You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sspevx.c 31 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. /* > \brief <b> SSPEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER
  488. matrices</b> */
  489. /* =========== DOCUMENTATION =========== */
  490. /* Online html documentation available at */
  491. /* http://www.netlib.org/lapack/explore-html/ */
  492. /* > \htmlonly */
  493. /* > Download SSPEVX + dependencies */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sspevx.
  495. f"> */
  496. /* > [TGZ]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sspevx.
  498. f"> */
  499. /* > [ZIP]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sspevx.
  501. f"> */
  502. /* > [TXT]</a> */
  503. /* > \endhtmlonly */
  504. /* Definition: */
  505. /* =========== */
  506. /* SUBROUTINE SSPEVX( JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU, */
  507. /* ABSTOL, M, W, Z, LDZ, WORK, IWORK, IFAIL, */
  508. /* INFO ) */
  509. /* CHARACTER JOBZ, RANGE, UPLO */
  510. /* INTEGER IL, INFO, IU, LDZ, M, N */
  511. /* REAL ABSTOL, VL, VU */
  512. /* INTEGER IFAIL( * ), IWORK( * ) */
  513. /* REAL AP( * ), W( * ), WORK( * ), Z( LDZ, * ) */
  514. /* > \par Purpose: */
  515. /* ============= */
  516. /* > */
  517. /* > \verbatim */
  518. /* > */
  519. /* > SSPEVX computes selected eigenvalues and, optionally, eigenvectors */
  520. /* > of a real symmetric matrix A in packed storage. Eigenvalues/vectors */
  521. /* > can be selected by specifying either a range of values or a range of */
  522. /* > indices for the desired eigenvalues. */
  523. /* > \endverbatim */
  524. /* Arguments: */
  525. /* ========== */
  526. /* > \param[in] JOBZ */
  527. /* > \verbatim */
  528. /* > JOBZ is CHARACTER*1 */
  529. /* > = 'N': Compute eigenvalues only; */
  530. /* > = 'V': Compute eigenvalues and eigenvectors. */
  531. /* > \endverbatim */
  532. /* > */
  533. /* > \param[in] RANGE */
  534. /* > \verbatim */
  535. /* > RANGE is CHARACTER*1 */
  536. /* > = 'A': all eigenvalues will be found; */
  537. /* > = 'V': all eigenvalues in the half-open interval (VL,VU] */
  538. /* > will be found; */
  539. /* > = 'I': the IL-th through IU-th eigenvalues will be found. */
  540. /* > \endverbatim */
  541. /* > */
  542. /* > \param[in] UPLO */
  543. /* > \verbatim */
  544. /* > UPLO is CHARACTER*1 */
  545. /* > = 'U': Upper triangle of A is stored; */
  546. /* > = 'L': Lower triangle of A is stored. */
  547. /* > \endverbatim */
  548. /* > */
  549. /* > \param[in] N */
  550. /* > \verbatim */
  551. /* > N is INTEGER */
  552. /* > The order of the matrix A. N >= 0. */
  553. /* > \endverbatim */
  554. /* > */
  555. /* > \param[in,out] AP */
  556. /* > \verbatim */
  557. /* > AP is REAL array, dimension (N*(N+1)/2) */
  558. /* > On entry, the upper or lower triangle of the symmetric matrix */
  559. /* > A, packed columnwise in a linear array. The j-th column of A */
  560. /* > is stored in the array AP as follows: */
  561. /* > if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
  562. /* > if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */
  563. /* > */
  564. /* > On exit, AP is overwritten by values generated during the */
  565. /* > reduction to tridiagonal form. If UPLO = 'U', the diagonal */
  566. /* > and first superdiagonal of the tridiagonal matrix T overwrite */
  567. /* > the corresponding elements of A, and if UPLO = 'L', the */
  568. /* > diagonal and first subdiagonal of T overwrite the */
  569. /* > corresponding elements of A. */
  570. /* > \endverbatim */
  571. /* > */
  572. /* > \param[in] VL */
  573. /* > \verbatim */
  574. /* > VL is REAL */
  575. /* > If RANGE='V', the lower bound of the interval to */
  576. /* > be searched for eigenvalues. VL < VU. */
  577. /* > Not referenced if RANGE = 'A' or 'I'. */
  578. /* > \endverbatim */
  579. /* > */
  580. /* > \param[in] VU */
  581. /* > \verbatim */
  582. /* > VU is REAL */
  583. /* > If RANGE='V', the upper bound of the interval to */
  584. /* > be searched for eigenvalues. VL < VU. */
  585. /* > Not referenced if RANGE = 'A' or 'I'. */
  586. /* > \endverbatim */
  587. /* > */
  588. /* > \param[in] IL */
  589. /* > \verbatim */
  590. /* > IL is INTEGER */
  591. /* > If RANGE='I', the index of the */
  592. /* > smallest eigenvalue to be returned. */
  593. /* > 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
  594. /* > Not referenced if RANGE = 'A' or 'V'. */
  595. /* > \endverbatim */
  596. /* > */
  597. /* > \param[in] IU */
  598. /* > \verbatim */
  599. /* > IU is INTEGER */
  600. /* > If RANGE='I', the index of the */
  601. /* > largest eigenvalue to be returned. */
  602. /* > 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
  603. /* > Not referenced if RANGE = 'A' or 'V'. */
  604. /* > \endverbatim */
  605. /* > */
  606. /* > \param[in] ABSTOL */
  607. /* > \verbatim */
  608. /* > ABSTOL is REAL */
  609. /* > The absolute error tolerance for the eigenvalues. */
  610. /* > An approximate eigenvalue is accepted as converged */
  611. /* > when it is determined to lie in an interval [a,b] */
  612. /* > of width less than or equal to */
  613. /* > */
  614. /* > ABSTOL + EPS * f2cmax( |a|,|b| ) , */
  615. /* > */
  616. /* > where EPS is the machine precision. If ABSTOL is less than */
  617. /* > or equal to zero, then EPS*|T| will be used in its place, */
  618. /* > where |T| is the 1-norm of the tridiagonal matrix obtained */
  619. /* > by reducing AP to tridiagonal form. */
  620. /* > */
  621. /* > Eigenvalues will be computed most accurately when ABSTOL is */
  622. /* > set to twice the underflow threshold 2*SLAMCH('S'), not zero. */
  623. /* > If this routine returns with INFO>0, indicating that some */
  624. /* > eigenvectors did not converge, try setting ABSTOL to */
  625. /* > 2*SLAMCH('S'). */
  626. /* > */
  627. /* > See "Computing Small Singular Values of Bidiagonal Matrices */
  628. /* > with Guaranteed High Relative Accuracy," by Demmel and */
  629. /* > Kahan, LAPACK Working Note #3. */
  630. /* > \endverbatim */
  631. /* > */
  632. /* > \param[out] M */
  633. /* > \verbatim */
  634. /* > M is INTEGER */
  635. /* > The total number of eigenvalues found. 0 <= M <= N. */
  636. /* > If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
  637. /* > \endverbatim */
  638. /* > */
  639. /* > \param[out] W */
  640. /* > \verbatim */
  641. /* > W is REAL array, dimension (N) */
  642. /* > If INFO = 0, the selected eigenvalues in ascending order. */
  643. /* > \endverbatim */
  644. /* > */
  645. /* > \param[out] Z */
  646. /* > \verbatim */
  647. /* > Z is REAL array, dimension (LDZ, f2cmax(1,M)) */
  648. /* > If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
  649. /* > contain the orthonormal eigenvectors of the matrix A */
  650. /* > corresponding to the selected eigenvalues, with the i-th */
  651. /* > column of Z holding the eigenvector associated with W(i). */
  652. /* > If an eigenvector fails to converge, then that column of Z */
  653. /* > contains the latest approximation to the eigenvector, and the */
  654. /* > index of the eigenvector is returned in IFAIL. */
  655. /* > If JOBZ = 'N', then Z is not referenced. */
  656. /* > Note: the user must ensure that at least f2cmax(1,M) columns are */
  657. /* > supplied in the array Z; if RANGE = 'V', the exact value of M */
  658. /* > is not known in advance and an upper bound must be used. */
  659. /* > \endverbatim */
  660. /* > */
  661. /* > \param[in] LDZ */
  662. /* > \verbatim */
  663. /* > LDZ is INTEGER */
  664. /* > The leading dimension of the array Z. LDZ >= 1, and if */
  665. /* > JOBZ = 'V', LDZ >= f2cmax(1,N). */
  666. /* > \endverbatim */
  667. /* > */
  668. /* > \param[out] WORK */
  669. /* > \verbatim */
  670. /* > WORK is REAL array, dimension (8*N) */
  671. /* > \endverbatim */
  672. /* > */
  673. /* > \param[out] IWORK */
  674. /* > \verbatim */
  675. /* > IWORK is INTEGER array, dimension (5*N) */
  676. /* > \endverbatim */
  677. /* > */
  678. /* > \param[out] IFAIL */
  679. /* > \verbatim */
  680. /* > IFAIL is INTEGER array, dimension (N) */
  681. /* > If JOBZ = 'V', then if INFO = 0, the first M elements of */
  682. /* > IFAIL are zero. If INFO > 0, then IFAIL contains the */
  683. /* > indices of the eigenvectors that failed to converge. */
  684. /* > If JOBZ = 'N', then IFAIL is not referenced. */
  685. /* > \endverbatim */
  686. /* > */
  687. /* > \param[out] INFO */
  688. /* > \verbatim */
  689. /* > INFO is INTEGER */
  690. /* > = 0: successful exit */
  691. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  692. /* > > 0: if INFO = i, then i eigenvectors failed to converge. */
  693. /* > Their indices are stored in array IFAIL. */
  694. /* > \endverbatim */
  695. /* Authors: */
  696. /* ======== */
  697. /* > \author Univ. of Tennessee */
  698. /* > \author Univ. of California Berkeley */
  699. /* > \author Univ. of Colorado Denver */
  700. /* > \author NAG Ltd. */
  701. /* > \date June 2016 */
  702. /* > \ingroup realOTHEReigen */
  703. /* ===================================================================== */
  704. /* Subroutine */ void sspevx_(char *jobz, char *range, char *uplo, integer *n,
  705. real *ap, real *vl, real *vu, integer *il, integer *iu, real *abstol,
  706. integer *m, real *w, real *z__, integer *ldz, real *work, integer *
  707. iwork, integer *ifail, integer *info)
  708. {
  709. /* System generated locals */
  710. integer z_dim1, z_offset, i__1, i__2;
  711. real r__1, r__2;
  712. /* Local variables */
  713. integer indd, inde;
  714. real anrm;
  715. integer imax;
  716. real rmin, rmax;
  717. logical test;
  718. integer itmp1, i__, j, indee;
  719. real sigma;
  720. extern logical lsame_(char *, char *);
  721. integer iinfo;
  722. extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *);
  723. char order[1];
  724. extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *,
  725. integer *), sswap_(integer *, real *, integer *, real *, integer *
  726. );
  727. logical wantz;
  728. integer jj;
  729. logical alleig, indeig;
  730. integer iscale, indibl;
  731. logical valeig;
  732. extern real slamch_(char *);
  733. real safmin;
  734. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  735. real abstll, bignum;
  736. integer indtau, indisp, indiwo, indwrk;
  737. extern real slansp_(char *, char *, integer *, real *, real *);
  738. extern /* Subroutine */ void sstein_(integer *, real *, real *, integer *,
  739. real *, integer *, integer *, real *, integer *, real *, integer *
  740. , integer *, integer *), ssterf_(integer *, real *, real *,
  741. integer *);
  742. integer nsplit;
  743. extern /* Subroutine */ void sstebz_(char *, char *, integer *, real *,
  744. real *, integer *, integer *, real *, real *, real *, integer *,
  745. integer *, real *, integer *, integer *, real *, integer *,
  746. integer *);
  747. real smlnum;
  748. extern /* Subroutine */ void sopgtr_(char *, integer *, real *, real *,
  749. real *, integer *, real *, integer *), ssptrd_(char *,
  750. integer *, real *, real *, real *, real *, integer *),
  751. ssteqr_(char *, integer *, real *, real *, real *, integer *,
  752. real *, integer *), sopmtr_(char *, char *, char *,
  753. integer *, integer *, real *, real *, real *, integer *, real *,
  754. integer *);
  755. real eps, vll, vuu, tmp1;
  756. /* -- LAPACK driver routine (version 3.7.0) -- */
  757. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  758. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  759. /* June 2016 */
  760. /* ===================================================================== */
  761. /* Test the input parameters. */
  762. /* Parameter adjustments */
  763. --ap;
  764. --w;
  765. z_dim1 = *ldz;
  766. z_offset = 1 + z_dim1 * 1;
  767. z__ -= z_offset;
  768. --work;
  769. --iwork;
  770. --ifail;
  771. /* Function Body */
  772. wantz = lsame_(jobz, "V");
  773. alleig = lsame_(range, "A");
  774. valeig = lsame_(range, "V");
  775. indeig = lsame_(range, "I");
  776. *info = 0;
  777. if (! (wantz || lsame_(jobz, "N"))) {
  778. *info = -1;
  779. } else if (! (alleig || valeig || indeig)) {
  780. *info = -2;
  781. } else if (! (lsame_(uplo, "L") || lsame_(uplo,
  782. "U"))) {
  783. *info = -3;
  784. } else if (*n < 0) {
  785. *info = -4;
  786. } else {
  787. if (valeig) {
  788. if (*n > 0 && *vu <= *vl) {
  789. *info = -7;
  790. }
  791. } else if (indeig) {
  792. if (*il < 1 || *il > f2cmax(1,*n)) {
  793. *info = -8;
  794. } else if (*iu < f2cmin(*n,*il) || *iu > *n) {
  795. *info = -9;
  796. }
  797. }
  798. }
  799. if (*info == 0) {
  800. if (*ldz < 1 || wantz && *ldz < *n) {
  801. *info = -14;
  802. }
  803. }
  804. if (*info != 0) {
  805. i__1 = -(*info);
  806. xerbla_("SSPEVX", &i__1, (ftnlen)6);
  807. return;
  808. }
  809. /* Quick return if possible */
  810. *m = 0;
  811. if (*n == 0) {
  812. return;
  813. }
  814. if (*n == 1) {
  815. if (alleig || indeig) {
  816. *m = 1;
  817. w[1] = ap[1];
  818. } else {
  819. if (*vl < ap[1] && *vu >= ap[1]) {
  820. *m = 1;
  821. w[1] = ap[1];
  822. }
  823. }
  824. if (wantz) {
  825. z__[z_dim1 + 1] = 1.f;
  826. }
  827. return;
  828. }
  829. /* Get machine constants. */
  830. safmin = slamch_("Safe minimum");
  831. eps = slamch_("Precision");
  832. smlnum = safmin / eps;
  833. bignum = 1.f / smlnum;
  834. rmin = sqrt(smlnum);
  835. /* Computing MIN */
  836. r__1 = sqrt(bignum), r__2 = 1.f / sqrt(sqrt(safmin));
  837. rmax = f2cmin(r__1,r__2);
  838. /* Scale matrix to allowable range, if necessary. */
  839. iscale = 0;
  840. abstll = *abstol;
  841. if (valeig) {
  842. vll = *vl;
  843. vuu = *vu;
  844. } else {
  845. vll = 0.f;
  846. vuu = 0.f;
  847. }
  848. anrm = slansp_("M", uplo, n, &ap[1], &work[1]);
  849. if (anrm > 0.f && anrm < rmin) {
  850. iscale = 1;
  851. sigma = rmin / anrm;
  852. } else if (anrm > rmax) {
  853. iscale = 1;
  854. sigma = rmax / anrm;
  855. }
  856. if (iscale == 1) {
  857. i__1 = *n * (*n + 1) / 2;
  858. sscal_(&i__1, &sigma, &ap[1], &c__1);
  859. if (*abstol > 0.f) {
  860. abstll = *abstol * sigma;
  861. }
  862. if (valeig) {
  863. vll = *vl * sigma;
  864. vuu = *vu * sigma;
  865. }
  866. }
  867. /* Call SSPTRD to reduce symmetric packed matrix to tridiagonal form. */
  868. indtau = 1;
  869. inde = indtau + *n;
  870. indd = inde + *n;
  871. indwrk = indd + *n;
  872. ssptrd_(uplo, n, &ap[1], &work[indd], &work[inde], &work[indtau], &iinfo);
  873. /* If all eigenvalues are desired and ABSTOL is less than or equal */
  874. /* to zero, then call SSTERF or SOPGTR and SSTEQR. If this fails */
  875. /* for some eigenvalue, then try SSTEBZ. */
  876. test = FALSE_;
  877. if (indeig) {
  878. if (*il == 1 && *iu == *n) {
  879. test = TRUE_;
  880. }
  881. }
  882. if ((alleig || test) && *abstol <= 0.f) {
  883. scopy_(n, &work[indd], &c__1, &w[1], &c__1);
  884. indee = indwrk + (*n << 1);
  885. if (! wantz) {
  886. i__1 = *n - 1;
  887. scopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
  888. ssterf_(n, &w[1], &work[indee], info);
  889. } else {
  890. sopgtr_(uplo, n, &ap[1], &work[indtau], &z__[z_offset], ldz, &
  891. work[indwrk], &iinfo);
  892. i__1 = *n - 1;
  893. scopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
  894. ssteqr_(jobz, n, &w[1], &work[indee], &z__[z_offset], ldz, &work[
  895. indwrk], info);
  896. if (*info == 0) {
  897. i__1 = *n;
  898. for (i__ = 1; i__ <= i__1; ++i__) {
  899. ifail[i__] = 0;
  900. /* L10: */
  901. }
  902. }
  903. }
  904. if (*info == 0) {
  905. *m = *n;
  906. goto L20;
  907. }
  908. *info = 0;
  909. }
  910. /* Otherwise, call SSTEBZ and, if eigenvectors are desired, SSTEIN. */
  911. if (wantz) {
  912. *(unsigned char *)order = 'B';
  913. } else {
  914. *(unsigned char *)order = 'E';
  915. }
  916. indibl = 1;
  917. indisp = indibl + *n;
  918. indiwo = indisp + *n;
  919. sstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &work[indd], &work[
  920. inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &work[
  921. indwrk], &iwork[indiwo], info);
  922. if (wantz) {
  923. sstein_(n, &work[indd], &work[inde], m, &w[1], &iwork[indibl], &iwork[
  924. indisp], &z__[z_offset], ldz, &work[indwrk], &iwork[indiwo], &
  925. ifail[1], info);
  926. /* Apply orthogonal matrix used in reduction to tridiagonal */
  927. /* form to eigenvectors returned by SSTEIN. */
  928. sopmtr_("L", uplo, "N", n, m, &ap[1], &work[indtau], &z__[z_offset],
  929. ldz, &work[indwrk], &iinfo);
  930. }
  931. /* If matrix was scaled, then rescale eigenvalues appropriately. */
  932. L20:
  933. if (iscale == 1) {
  934. if (*info == 0) {
  935. imax = *m;
  936. } else {
  937. imax = *info - 1;
  938. }
  939. r__1 = 1.f / sigma;
  940. sscal_(&imax, &r__1, &w[1], &c__1);
  941. }
  942. /* If eigenvalues are not in order, then sort them, along with */
  943. /* eigenvectors. */
  944. if (wantz) {
  945. i__1 = *m - 1;
  946. for (j = 1; j <= i__1; ++j) {
  947. i__ = 0;
  948. tmp1 = w[j];
  949. i__2 = *m;
  950. for (jj = j + 1; jj <= i__2; ++jj) {
  951. if (w[jj] < tmp1) {
  952. i__ = jj;
  953. tmp1 = w[jj];
  954. }
  955. /* L30: */
  956. }
  957. if (i__ != 0) {
  958. itmp1 = iwork[indibl + i__ - 1];
  959. w[i__] = w[j];
  960. iwork[indibl + i__ - 1] = iwork[indibl + j - 1];
  961. w[j] = tmp1;
  962. iwork[indibl + j - 1] = itmp1;
  963. sswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1],
  964. &c__1);
  965. if (*info != 0) {
  966. itmp1 = ifail[i__];
  967. ifail[i__] = ifail[j];
  968. ifail[j] = itmp1;
  969. }
  970. }
  971. /* L40: */
  972. }
  973. }
  974. return;
  975. /* End of SSPEVX */
  976. } /* sspevx_ */