + 1; i__ <= i__1; ++i__) {
  1165. /* Compute PHI(I-1) */
  1166. x1 = sin(theta[i__ - 1]) * b11e[i__ - 1] + cos(theta[i__ - 1]) *
  1167. b21e[i__ - 1];
  1168. x2 = sin(theta[i__ - 1]) * b11bulge + cos(theta[i__ - 1]) *
  1169. b21bulge;
  1170. y1 = sin(theta[i__ - 1]) * b12d[i__ - 1] + cos(theta[i__ - 1]) *
  1171. b22d[i__ - 1];
  1172. y2 = sin(theta[i__ - 1]) * b12bulge + cos(theta[i__ - 1]) *
  1173. b22bulge;
  1174. /* Computing 2nd power */
  1175. r__1 = x1;
  1176. /* Computing 2nd power */
  1177. r__2 = x2;
  1178. /* Computing 2nd power */
  1179. r__3 = y1;
  1180. /* Computing 2nd power */
  1181. r__4 = y2;
  1182. phi[i__ - 1] = atan2(sqrt(r__1 * r__1 + r__2 * r__2), sqrt(r__3 *
  1183. r__3 + r__4 * r__4));
  1184. /* Determine if there are bulges to chase or if a new direct */
  1185. /* summand has been reached */
  1186. /* Computing 2nd power */
  1187. r__1 = b11e[i__ - 1];
  1188. /* Computing 2nd power */
  1189. r__2 = b11bulge;
  1190. /* Computing 2nd power */
  1191. r__3 = thresh;
  1192. restart11 = r__1 * r__1 + r__2 * r__2 <= r__3 * r__3;
  1193. /* Computing 2nd power */
  1194. r__1 = b21e[i__ - 1];
  1195. /* Computing 2nd power */
  1196. r__2 = b21bulge;
  1197. /* Computing 2nd power */
  1198. r__3 = thresh;
  1199. restart21 = r__1 * r__1 + r__2 * r__2 <= r__3 * r__3;
  1200. /* Computing 2nd power */
  1201. r__1 = b12d[i__ - 1];
  1202. /* Computing 2nd power */
  1203. r__2 = b12bulge;
  1204. /* Computing 2nd power */
  1205. r__3 = thresh;
  1206. restart12 = r__1 * r__1 + r__2 * r__2 <= r__3 * r__3;
  1207. /* Computing 2nd power */
  1208. r__1 = b22d[i__ - 1];
  1209. /* Computing 2nd power */
  1210. r__2 = b22bulge;
  1211. /* Computing 2nd power */
  1212. r__3 = thresh;
  1213. restart22 = r__1 * r__1 + r__2 * r__2 <= r__3 * r__3;
  1214. /* If possible, chase bulges from B11(I-1,I+1), B12(I-1,I), */
  1215. /* B21(I-1,I+1), and B22(I-1,I). If necessary, restart bulge- */
  1216. /* chasing by applying the original shift again. */
  1217. if (! restart11 && ! restart21) {
  1218. slartgp_(&x2, &x1, &rwork[iv1tsn + i__ - 1], &rwork[iv1tcs +
  1219. i__ - 1], &r__);
  1220. } else if (! restart11 && restart21) {
  1221. slartgp_(&b11bulge, &b11e[i__ - 1], &rwork[iv1tsn + i__ - 1],
  1222. &rwork[iv1tcs + i__ - 1], &r__);
  1223. } else if (restart11 && ! restart21) {
  1224. slartgp_(&b21bulge, &b21e[i__ - 1], &rwork[iv1tsn + i__ - 1],
  1225. &rwork[iv1tcs + i__ - 1], &r__);
  1226. } else if (mu <= nu) {
  1227. slartgs_(&b11d[i__], &b11e[i__], &mu, &rwork[iv1tcs + i__ - 1]
  1228. , &rwork[iv1tsn + i__ - 1]);
  1229. } else {
  1230. slartgs_(&b21d[i__], &b21e[i__], &nu, &rwork[iv1tcs + i__ - 1]
  1231. , &rwork[iv1tsn + i__ - 1]);
  1232. }
  1233. rwork[iv1tcs + i__ - 1] = -rwork[iv1tcs + i__ - 1];
  1234. rwork[iv1tsn + i__ - 1] = -rwork[iv1tsn + i__ - 1];
  1235. if (! restart12 && ! restart22) {
  1236. slartgp_(&y2, &y1, &rwork[iv2tsn + i__ - 2], &rwork[iv2tcs +
  1237. i__ - 2], &r__);
  1238. } else if (! restart12 && restart22) {
  1239. slartgp_(&b12bulge, &b12d[i__ - 1], &rwork[iv2tsn + i__ - 2],
  1240. &rwork[iv2tcs + i__ - 2], &r__);
  1241. } else if (restart12 && ! restart22) {
  1242. slartgp_(&b22bulge, &b22d[i__ - 1], &rwork[iv2tsn + i__ - 2],
  1243. &rwork[iv2tcs + i__ - 2], &r__);
  1244. } else if (nu < mu) {
  1245. slartgs_(&b12e[i__ - 1], &b12d[i__], &nu, &rwork[iv2tcs + i__
  1246. - 2], &rwork[iv2tsn + i__ - 2]);
  1247. } else {
  1248. slartgs_(&b22e[i__ - 1], &b22d[i__], &mu, &rwork[iv2tcs + i__
  1249. - 2], &rwork[iv2tsn + i__ - 2]);
  1250. }
  1251. temp = rwork[iv1tcs + i__ - 1] * b11d[i__] + rwork[iv1tsn + i__ -
  1252. 1] * b11e[i__];
  1253. b11e[i__] = rwork[iv1tcs + i__ - 1] * b11e[i__] - rwork[iv1tsn +
  1254. i__ - 1] * b11d[i__];
  1255. b11d[i__] = temp;
  1256. b11bulge = rwork[iv1tsn + i__ - 1] * b11d[i__ + 1];
  1257. b11d[i__ + 1] = rwork[iv1tcs + i__ - 1] * b11d[i__ + 1];
  1258. temp = rwork[iv1tcs + i__ - 1] * b21d[i__] + rwork[iv1tsn + i__ -
  1259. 1] * b21e[i__];
  1260. b21e[i__] = rwork[iv1tcs + i__ - 1] * b21e[i__] - rwork[iv1tsn +
  1261. i__ - 1] * b21d[i__];
  1262. b21d[i__] = temp;
  1263. b21bulge = rwork[iv1tsn + i__ - 1] * b21d[i__ + 1];
  1264. b21d[i__ + 1] = rwork[iv1tcs + i__ - 1] * b21d[i__ + 1];
  1265. temp = rwork[iv2tcs + i__ - 2] * b12e[i__ - 1] + rwork[iv2tsn +
  1266. i__ - 2] * b12d[i__];
  1267. b12d[i__] = rwork[iv2tcs + i__ - 2] * b12d[i__] - rwork[iv2tsn +
  1268. i__ - 2] * b12e[i__ - 1];
  1269. b12e[i__ - 1] = temp;
  1270. b12bulge = rwork[iv2tsn + i__ - 2] * b12e[i__];
  1271. b12e[i__] = rwork[iv2tcs + i__ - 2] * b12e[i__];
  1272. temp = rwork[iv2tcs + i__ - 2] * b22e[i__ - 1] + rwork[iv2tsn +
  1273. i__ - 2] * b22d[i__];
  1274. b22d[i__] = rwork[iv2tcs + i__ - 2] * b22d[i__] - rwork[iv2tsn +
  1275. i__ - 2] * b22e[i__ - 1];
  1276. b22e[i__ - 1] = temp;
  1277. b22bulge = rwork[iv2tsn + i__ - 2] * b22e[i__];
  1278. b22e[i__] = rwork[iv2tcs + i__ - 2] * b22e[i__];
  1279. /* Compute THETA(I) */
  1280. x1 = cos(phi[i__ - 1]) * b11d[i__] + sin(phi[i__ - 1]) * b12e[i__
  1281. - 1];
  1282. x2 = cos(phi[i__ - 1]) * b11bulge + sin(phi[i__ - 1]) * b12bulge;
  1283. y1 = cos(phi[i__ - 1]) * b21d[i__] + sin(phi[i__ - 1]) * b22e[i__
  1284. - 1];
  1285. y2 = cos(phi[i__ - 1]) * b21bulge + sin(phi[i__ - 1]) * b22bulge;
  1286. /* Computing 2nd power */
  1287. r__1 = y1;
  1288. /* Computing 2nd power */
  1289. r__2 = y2;
  1290. /* Computing 2nd power */
  1291. r__3 = x1;
  1292. /* Computing 2nd power */
  1293. r__4 = x2;
  1294. theta[i__] = atan2(sqrt(r__1 * r__1 + r__2 * r__2), sqrt(r__3 *
  1295. r__3 + r__4 * r__4));
  1296. /* Determine if there are bulges to chase or if a new direct */
  1297. /* summand has been reached */
  1298. /* Computing 2nd power */
  1299. r__1 = b11d[i__];
  1300. /* Computing 2nd power */
  1301. r__2 = b11bulge;
  1302. /* Computing 2nd power */
  1303. r__3 = thresh;
  1304. restart11 = r__1 * r__1 + r__2 * r__2 <= r__3 * r__3;
  1305. /* Computing 2nd power */
  1306. r__1 = b12e[i__ - 1];
  1307. /* Computing 2nd power */
  1308. r__2 = b12bulge;
  1309. /* Computing 2nd power */
  1310. r__3 = thresh;
  1311. restart12 = r__1 * r__1 + r__2 * r__2 <= r__3 * r__3;
  1312. /* Computing 2nd power */
  1313. r__1 = b21d[i__];
  1314. /* Computing 2nd power */
  1315. r__2 = b21bulge;
  1316. /* Computing 2nd power */
  1317. r__3 = thresh;
  1318. restart21 = r__1 * r__1 + r__2 * r__2 <= r__3 * r__3;
  1319. /* Computing 2nd power */
  1320. r__1 = b22e[i__ - 1];
  1321. /* Computing 2nd power */
  1322. r__2 = b22bulge;
  1323. /* Computing 2nd power */
  1324. r__3 = thresh;
  1325. restart22 = r__1 * r__1 + r__2 * r__2 <= r__3 * r__3;
  1326. /* If possible, chase bulges from B11(I+1,I), B12(I+1,I-1), */
  1327. /* B21(I+1,I), and B22(I+1,I-1). If necessary, restart bulge- */
  1328. /* chasing by applying the original shift again. */
  1329. if (! restart11 && ! restart12) {
  1330. slartgp_(&x2, &x1, &rwork[iu1sn + i__ - 1], &rwork[iu1cs +
  1331. i__ - 1], &r__);
  1332. } else if (! restart11 && restart12) {
  1333. slartgp_(&b11bulge, &b11d[i__], &rwork[iu1sn + i__ - 1], &
  1334. rwork[iu1cs + i__ - 1], &r__);
  1335. } else if (restart11 && ! restart12) {
  1336. slartgp_(&b12bulge, &b12e[i__ - 1], &rwork[iu1sn + i__ - 1], &
  1337. rwork[iu1cs + i__ - 1], &r__);
  1338. } else if (mu <= nu) {
  1339. slartgs_(&b11e[i__], &b11d[i__ + 1], &mu, &rwork[iu1cs + i__
  1340. - 1], &rwork[iu1sn + i__ - 1]);
  1341. } else {
  1342. slartgs_(&b12d[i__], &b12e[i__], &nu, &rwork[iu1cs + i__ - 1],
  1343. &rwork[iu1sn + i__ - 1]);
  1344. }
  1345. if (! restart21 && ! restart22) {
  1346. slartgp_(&y2, &y1, &rwork[iu2sn + i__ - 1], &rwork[iu2cs +
  1347. i__ - 1], &r__);
  1348. } else if (! restart21 && restart22) {
  1349. slartgp_(&b21bulge, &b21d[i__], &rwork[iu2sn + i__ - 1], &
  1350. rwork[iu2cs + i__ - 1], &r__);
  1351. } else if (restart21 && ! restart22) {
  1352. slartgp_(&b22bulge, &b22e[i__ - 1], &rwork[iu2sn + i__ - 1], &
  1353. rwork[iu2cs + i__ - 1], &r__);
  1354. } else if (nu < mu) {
  1355. slartgs_(&b21e[i__], &b21e[i__ + 1], &nu, &rwork[iu2cs + i__
  1356. - 1], &rwork[iu2sn + i__ - 1]);
  1357. } else {
  1358. slartgs_(&b22d[i__], &b22e[i__], &mu, &rwork[iu2cs + i__ - 1],
  1359. &rwork[iu2sn + i__ - 1]);
  1360. }
  1361. rwork[iu2cs + i__ - 1] = -rwork[iu2cs + i__ - 1];
  1362. rwork[iu2sn + i__ - 1] = -rwork[iu2sn + i__ - 1];
  1363. temp = rwork[iu1cs + i__ - 1] * b11e[i__] + rwork[iu1sn + i__ - 1]
  1364. * b11d[i__ + 1];
  1365. b11d[i__ + 1] = rwork[iu1cs + i__ - 1] * b11d[i__ + 1] - rwork[
  1366. iu1sn + i__ - 1] * b11e[i__];
  1367. b11e[i__] = temp;
  1368. if (i__ < imax - 1) {
  1369. b11bulge = rwork[iu1sn + i__ - 1] * b11e[i__ + 1];
  1370. b11e[i__ + 1] = rwork[iu1cs + i__ - 1] * b11e[i__ + 1];
  1371. }
  1372. temp = rwork[iu2cs + i__ - 1] * b21e[i__] + rwork[iu2sn + i__ - 1]
  1373. * b21d[i__ + 1];
  1374. b21d[i__ + 1] = rwork[iu2cs + i__ - 1] * b21d[i__ + 1] - rwork[
  1375. iu2sn + i__ - 1] * b21e[i__];
  1376. b21e[i__] = temp;
  1377. if (i__ < imax - 1) {
  1378. b21bulge = rwork[iu2sn + i__ - 1] * b21e[i__ + 1];
  1379. b21e[i__ + 1] = rwork[iu2cs + i__ - 1] * b21e[i__ + 1];
  1380. }
  1381. temp = rwork[iu1cs + i__ - 1] * b12d[i__] + rwork[iu1sn + i__ - 1]
  1382. * b12e[i__];
  1383. b12e[i__] = rwork[iu1cs + i__ - 1] * b12e[i__] - rwork[iu1sn +
  1384. i__ - 1] * b12d[i__];
  1385. b12d[i__] = temp;
  1386. b12bulge = rwork[iu1sn + i__ - 1] * b12d[i__ + 1];
  1387. b12d[i__ + 1] = rwork[iu1cs + i__ - 1] * b12d[i__ + 1];
  1388. temp = rwork[iu2cs + i__ - 1] * b22d[i__] + rwork[iu2sn + i__ - 1]
  1389. * b22e[i__];
  1390. b22e[i__] = rwork[iu2cs + i__ - 1] * b22e[i__] - rwork[iu2sn +
  1391. i__ - 1] * b22d[i__];
  1392. b22d[i__] = temp;
  1393. b22bulge = rwork[iu2sn + i__ - 1] * b22d[i__ + 1];
  1394. b22d[i__ + 1] = rwork[iu2cs + i__ - 1] * b22d[i__ + 1];
  1395. }
  1396. /* Compute PHI(IMAX-1) */
  1397. x1 = sin(theta[imax - 1]) * b11e[imax - 1] + cos(theta[imax - 1]) *
  1398. b21e[imax - 1];
  1399. y1 = sin(theta[imax - 1]) * b12d[imax - 1] + cos(theta[imax - 1]) *
  1400. b22d[imax - 1];
  1401. y2 = sin(theta[imax - 1]) * b12bulge + cos(theta[imax - 1]) *
  1402. b22bulge;
  1403. /* Computing 2nd power */
  1404. r__1 = y1;
  1405. /* Computing 2nd power */
  1406. r__2 = y2;
  1407. phi[imax - 1] = atan2((abs(x1)), sqrt(r__1 * r__1 + r__2 * r__2));
  1408. /* Chase bulges from B12(IMAX-1,IMAX) and B22(IMAX-1,IMAX) */
  1409. /* Computing 2nd power */
  1410. r__1 = b12d[imax - 1];
  1411. /* Computing 2nd power */
  1412. r__2 = b12bulge;
  1413. /* Computing 2nd power */
  1414. r__3 = thresh;
  1415. restart12 = r__1 * r__1 + r__2 * r__2 <= r__3 * r__3;
  1416. /* Computing 2nd power */
  1417. r__1 = b22d[imax - 1];
  1418. /* Computing 2nd power */
  1419. r__2 = b22bulge;
  1420. /* Computing 2nd power */
  1421. r__3 = thresh;
  1422. restart22 = r__1 * r__1 + r__2 * r__2 <= r__3 * r__3;
  1423. if (! restart12 && ! restart22) {
  1424. slartgp_(&y2, &y1, &rwork[iv2tsn + imax - 2], &rwork[iv2tcs +
  1425. imax - 2], &r__);
  1426. } else if (! restart12 && restart22) {
  1427. slartgp_(&b12bulge, &b12d[imax - 1], &rwork[iv2tsn + imax - 2], &
  1428. rwork[iv2tcs + imax - 2], &r__);
  1429. } else if (restart12 && ! restart22) {
  1430. slartgp_(&b22bulge, &b22d[imax - 1], &rwork[iv2tsn + imax - 2], &
  1431. rwork[iv2tcs + imax - 2], &r__);
  1432. } else if (nu < mu) {
  1433. slartgs_(&b12e[imax - 1], &b12d[imax], &nu, &rwork[iv2tcs + imax
  1434. - 2], &rwork[iv2tsn + imax - 2]);
  1435. } else {
  1436. slartgs_(&b22e[imax - 1], &b22d[imax], &mu, &rwork[iv2tcs + imax
  1437. - 2], &rwork[iv2tsn + imax - 2]);
  1438. }
  1439. temp = rwork[iv2tcs + imax - 2] * b12e[imax - 1] + rwork[iv2tsn +
  1440. imax - 2] * b12d[imax];
  1441. b12d[imax] = rwork[iv2tcs + imax - 2] * b12d[imax] - rwork[iv2tsn +
  1442. imax - 2] * b12e[imax - 1];
  1443. b12e[imax - 1] = temp;
  1444. temp = rwork[iv2tcs + imax - 2] * b22e[imax - 1] + rwork[iv2tsn +
  1445. imax - 2] * b22d[imax];
  1446. b22d[imax] = rwork[iv2tcs + imax - 2] * b22d[imax] - rwork[iv2tsn +
  1447. imax - 2] * b22e[imax - 1];
  1448. b22e[imax - 1] = temp;
  1449. /* Update singular vectors */
  1450. if (wantu1) {
  1451. if (colmajor) {
  1452. i__1 = imax - imin + 1;
  1453. clasr_("R", "V", "F", p, &i__1, &rwork[iu1cs + imin - 1], &
  1454. rwork[iu1sn + imin - 1], &u1[imin * u1_dim1 + 1],
  1455. ldu1);
  1456. } else {
  1457. i__1 = imax - imin + 1;
  1458. clasr_("L", "V", "F", &i__1, p, &rwork[iu1cs + imin - 1], &
  1459. rwork[iu1sn + imin - 1], &u1[imin + u1_dim1], ldu1);
  1460. }
  1461. }
  1462. if (wantu2) {
  1463. if (colmajor) {
  1464. i__1 = *m - *p;
  1465. i__2 = imax - imin + 1;
  1466. clasr_("R", "V", "F", &i__1, &i__2, &rwork[iu2cs + imin - 1],
  1467. &rwork[iu2sn + imin - 1], &u2[imin * u2_dim1 + 1],
  1468. ldu2);
  1469. } else {
  1470. i__1 = imax - imin + 1;
  1471. i__2 = *m - *p;
  1472. clasr_("L", "V", "F", &i__1, &i__2, &rwork[iu2cs + imin - 1],
  1473. &rwork[iu2sn + imin - 1], &u2[imin + u2_dim1], ldu2);
  1474. }
  1475. }
  1476. if (wantv1t) {
  1477. if (colmajor) {
  1478. i__1 = imax - imin + 1;
  1479. clasr_("L", "V", "F", &i__1, q, &rwork[iv1tcs + imin - 1], &
  1480. rwork[iv1tsn + imin - 1], &v1t[imin + v1t_dim1],
  1481. ldv1t);
  1482. } else {
  1483. i__1 = imax - imin + 1;
  1484. clasr_("R", "V", "F", q, &i__1, &rwork[iv1tcs + imin - 1], &
  1485. rwork[iv1tsn + imin - 1], &v1t[imin * v1t_dim1 + 1],
  1486. ldv1t);
  1487. }
  1488. }
  1489. if (wantv2t) {
  1490. if (colmajor) {
  1491. i__1 = imax - imin + 1;
  1492. i__2 = *m - *q;
  1493. clasr_("L", "V", "F", &i__1, &i__2, &rwork[iv2tcs + imin - 1],
  1494. &rwork[iv2tsn + imin - 1], &v2t[imin + v2t_dim1],
  1495. ldv2t);
  1496. } else {
  1497. i__1 = *m - *q;
  1498. i__2 = imax - imin + 1;
  1499. clasr_("R", "V", "F", &i__1, &i__2, &rwork[iv2tcs + imin - 1],
  1500. &rwork[iv2tsn + imin - 1], &v2t[imin * v2t_dim1 + 1],
  1501. ldv2t);
  1502. }
  1503. }
  1504. /* Fix signs on B11(IMAX-1,IMAX) and B21(IMAX-1,IMAX) */
  1505. if (b11e[imax - 1] + b21e[imax - 1] > 0.f) {
  1506. b11d[imax] = -b11d[imax];
  1507. b21d[imax] = -b21d[imax];
  1508. if (wantv1t) {
  1509. if (colmajor) {
  1510. cscal_(q, &c_b1, &v1t[imax + v1t_dim1], ldv1t);
  1511. } else {
  1512. cscal_(q, &c_b1, &v1t[imax * v1t_dim1 + 1], &c__1);
  1513. }
  1514. }
  1515. }
  1516. /* Compute THETA(IMAX) */
  1517. x1 = cos(phi[imax - 1]) * b11d[imax] + sin(phi[imax - 1]) * b12e[imax
  1518. - 1];
  1519. y1 = cos(phi[imax - 1]) * b21d[imax] + sin(phi[imax - 1]) * b22e[imax
  1520. - 1];
  1521. theta[imax] = atan2((abs(y1)), (abs(x1)));
  1522. /* Fix signs on B11(IMAX,IMAX), B12(IMAX,IMAX-1), B21(IMAX,IMAX), */
  1523. /* and B22(IMAX,IMAX-1) */
  1524. if (b11d[imax] + b12e[imax - 1] < 0.f) {
  1525. b12d[imax] = -b12d[imax];
  1526. if (wantu1) {
  1527. if (colmajor) {
  1528. cscal_(p, &c_b1, &u1[imax * u1_dim1 + 1], &c__1);
  1529. } else {
  1530. cscal_(p, &c_b1, &u1[imax + u1_dim1], ldu1);
  1531. }
  1532. }
  1533. }
  1534. if (b21d[imax] + b22e[imax - 1] > 0.f) {
  1535. b22d[imax] = -b22d[imax];
  1536. if (wantu2) {
  1537. if (colmajor) {
  1538. i__1 = *m - *p;
  1539. cscal_(&i__1, &c_b1, &u2[imax * u2_dim1 + 1], &c__1);
  1540. } else {
  1541. i__1 = *m - *p;
  1542. cscal_(&i__1, &c_b1, &u2[imax + u2_dim1], ldu2);
  1543. }
  1544. }
  1545. }
  1546. /* Fix signs on B12(IMAX,IMAX) and B22(IMAX,IMAX) */
  1547. if (b12d[imax] + b22d[imax] < 0.f) {
  1548. if (wantv2t) {
  1549. if (colmajor) {
  1550. i__1 = *m - *q;
  1551. cscal_(&i__1, &c_b1, &v2t[imax + v2t_dim1], ldv2t);
  1552. } else {
  1553. i__1 = *m - *q;
  1554. cscal_(&i__1, &c_b1, &v2t[imax * v2t_dim1 + 1], &c__1);
  1555. }
  1556. }
  1557. }
  1558. /* Test for negligible sines or cosines */
  1559. i__1 = imax;
  1560. for (i__ = imin; i__ <= i__1; ++i__) {
  1561. if (theta[i__] < thresh) {
  1562. theta[i__] = 0.f;
  1563. } else if (theta[i__] > 1.57079632679489662f - thresh) {
  1564. theta[i__] = 1.57079632679489662f;
  1565. }
  1566. }
  1567. i__1 = imax - 1;
  1568. for (i__ = imin; i__ <= i__1; ++i__) {
  1569. if (phi[i__] < thresh) {
  1570. phi[i__] = 0.f;
  1571. } else if (phi[i__] > 1.57079632679489662f - thresh) {
  1572. phi[i__] = 1.57079632679489662f;
  1573. }
  1574. }
  1575. /* Deflate */
  1576. if (imax > 1) {
  1577. while(phi[imax - 1] == 0.f) {
  1578. --imax;
  1579. if (imax <= 1) {
  1580. myexit_();
  1581. }
  1582. }
  1583. }
  1584. if (imin > imax - 1) {
  1585. imin = imax - 1;
  1586. }
  1587. if (imin > 1) {
  1588. while(phi[imin - 1] != 0.f) {
  1589. --imin;
  1590. if (imin <= 1) {
  1591. myexit_();
  1592. }
  1593. }
  1594. }
  1595. /* Repeat main iteration loop */
  1596. }
  1597. /* Postprocessing: order THETA from least to greatest */
  1598. i__1 = *q;
  1599. for (i__ = 1; i__ <= i__1; ++i__) {
  1600. mini = i__;
  1601. thetamin = theta[i__];
  1602. i__2 = *q;
  1603. for (j = i__ + 1; j <= i__2; ++j) {
  1604. if (theta[j] < thetamin) {
  1605. mini = j;
  1606. thetamin = theta[j];
  1607. }
  1608. }
  1609. if (mini != i__) {
  1610. theta[mini] = theta[i__];
  1611. theta[i__] = thetamin;
  1612. if (colmajor) {
  1613. if (wantu1) {
  1614. cswap_(p, &u1[i__ * u1_dim1 + 1], &c__1, &u1[mini *
  1615. u1_dim1 + 1], &c__1);
  1616. }
  1617. if (wantu2) {
  1618. i__2 = *m - *p;
  1619. cswap_(&i__2, &u2[i__ * u2_dim1 + 1], &c__1, &u2[mini *
  1620. u2_dim1 + 1], &c__1);
  1621. }
  1622. if (wantv1t) {
  1623. cswap_(q, &v1t[i__ + v1t_dim1], ldv1t, &v1t[mini +
  1624. v1t_dim1], ldv1t);
  1625. }
  1626. if (wantv2t) {
  1627. i__2 = *m - *q;
  1628. cswap_(&i__2, &v2t[i__ + v2t_dim1], ldv2t, &v2t[mini +
  1629. v2t_dim1], ldv2t);
  1630. }
  1631. } else {
  1632. if (wantu1) {
  1633. cswap_(p, &u1[i__ + u1_dim1], ldu1, &u1[mini + u1_dim1],
  1634. ldu1);
  1635. }
  1636. if (wantu2) {
  1637. i__2 = *m - *p;
  1638. cswap_(&i__2, &u2[i__ + u2_dim1], ldu2, &u2[mini +
  1639. u2_dim1], ldu2);
  1640. }
  1641. if (wantv1t) {
  1642. cswap_(q, &v1t[i__ * v1t_dim1 + 1], &c__1, &v1t[mini *
  1643. v1t_dim1 + 1], &c__1);
  1644. }
  1645. if (wantv2t) {
  1646. i__2 = *m - *q;
  1647. cswap_(&i__2, &v2t[i__ * v2t_dim1 + 1], &c__1, &v2t[mini *
  1648. v2t_dim1 + 1], &c__1);
  1649. }
  1650. }
  1651. }
  1652. }
  1653. return;
  1654. /* End of CBBCSD */
  1655. } /* cbbcsd_ */