You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlatrs.c 47 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static doublereal c_b36 = .5;
  488. /* > \brief \b ZLATRS solves a triangular system of equations with the scale factor set to prevent overflow.
  489. */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download ZLATRS + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlatrs.
  496. f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlatrs.
  499. f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlatrs.
  502. f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE ZLATRS( UPLO, TRANS, DIAG, NORMIN, N, A, LDA, X, SCALE, */
  508. /* CNORM, INFO ) */
  509. /* CHARACTER DIAG, NORMIN, TRANS, UPLO */
  510. /* INTEGER INFO, LDA, N */
  511. /* DOUBLE PRECISION SCALE */
  512. /* DOUBLE PRECISION CNORM( * ) */
  513. /* COMPLEX*16 A( LDA, * ), X( * ) */
  514. /* > \par Purpose: */
  515. /* ============= */
  516. /* > */
  517. /* > \verbatim */
  518. /* > */
  519. /* > ZLATRS solves one of the triangular systems */
  520. /* > */
  521. /* > A * x = s*b, A**T * x = s*b, or A**H * x = s*b, */
  522. /* > */
  523. /* > with scaling to prevent overflow. Here A is an upper or lower */
  524. /* > triangular matrix, A**T denotes the transpose of A, A**H denotes the */
  525. /* > conjugate transpose of A, x and b are n-element vectors, and s is a */
  526. /* > scaling factor, usually less than or equal to 1, chosen so that the */
  527. /* > components of x will be less than the overflow threshold. If the */
  528. /* > unscaled problem will not cause overflow, the Level 2 BLAS routine */
  529. /* > ZTRSV is called. If the matrix A is singular (A(j,j) = 0 for some j), */
  530. /* > then s is set to 0 and a non-trivial solution to A*x = 0 is returned. */
  531. /* > \endverbatim */
  532. /* Arguments: */
  533. /* ========== */
  534. /* > \param[in] UPLO */
  535. /* > \verbatim */
  536. /* > UPLO is CHARACTER*1 */
  537. /* > Specifies whether the matrix A is upper or lower triangular. */
  538. /* > = 'U': Upper triangular */
  539. /* > = 'L': Lower triangular */
  540. /* > \endverbatim */
  541. /* > */
  542. /* > \param[in] TRANS */
  543. /* > \verbatim */
  544. /* > TRANS is CHARACTER*1 */
  545. /* > Specifies the operation applied to A. */
  546. /* > = 'N': Solve A * x = s*b (No transpose) */
  547. /* > = 'T': Solve A**T * x = s*b (Transpose) */
  548. /* > = 'C': Solve A**H * x = s*b (Conjugate transpose) */
  549. /* > \endverbatim */
  550. /* > */
  551. /* > \param[in] DIAG */
  552. /* > \verbatim */
  553. /* > DIAG is CHARACTER*1 */
  554. /* > Specifies whether or not the matrix A is unit triangular. */
  555. /* > = 'N': Non-unit triangular */
  556. /* > = 'U': Unit triangular */
  557. /* > \endverbatim */
  558. /* > */
  559. /* > \param[in] NORMIN */
  560. /* > \verbatim */
  561. /* > NORMIN is CHARACTER*1 */
  562. /* > Specifies whether CNORM has been set or not. */
  563. /* > = 'Y': CNORM contains the column norms on entry */
  564. /* > = 'N': CNORM is not set on entry. On exit, the norms will */
  565. /* > be computed and stored in CNORM. */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[in] N */
  569. /* > \verbatim */
  570. /* > N is INTEGER */
  571. /* > The order of the matrix A. N >= 0. */
  572. /* > \endverbatim */
  573. /* > */
  574. /* > \param[in] A */
  575. /* > \verbatim */
  576. /* > A is COMPLEX*16 array, dimension (LDA,N) */
  577. /* > The triangular matrix A. If UPLO = 'U', the leading n by n */
  578. /* > upper triangular part of the array A contains the upper */
  579. /* > triangular matrix, and the strictly lower triangular part of */
  580. /* > A is not referenced. If UPLO = 'L', the leading n by n lower */
  581. /* > triangular part of the array A contains the lower triangular */
  582. /* > matrix, and the strictly upper triangular part of A is not */
  583. /* > referenced. If DIAG = 'U', the diagonal elements of A are */
  584. /* > also not referenced and are assumed to be 1. */
  585. /* > \endverbatim */
  586. /* > */
  587. /* > \param[in] LDA */
  588. /* > \verbatim */
  589. /* > LDA is INTEGER */
  590. /* > The leading dimension of the array A. LDA >= f2cmax (1,N). */
  591. /* > \endverbatim */
  592. /* > */
  593. /* > \param[in,out] X */
  594. /* > \verbatim */
  595. /* > X is COMPLEX*16 array, dimension (N) */
  596. /* > On entry, the right hand side b of the triangular system. */
  597. /* > On exit, X is overwritten by the solution vector x. */
  598. /* > \endverbatim */
  599. /* > */
  600. /* > \param[out] SCALE */
  601. /* > \verbatim */
  602. /* > SCALE is DOUBLE PRECISION */
  603. /* > The scaling factor s for the triangular system */
  604. /* > A * x = s*b, A**T * x = s*b, or A**H * x = s*b. */
  605. /* > If SCALE = 0, the matrix A is singular or badly scaled, and */
  606. /* > the vector x is an exact or approximate solution to A*x = 0. */
  607. /* > \endverbatim */
  608. /* > */
  609. /* > \param[in,out] CNORM */
  610. /* > \verbatim */
  611. /* > CNORM is DOUBLE PRECISION array, dimension (N) */
  612. /* > */
  613. /* > If NORMIN = 'Y', CNORM is an input argument and CNORM(j) */
  614. /* > contains the norm of the off-diagonal part of the j-th column */
  615. /* > of A. If TRANS = 'N', CNORM(j) must be greater than or equal */
  616. /* > to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j) */
  617. /* > must be greater than or equal to the 1-norm. */
  618. /* > */
  619. /* > If NORMIN = 'N', CNORM is an output argument and CNORM(j) */
  620. /* > returns the 1-norm of the offdiagonal part of the j-th column */
  621. /* > of A. */
  622. /* > \endverbatim */
  623. /* > */
  624. /* > \param[out] INFO */
  625. /* > \verbatim */
  626. /* > INFO is INTEGER */
  627. /* > = 0: successful exit */
  628. /* > < 0: if INFO = -k, the k-th argument had an illegal value */
  629. /* > \endverbatim */
  630. /* Authors: */
  631. /* ======== */
  632. /* > \author Univ. of Tennessee */
  633. /* > \author Univ. of California Berkeley */
  634. /* > \author Univ. of Colorado Denver */
  635. /* > \author NAG Ltd. */
  636. /* > \date November 2017 */
  637. /* > \ingroup complex16OTHERauxiliary */
  638. /* > \par Further Details: */
  639. /* ===================== */
  640. /* > */
  641. /* > \verbatim */
  642. /* > */
  643. /* > A rough bound on x is computed; if that is less than overflow, ZTRSV */
  644. /* > is called, otherwise, specific code is used which checks for possible */
  645. /* > overflow or divide-by-zero at every operation. */
  646. /* > */
  647. /* > A columnwise scheme is used for solving A*x = b. The basic algorithm */
  648. /* > if A is lower triangular is */
  649. /* > */
  650. /* > x[1:n] := b[1:n] */
  651. /* > for j = 1, ..., n */
  652. /* > x(j) := x(j) / A(j,j) */
  653. /* > x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j] */
  654. /* > end */
  655. /* > */
  656. /* > Define bounds on the components of x after j iterations of the loop: */
  657. /* > M(j) = bound on x[1:j] */
  658. /* > G(j) = bound on x[j+1:n] */
  659. /* > Initially, let M(0) = 0 and G(0) = f2cmax{x(i), i=1,...,n}. */
  660. /* > */
  661. /* > Then for iteration j+1 we have */
  662. /* > M(j+1) <= G(j) / | A(j+1,j+1) | */
  663. /* > G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] | */
  664. /* > <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | ) */
  665. /* > */
  666. /* > where CNORM(j+1) is greater than or equal to the infinity-norm of */
  667. /* > column j+1 of A, not counting the diagonal. Hence */
  668. /* > */
  669. /* > G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | ) */
  670. /* > 1<=i<=j */
  671. /* > and */
  672. /* > */
  673. /* > |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| ) */
  674. /* > 1<=i< j */
  675. /* > */
  676. /* > Since |x(j)| <= M(j), we use the Level 2 BLAS routine ZTRSV if the */
  677. /* > reciprocal of the largest M(j), j=1,..,n, is larger than */
  678. /* > f2cmax(underflow, 1/overflow). */
  679. /* > */
  680. /* > The bound on x(j) is also used to determine when a step in the */
  681. /* > columnwise method can be performed without fear of overflow. If */
  682. /* > the computed bound is greater than a large constant, x is scaled to */
  683. /* > prevent overflow, but if the bound overflows, x is set to 0, x(j) to */
  684. /* > 1, and scale to 0, and a non-trivial solution to A*x = 0 is found. */
  685. /* > */
  686. /* > Similarly, a row-wise scheme is used to solve A**T *x = b or */
  687. /* > A**H *x = b. The basic algorithm for A upper triangular is */
  688. /* > */
  689. /* > for j = 1, ..., n */
  690. /* > x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j) */
  691. /* > end */
  692. /* > */
  693. /* > We simultaneously compute two bounds */
  694. /* > G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j */
  695. /* > M(j) = bound on x(i), 1<=i<=j */
  696. /* > */
  697. /* > The initial values are G(0) = 0, M(0) = f2cmax{b(i), i=1,..,n}, and we */
  698. /* > add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1. */
  699. /* > Then the bound on x(j) is */
  700. /* > */
  701. /* > M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) | */
  702. /* > */
  703. /* > <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| ) */
  704. /* > 1<=i<=j */
  705. /* > */
  706. /* > and we can safely call ZTRSV if 1/M(n) and 1/G(n) are both greater */
  707. /* > than f2cmax(underflow, 1/overflow). */
  708. /* > \endverbatim */
  709. /* > */
  710. /* ===================================================================== */
  711. /* Subroutine */ void zlatrs_(char *uplo, char *trans, char *diag, char *
  712. normin, integer *n, doublecomplex *a, integer *lda, doublecomplex *x,
  713. doublereal *scale, doublereal *cnorm, integer *info)
  714. {
  715. /* System generated locals */
  716. integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
  717. doublereal d__1, d__2, d__3, d__4;
  718. doublecomplex z__1, z__2, z__3, z__4;
  719. /* Local variables */
  720. integer jinc;
  721. doublereal xbnd;
  722. integer imax;
  723. doublereal tmax;
  724. doublecomplex tjjs;
  725. doublereal xmax, grow;
  726. integer i__, j;
  727. extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *,
  728. integer *);
  729. extern logical lsame_(char *, char *);
  730. doublereal tscal;
  731. doublecomplex uscal;
  732. integer jlast;
  733. doublecomplex csumj;
  734. extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *,
  735. doublecomplex *, integer *, doublecomplex *, integer *);
  736. logical upper;
  737. extern /* Double Complex */ VOID zdotu_(doublecomplex *, integer *,
  738. doublecomplex *, integer *, doublecomplex *, integer *);
  739. extern /* Subroutine */ void zaxpy_(integer *, doublecomplex *,
  740. doublecomplex *, integer *, doublecomplex *, integer *), ztrsv_(
  741. char *, char *, char *, integer *, doublecomplex *, integer *,
  742. doublecomplex *, integer *), dlabad_(
  743. doublereal *, doublereal *);
  744. extern doublereal dlamch_(char *);
  745. doublereal xj;
  746. extern integer idamax_(integer *, doublereal *, integer *);
  747. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  748. extern void zdscal_(
  749. integer *, doublereal *, doublecomplex *, integer *);
  750. doublereal bignum;
  751. extern integer izamax_(integer *, doublecomplex *, integer *);
  752. extern /* Double Complex */ VOID zladiv_(doublecomplex *, doublecomplex *,
  753. doublecomplex *);
  754. logical notran;
  755. integer jfirst;
  756. extern doublereal dzasum_(integer *, doublecomplex *, integer *);
  757. doublereal smlnum;
  758. logical nounit;
  759. doublereal rec, tjj;
  760. /* -- LAPACK auxiliary routine (version 3.8.0) -- */
  761. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  762. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  763. /* November 2017 */
  764. /* ===================================================================== */
  765. /* Parameter adjustments */
  766. a_dim1 = *lda;
  767. a_offset = 1 + a_dim1 * 1;
  768. a -= a_offset;
  769. --x;
  770. --cnorm;
  771. /* Function Body */
  772. *info = 0;
  773. upper = lsame_(uplo, "U");
  774. notran = lsame_(trans, "N");
  775. nounit = lsame_(diag, "N");
  776. /* Test the input parameters. */
  777. if (! upper && ! lsame_(uplo, "L")) {
  778. *info = -1;
  779. } else if (! notran && ! lsame_(trans, "T") && !
  780. lsame_(trans, "C")) {
  781. *info = -2;
  782. } else if (! nounit && ! lsame_(diag, "U")) {
  783. *info = -3;
  784. } else if (! lsame_(normin, "Y") && ! lsame_(normin,
  785. "N")) {
  786. *info = -4;
  787. } else if (*n < 0) {
  788. *info = -5;
  789. } else if (*lda < f2cmax(1,*n)) {
  790. *info = -7;
  791. }
  792. if (*info != 0) {
  793. i__1 = -(*info);
  794. xerbla_("ZLATRS", &i__1, (ftnlen)6);
  795. return;
  796. }
  797. /* Quick return if possible */
  798. if (*n == 0) {
  799. return;
  800. }
  801. /* Determine machine dependent parameters to control overflow. */
  802. smlnum = dlamch_("Safe minimum");
  803. bignum = 1. / smlnum;
  804. dlabad_(&smlnum, &bignum);
  805. smlnum /= dlamch_("Precision");
  806. bignum = 1. / smlnum;
  807. *scale = 1.;
  808. if (lsame_(normin, "N")) {
  809. /* Compute the 1-norm of each column, not including the diagonal. */
  810. if (upper) {
  811. /* A is upper triangular. */
  812. i__1 = *n;
  813. for (j = 1; j <= i__1; ++j) {
  814. i__2 = j - 1;
  815. cnorm[j] = dzasum_(&i__2, &a[j * a_dim1 + 1], &c__1);
  816. /* L10: */
  817. }
  818. } else {
  819. /* A is lower triangular. */
  820. i__1 = *n - 1;
  821. for (j = 1; j <= i__1; ++j) {
  822. i__2 = *n - j;
  823. cnorm[j] = dzasum_(&i__2, &a[j + 1 + j * a_dim1], &c__1);
  824. /* L20: */
  825. }
  826. cnorm[*n] = 0.;
  827. }
  828. }
  829. /* Scale the column norms by TSCAL if the maximum element in CNORM is */
  830. /* greater than BIGNUM/2. */
  831. imax = idamax_(n, &cnorm[1], &c__1);
  832. tmax = cnorm[imax];
  833. if (tmax <= bignum * .5) {
  834. tscal = 1.;
  835. } else {
  836. tscal = .5 / (smlnum * tmax);
  837. dscal_(n, &tscal, &cnorm[1], &c__1);
  838. }
  839. /* Compute a bound on the computed solution vector to see if the */
  840. /* Level 2 BLAS routine ZTRSV can be used. */
  841. xmax = 0.;
  842. i__1 = *n;
  843. for (j = 1; j <= i__1; ++j) {
  844. /* Computing MAX */
  845. i__2 = j;
  846. d__3 = xmax, d__4 = (d__1 = x[i__2].r / 2., abs(d__1)) + (d__2 =
  847. d_imag(&x[j]) / 2., abs(d__2));
  848. xmax = f2cmax(d__3,d__4);
  849. /* L30: */
  850. }
  851. xbnd = xmax;
  852. if (notran) {
  853. /* Compute the growth in A * x = b. */
  854. if (upper) {
  855. jfirst = *n;
  856. jlast = 1;
  857. jinc = -1;
  858. } else {
  859. jfirst = 1;
  860. jlast = *n;
  861. jinc = 1;
  862. }
  863. if (tscal != 1.) {
  864. grow = 0.;
  865. goto L60;
  866. }
  867. if (nounit) {
  868. /* A is non-unit triangular. */
  869. /* Compute GROW = 1/G(j) and XBND = 1/M(j). */
  870. /* Initially, G(0) = f2cmax{x(i), i=1,...,n}. */
  871. grow = .5 / f2cmax(xbnd,smlnum);
  872. xbnd = grow;
  873. i__1 = jlast;
  874. i__2 = jinc;
  875. for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
  876. /* Exit the loop if the growth factor is too small. */
  877. if (grow <= smlnum) {
  878. goto L60;
  879. }
  880. i__3 = j + j * a_dim1;
  881. tjjs.r = a[i__3].r, tjjs.i = a[i__3].i;
  882. tjj = (d__1 = tjjs.r, abs(d__1)) + (d__2 = d_imag(&tjjs), abs(
  883. d__2));
  884. if (tjj >= smlnum) {
  885. /* M(j) = G(j-1) / abs(A(j,j)) */
  886. /* Computing MIN */
  887. d__1 = xbnd, d__2 = f2cmin(1.,tjj) * grow;
  888. xbnd = f2cmin(d__1,d__2);
  889. } else {
  890. /* M(j) could overflow, set XBND to 0. */
  891. xbnd = 0.;
  892. }
  893. if (tjj + cnorm[j] >= smlnum) {
  894. /* G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) ) */
  895. grow *= tjj / (tjj + cnorm[j]);
  896. } else {
  897. /* G(j) could overflow, set GROW to 0. */
  898. grow = 0.;
  899. }
  900. /* L40: */
  901. }
  902. grow = xbnd;
  903. } else {
  904. /* A is unit triangular. */
  905. /* Compute GROW = 1/G(j), where G(0) = f2cmax{x(i), i=1,...,n}. */
  906. /* Computing MIN */
  907. d__1 = 1., d__2 = .5 / f2cmax(xbnd,smlnum);
  908. grow = f2cmin(d__1,d__2);
  909. i__2 = jlast;
  910. i__1 = jinc;
  911. for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {
  912. /* Exit the loop if the growth factor is too small. */
  913. if (grow <= smlnum) {
  914. goto L60;
  915. }
  916. /* G(j) = G(j-1)*( 1 + CNORM(j) ) */
  917. grow *= 1. / (cnorm[j] + 1.);
  918. /* L50: */
  919. }
  920. }
  921. L60:
  922. ;
  923. } else {
  924. /* Compute the growth in A**T * x = b or A**H * x = b. */
  925. if (upper) {
  926. jfirst = 1;
  927. jlast = *n;
  928. jinc = 1;
  929. } else {
  930. jfirst = *n;
  931. jlast = 1;
  932. jinc = -1;
  933. }
  934. if (tscal != 1.) {
  935. grow = 0.;
  936. goto L90;
  937. }
  938. if (nounit) {
  939. /* A is non-unit triangular. */
  940. /* Compute GROW = 1/G(j) and XBND = 1/M(j). */
  941. /* Initially, M(0) = f2cmax{x(i), i=1,...,n}. */
  942. grow = .5 / f2cmax(xbnd,smlnum);
  943. xbnd = grow;
  944. i__1 = jlast;
  945. i__2 = jinc;
  946. for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
  947. /* Exit the loop if the growth factor is too small. */
  948. if (grow <= smlnum) {
  949. goto L90;
  950. }
  951. /* G(j) = f2cmax( G(j-1), M(j-1)*( 1 + CNORM(j) ) ) */
  952. xj = cnorm[j] + 1.;
  953. /* Computing MIN */
  954. d__1 = grow, d__2 = xbnd / xj;
  955. grow = f2cmin(d__1,d__2);
  956. i__3 = j + j * a_dim1;
  957. tjjs.r = a[i__3].r, tjjs.i = a[i__3].i;
  958. tjj = (d__1 = tjjs.r, abs(d__1)) + (d__2 = d_imag(&tjjs), abs(
  959. d__2));
  960. if (tjj >= smlnum) {
  961. /* M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j)) */
  962. if (xj > tjj) {
  963. xbnd *= tjj / xj;
  964. }
  965. } else {
  966. /* M(j) could overflow, set XBND to 0. */
  967. xbnd = 0.;
  968. }
  969. /* L70: */
  970. }
  971. grow = f2cmin(grow,xbnd);
  972. } else {
  973. /* A is unit triangular. */
  974. /* Compute GROW = 1/G(j), where G(0) = f2cmax{x(i), i=1,...,n}. */
  975. /* Computing MIN */
  976. d__1 = 1., d__2 = .5 / f2cmax(xbnd,smlnum);
  977. grow = f2cmin(d__1,d__2);
  978. i__2 = jlast;
  979. i__1 = jinc;
  980. for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {
  981. /* Exit the loop if the growth factor is too small. */
  982. if (grow <= smlnum) {
  983. goto L90;
  984. }
  985. /* G(j) = ( 1 + CNORM(j) )*G(j-1) */
  986. xj = cnorm[j] + 1.;
  987. grow /= xj;
  988. /* L80: */
  989. }
  990. }
  991. L90:
  992. ;
  993. }
  994. if (grow * tscal > smlnum) {
  995. /* Use the Level 2 BLAS solve if the reciprocal of the bound on */
  996. /* elements of X is not too small. */
  997. ztrsv_(uplo, trans, diag, n, &a[a_offset], lda, &x[1], &c__1);
  998. } else {
  999. /* Use a Level 1 BLAS solve, scaling intermediate results. */
  1000. if (xmax > bignum * .5) {
  1001. /* Scale X so that its components are less than or equal to */
  1002. /* BIGNUM in absolute value. */
  1003. *scale = bignum * .5 / xmax;
  1004. zdscal_(n, scale, &x[1], &c__1);
  1005. xmax = bignum;
  1006. } else {
  1007. xmax *= 2.;
  1008. }
  1009. if (notran) {
  1010. /* Solve A * x = b */
  1011. i__1 = jlast;
  1012. i__2 = jinc;
  1013. for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
  1014. /* Compute x(j) = b(j) / A(j,j), scaling x if necessary. */
  1015. i__3 = j;
  1016. xj = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(&x[j]),
  1017. abs(d__2));
  1018. if (nounit) {
  1019. i__3 = j + j * a_dim1;
  1020. z__1.r = tscal * a[i__3].r, z__1.i = tscal * a[i__3].i;
  1021. tjjs.r = z__1.r, tjjs.i = z__1.i;
  1022. } else {
  1023. tjjs.r = tscal, tjjs.i = 0.;
  1024. if (tscal == 1.) {
  1025. goto L110;
  1026. }
  1027. }
  1028. tjj = (d__1 = tjjs.r, abs(d__1)) + (d__2 = d_imag(&tjjs), abs(
  1029. d__2));
  1030. if (tjj > smlnum) {
  1031. /* abs(A(j,j)) > SMLNUM: */
  1032. if (tjj < 1.) {
  1033. if (xj > tjj * bignum) {
  1034. /* Scale x by 1/b(j). */
  1035. rec = 1. / xj;
  1036. zdscal_(n, &rec, &x[1], &c__1);
  1037. *scale *= rec;
  1038. xmax *= rec;
  1039. }
  1040. }
  1041. i__3 = j;
  1042. zladiv_(&z__1, &x[j], &tjjs);
  1043. x[i__3].r = z__1.r, x[i__3].i = z__1.i;
  1044. i__3 = j;
  1045. xj = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(&x[j])
  1046. , abs(d__2));
  1047. } else if (tjj > 0.) {
  1048. /* 0 < abs(A(j,j)) <= SMLNUM: */
  1049. if (xj > tjj * bignum) {
  1050. /* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM */
  1051. /* to avoid overflow when dividing by A(j,j). */
  1052. rec = tjj * bignum / xj;
  1053. if (cnorm[j] > 1.) {
  1054. /* Scale by 1/CNORM(j) to avoid overflow when */
  1055. /* multiplying x(j) times column j. */
  1056. rec /= cnorm[j];
  1057. }
  1058. zdscal_(n, &rec, &x[1], &c__1);
  1059. *scale *= rec;
  1060. xmax *= rec;
  1061. }
  1062. i__3 = j;
  1063. zladiv_(&z__1, &x[j], &tjjs);
  1064. x[i__3].r = z__1.r, x[i__3].i = z__1.i;
  1065. i__3 = j;
  1066. xj = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(&x[j])
  1067. , abs(d__2));
  1068. } else {
  1069. /* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and */
  1070. /* scale = 0, and compute a solution to A*x = 0. */
  1071. i__3 = *n;
  1072. for (i__ = 1; i__ <= i__3; ++i__) {
  1073. i__4 = i__;
  1074. x[i__4].r = 0., x[i__4].i = 0.;
  1075. /* L100: */
  1076. }
  1077. i__3 = j;
  1078. x[i__3].r = 1., x[i__3].i = 0.;
  1079. xj = 1.;
  1080. *scale = 0.;
  1081. xmax = 0.;
  1082. }
  1083. L110:
  1084. /* Scale x if necessary to avoid overflow when adding a */
  1085. /* multiple of column j of A. */
  1086. if (xj > 1.) {
  1087. rec = 1. / xj;
  1088. if (cnorm[j] > (bignum - xmax) * rec) {
  1089. /* Scale x by 1/(2*abs(x(j))). */
  1090. rec *= .5;
  1091. zdscal_(n, &rec, &x[1], &c__1);
  1092. *scale *= rec;
  1093. }
  1094. } else if (xj * cnorm[j] > bignum - xmax) {
  1095. /* Scale x by 1/2. */
  1096. zdscal_(n, &c_b36, &x[1], &c__1);
  1097. *scale *= .5;
  1098. }
  1099. if (upper) {
  1100. if (j > 1) {
  1101. /* Compute the update */
  1102. /* x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j) */
  1103. i__3 = j - 1;
  1104. i__4 = j;
  1105. z__2.r = -x[i__4].r, z__2.i = -x[i__4].i;
  1106. z__1.r = tscal * z__2.r, z__1.i = tscal * z__2.i;
  1107. zaxpy_(&i__3, &z__1, &a[j * a_dim1 + 1], &c__1, &x[1],
  1108. &c__1);
  1109. i__3 = j - 1;
  1110. i__ = izamax_(&i__3, &x[1], &c__1);
  1111. i__3 = i__;
  1112. xmax = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(
  1113. &x[i__]), abs(d__2));
  1114. }
  1115. } else {
  1116. if (j < *n) {
  1117. /* Compute the update */
  1118. /* x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j) */
  1119. i__3 = *n - j;
  1120. i__4 = j;
  1121. z__2.r = -x[i__4].r, z__2.i = -x[i__4].i;
  1122. z__1.r = tscal * z__2.r, z__1.i = tscal * z__2.i;
  1123. zaxpy_(&i__3, &z__1, &a[j + 1 + j * a_dim1], &c__1, &
  1124. x[j + 1], &c__1);
  1125. i__3 = *n - j;
  1126. i__ = j + izamax_(&i__3, &x[j + 1], &c__1);
  1127. i__3 = i__;
  1128. xmax = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(
  1129. &x[i__]), abs(d__2));
  1130. }
  1131. }
  1132. /* L120: */
  1133. }
  1134. } else if (lsame_(trans, "T")) {
  1135. /* Solve A**T * x = b */
  1136. i__2 = jlast;
  1137. i__1 = jinc;
  1138. for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {
  1139. /* Compute x(j) = b(j) - sum A(k,j)*x(k). */
  1140. /* k<>j */
  1141. i__3 = j;
  1142. xj = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(&x[j]),
  1143. abs(d__2));
  1144. uscal.r = tscal, uscal.i = 0.;
  1145. rec = 1. / f2cmax(xmax,1.);
  1146. if (cnorm[j] > (bignum - xj) * rec) {
  1147. /* If x(j) could overflow, scale x by 1/(2*XMAX). */
  1148. rec *= .5;
  1149. if (nounit) {
  1150. i__3 = j + j * a_dim1;
  1151. z__1.r = tscal * a[i__3].r, z__1.i = tscal * a[i__3]
  1152. .i;
  1153. tjjs.r = z__1.r, tjjs.i = z__1.i;
  1154. } else {
  1155. tjjs.r = tscal, tjjs.i = 0.;
  1156. }
  1157. tjj = (d__1 = tjjs.r, abs(d__1)) + (d__2 = d_imag(&tjjs),
  1158. abs(d__2));
  1159. if (tjj > 1.) {
  1160. /* Divide by A(j,j) when scaling x if A(j,j) > 1. */
  1161. /* Computing MIN */
  1162. d__1 = 1., d__2 = rec * tjj;
  1163. rec = f2cmin(d__1,d__2);
  1164. zladiv_(&z__1, &uscal, &tjjs);
  1165. uscal.r = z__1.r, uscal.i = z__1.i;
  1166. }
  1167. if (rec < 1.) {
  1168. zdscal_(n, &rec, &x[1], &c__1);
  1169. *scale *= rec;
  1170. xmax *= rec;
  1171. }
  1172. }
  1173. csumj.r = 0., csumj.i = 0.;
  1174. if (uscal.r == 1. && uscal.i == 0.) {
  1175. /* If the scaling needed for A in the dot product is 1, */
  1176. /* call ZDOTU to perform the dot product. */
  1177. if (upper) {
  1178. i__3 = j - 1;
  1179. zdotu_(&z__1, &i__3, &a[j * a_dim1 + 1], &c__1, &x[1],
  1180. &c__1);
  1181. csumj.r = z__1.r, csumj.i = z__1.i;
  1182. } else if (j < *n) {
  1183. i__3 = *n - j;
  1184. zdotu_(&z__1, &i__3, &a[j + 1 + j * a_dim1], &c__1, &
  1185. x[j + 1], &c__1);
  1186. csumj.r = z__1.r, csumj.i = z__1.i;
  1187. }
  1188. } else {
  1189. /* Otherwise, use in-line code for the dot product. */
  1190. if (upper) {
  1191. i__3 = j - 1;
  1192. for (i__ = 1; i__ <= i__3; ++i__) {
  1193. i__4 = i__ + j * a_dim1;
  1194. z__3.r = a[i__4].r * uscal.r - a[i__4].i *
  1195. uscal.i, z__3.i = a[i__4].r * uscal.i + a[
  1196. i__4].i * uscal.r;
  1197. i__5 = i__;
  1198. z__2.r = z__3.r * x[i__5].r - z__3.i * x[i__5].i,
  1199. z__2.i = z__3.r * x[i__5].i + z__3.i * x[
  1200. i__5].r;
  1201. z__1.r = csumj.r + z__2.r, z__1.i = csumj.i +
  1202. z__2.i;
  1203. csumj.r = z__1.r, csumj.i = z__1.i;
  1204. /* L130: */
  1205. }
  1206. } else if (j < *n) {
  1207. i__3 = *n;
  1208. for (i__ = j + 1; i__ <= i__3; ++i__) {
  1209. i__4 = i__ + j * a_dim1;
  1210. z__3.r = a[i__4].r * uscal.r - a[i__4].i *
  1211. uscal.i, z__3.i = a[i__4].r * uscal.i + a[
  1212. i__4].i * uscal.r;
  1213. i__5 = i__;
  1214. z__2.r = z__3.r * x[i__5].r - z__3.i * x[i__5].i,
  1215. z__2.i = z__3.r * x[i__5].i + z__3.i * x[
  1216. i__5].r;
  1217. z__1.r = csumj.r + z__2.r, z__1.i = csumj.i +
  1218. z__2.i;
  1219. csumj.r = z__1.r, csumj.i = z__1.i;
  1220. /* L140: */
  1221. }
  1222. }
  1223. }
  1224. z__1.r = tscal, z__1.i = 0.;
  1225. if (uscal.r == z__1.r && uscal.i == z__1.i) {
  1226. /* Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j) */
  1227. /* was not used to scale the dotproduct. */
  1228. i__3 = j;
  1229. i__4 = j;
  1230. z__1.r = x[i__4].r - csumj.r, z__1.i = x[i__4].i -
  1231. csumj.i;
  1232. x[i__3].r = z__1.r, x[i__3].i = z__1.i;
  1233. i__3 = j;
  1234. xj = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(&x[j])
  1235. , abs(d__2));
  1236. if (nounit) {
  1237. i__3 = j + j * a_dim1;
  1238. z__1.r = tscal * a[i__3].r, z__1.i = tscal * a[i__3]
  1239. .i;
  1240. tjjs.r = z__1.r, tjjs.i = z__1.i;
  1241. } else {
  1242. tjjs.r = tscal, tjjs.i = 0.;
  1243. if (tscal == 1.) {
  1244. goto L160;
  1245. }
  1246. }
  1247. /* Compute x(j) = x(j) / A(j,j), scaling if necessary. */
  1248. tjj = (d__1 = tjjs.r, abs(d__1)) + (d__2 = d_imag(&tjjs),
  1249. abs(d__2));
  1250. if (tjj > smlnum) {
  1251. /* abs(A(j,j)) > SMLNUM: */
  1252. if (tjj < 1.) {
  1253. if (xj > tjj * bignum) {
  1254. /* Scale X by 1/abs(x(j)). */
  1255. rec = 1. / xj;
  1256. zdscal_(n, &rec, &x[1], &c__1);
  1257. *scale *= rec;
  1258. xmax *= rec;
  1259. }
  1260. }
  1261. i__3 = j;
  1262. zladiv_(&z__1, &x[j], &tjjs);
  1263. x[i__3].r = z__1.r, x[i__3].i = z__1.i;
  1264. } else if (tjj > 0.) {
  1265. /* 0 < abs(A(j,j)) <= SMLNUM: */
  1266. if (xj > tjj * bignum) {
  1267. /* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM. */
  1268. rec = tjj * bignum / xj;
  1269. zdscal_(n, &rec, &x[1], &c__1);
  1270. *scale *= rec;
  1271. xmax *= rec;
  1272. }
  1273. i__3 = j;
  1274. zladiv_(&z__1, &x[j], &tjjs);
  1275. x[i__3].r = z__1.r, x[i__3].i = z__1.i;
  1276. } else {
  1277. /* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and */
  1278. /* scale = 0 and compute a solution to A**T *x = 0. */
  1279. i__3 = *n;
  1280. for (i__ = 1; i__ <= i__3; ++i__) {
  1281. i__4 = i__;
  1282. x[i__4].r = 0., x[i__4].i = 0.;
  1283. /* L150: */
  1284. }
  1285. i__3 = j;
  1286. x[i__3].r = 1., x[i__3].i = 0.;
  1287. *scale = 0.;
  1288. xmax = 0.;
  1289. }
  1290. L160:
  1291. ;
  1292. } else {
  1293. /* Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot */
  1294. /* product has already been divided by 1/A(j,j). */
  1295. i__3 = j;
  1296. zladiv_(&z__2, &x[j], &tjjs);
  1297. z__1.r = z__2.r - csumj.r, z__1.i = z__2.i - csumj.i;
  1298. x[i__3].r = z__1.r, x[i__3].i = z__1.i;
  1299. }
  1300. /* Computing MAX */
  1301. i__3 = j;
  1302. d__3 = xmax, d__4 = (d__1 = x[i__3].r, abs(d__1)) + (d__2 =
  1303. d_imag(&x[j]), abs(d__2));
  1304. xmax = f2cmax(d__3,d__4);
  1305. /* L170: */
  1306. }
  1307. } else {
  1308. /* Solve A**H * x = b */
  1309. i__1 = jlast;
  1310. i__2 = jinc;
  1311. for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
  1312. /* Compute x(j) = b(j) - sum A(k,j)*x(k). */
  1313. /* k<>j */
  1314. i__3 = j;
  1315. xj = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(&x[j]),
  1316. abs(d__2));
  1317. uscal.r = tscal, uscal.i = 0.;
  1318. rec = 1. / f2cmax(xmax,1.);
  1319. if (cnorm[j] > (bignum - xj) * rec) {
  1320. /* If x(j) could overflow, scale x by 1/(2*XMAX). */
  1321. rec *= .5;
  1322. if (nounit) {
  1323. d_cnjg(&z__2, &a[j + j * a_dim1]);
  1324. z__1.r = tscal * z__2.r, z__1.i = tscal * z__2.i;
  1325. tjjs.r = z__1.r, tjjs.i = z__1.i;
  1326. } else {
  1327. tjjs.r = tscal, tjjs.i = 0.;
  1328. }
  1329. tjj = (d__1 = tjjs.r, abs(d__1)) + (d__2 = d_imag(&tjjs),
  1330. abs(d__2));
  1331. if (tjj > 1.) {
  1332. /* Divide by A(j,j) when scaling x if A(j,j) > 1. */
  1333. /* Computing MIN */
  1334. d__1 = 1., d__2 = rec * tjj;
  1335. rec = f2cmin(d__1,d__2);
  1336. zladiv_(&z__1, &uscal, &tjjs);
  1337. uscal.r = z__1.r, uscal.i = z__1.i;
  1338. }
  1339. if (rec < 1.) {
  1340. zdscal_(n, &rec, &x[1], &c__1);
  1341. *scale *= rec;
  1342. xmax *= rec;
  1343. }
  1344. }
  1345. csumj.r = 0., csumj.i = 0.;
  1346. if (uscal.r == 1. && uscal.i == 0.) {
  1347. /* If the scaling needed for A in the dot product is 1, */
  1348. /* call ZDOTC to perform the dot product. */
  1349. if (upper) {
  1350. i__3 = j - 1;
  1351. zdotc_(&z__1, &i__3, &a[j * a_dim1 + 1], &c__1, &x[1],
  1352. &c__1);
  1353. csumj.r = z__1.r, csumj.i = z__1.i;
  1354. } else if (j < *n) {
  1355. i__3 = *n - j;
  1356. zdotc_(&z__1, &i__3, &a[j + 1 + j * a_dim1], &c__1, &
  1357. x[j + 1], &c__1);
  1358. csumj.r = z__1.r, csumj.i = z__1.i;
  1359. }
  1360. } else {
  1361. /* Otherwise, use in-line code for the dot product. */
  1362. if (upper) {
  1363. i__3 = j - 1;
  1364. for (i__ = 1; i__ <= i__3; ++i__) {
  1365. d_cnjg(&z__4, &a[i__ + j * a_dim1]);
  1366. z__3.r = z__4.r * uscal.r - z__4.i * uscal.i,
  1367. z__3.i = z__4.r * uscal.i + z__4.i *
  1368. uscal.r;
  1369. i__4 = i__;
  1370. z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i,
  1371. z__2.i = z__3.r * x[i__4].i + z__3.i * x[
  1372. i__4].r;
  1373. z__1.r = csumj.r + z__2.r, z__1.i = csumj.i +
  1374. z__2.i;
  1375. csumj.r = z__1.r, csumj.i = z__1.i;
  1376. /* L180: */
  1377. }
  1378. } else if (j < *n) {
  1379. i__3 = *n;
  1380. for (i__ = j + 1; i__ <= i__3; ++i__) {
  1381. d_cnjg(&z__4, &a[i__ + j * a_dim1]);
  1382. z__3.r = z__4.r * uscal.r - z__4.i * uscal.i,
  1383. z__3.i = z__4.r * uscal.i + z__4.i *
  1384. uscal.r;
  1385. i__4 = i__;
  1386. z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i,
  1387. z__2.i = z__3.r * x[i__4].i + z__3.i * x[
  1388. i__4].r;
  1389. z__1.r = csumj.r + z__2.r, z__1.i = csumj.i +
  1390. z__2.i;
  1391. csumj.r = z__1.r, csumj.i = z__1.i;
  1392. /* L190: */
  1393. }
  1394. }
  1395. }
  1396. z__1.r = tscal, z__1.i = 0.;
  1397. if (uscal.r == z__1.r && uscal.i == z__1.i) {
  1398. /* Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j) */
  1399. /* was not used to scale the dotproduct. */
  1400. i__3 = j;
  1401. i__4 = j;
  1402. z__1.r = x[i__4].r - csumj.r, z__1.i = x[i__4].i -
  1403. csumj.i;
  1404. x[i__3].r = z__1.r, x[i__3].i = z__1.i;
  1405. i__3 = j;
  1406. xj = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(&x[j])
  1407. , abs(d__2));
  1408. if (nounit) {
  1409. d_cnjg(&z__2, &a[j + j * a_dim1]);
  1410. z__1.r = tscal * z__2.r, z__1.i = tscal * z__2.i;
  1411. tjjs.r = z__1.r, tjjs.i = z__1.i;
  1412. } else {
  1413. tjjs.r = tscal, tjjs.i = 0.;
  1414. if (tscal == 1.) {
  1415. goto L210;
  1416. }
  1417. }
  1418. /* Compute x(j) = x(j) / A(j,j), scaling if necessary. */
  1419. tjj = (d__1 = tjjs.r, abs(d__1)) + (d__2 = d_imag(&tjjs),
  1420. abs(d__2));
  1421. if (tjj > smlnum) {
  1422. /* abs(A(j,j)) > SMLNUM: */
  1423. if (tjj < 1.) {
  1424. if (xj > tjj * bignum) {
  1425. /* Scale X by 1/abs(x(j)). */
  1426. rec = 1. / xj;
  1427. zdscal_(n, &rec, &x[1], &c__1);
  1428. *scale *= rec;
  1429. xmax *= rec;
  1430. }
  1431. }
  1432. i__3 = j;
  1433. zladiv_(&z__1, &x[j], &tjjs);
  1434. x[i__3].r = z__1.r, x[i__3].i = z__1.i;
  1435. } else if (tjj > 0.) {
  1436. /* 0 < abs(A(j,j)) <= SMLNUM: */
  1437. if (xj > tjj * bignum) {
  1438. /* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM. */
  1439. rec = tjj * bignum / xj;
  1440. zdscal_(n, &rec, &x[1], &c__1);
  1441. *scale *= rec;
  1442. xmax *= rec;
  1443. }
  1444. i__3 = j;
  1445. zladiv_(&z__1, &x[j], &tjjs);
  1446. x[i__3].r = z__1.r, x[i__3].i = z__1.i;
  1447. } else {
  1448. /* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and */
  1449. /* scale = 0 and compute a solution to A**H *x = 0. */
  1450. i__3 = *n;
  1451. for (i__ = 1; i__ <= i__3; ++i__) {
  1452. i__4 = i__;
  1453. x[i__4].r = 0., x[i__4].i = 0.;
  1454. /* L200: */
  1455. }
  1456. i__3 = j;
  1457. x[i__3].r = 1., x[i__3].i = 0.;
  1458. *scale = 0.;
  1459. xmax = 0.;
  1460. }
  1461. L210:
  1462. ;
  1463. } else {
  1464. /* Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot */
  1465. /* product has already been divided by 1/A(j,j). */
  1466. i__3 = j;
  1467. zladiv_(&z__2, &x[j], &tjjs);
  1468. z__1.r = z__2.r - csumj.r, z__1.i = z__2.i - csumj.i;
  1469. x[i__3].r = z__1.r, x[i__3].i = z__1.i;
  1470. }
  1471. /* Computing MAX */
  1472. i__3 = j;
  1473. d__3 = xmax, d__4 = (d__1 = x[i__3].r, abs(d__1)) + (d__2 =
  1474. d_imag(&x[j]), abs(d__2));
  1475. xmax = f2cmax(d__3,d__4);
  1476. /* L220: */
  1477. }
  1478. }
  1479. *scale /= tscal;
  1480. }
  1481. /* Scale the column norms by 1/TSCAL for return. */
  1482. if (tscal != 1.) {
  1483. d__1 = 1. / tscal;
  1484. dscal_(n, &d__1, &cnorm[1], &c__1);
  1485. }
  1486. return;
  1487. /* End of ZLATRS */
  1488. } /* zlatrs_ */