You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sgges.c 39 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static integer c__0 = 0;
  488. static integer c_n1 = -1;
  489. static real c_b38 = 0.f;
  490. static real c_b39 = 1.f;
  491. /* > \brief <b> SGGES computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors f
  492. or GE matrices</b> */
  493. /* =========== DOCUMENTATION =========== */
  494. /* Online html documentation available at */
  495. /* http://www.netlib.org/lapack/explore-html/ */
  496. /* > \htmlonly */
  497. /* > Download SGGES + dependencies */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgges.f
  499. "> */
  500. /* > [TGZ]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgges.f
  502. "> */
  503. /* > [ZIP]</a> */
  504. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgges.f
  505. "> */
  506. /* > [TXT]</a> */
  507. /* > \endhtmlonly */
  508. /* Definition: */
  509. /* =========== */
  510. /* SUBROUTINE SGGES( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB, */
  511. /* SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, */
  512. /* LDVSR, WORK, LWORK, BWORK, INFO ) */
  513. /* CHARACTER JOBVSL, JOBVSR, SORT */
  514. /* INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM */
  515. /* LOGICAL BWORK( * ) */
  516. /* REAL A( LDA, * ), ALPHAI( * ), ALPHAR( * ), */
  517. /* $ B( LDB, * ), BETA( * ), VSL( LDVSL, * ), */
  518. /* $ VSR( LDVSR, * ), WORK( * ) */
  519. /* LOGICAL SELCTG */
  520. /* EXTERNAL SELCTG */
  521. /* > \par Purpose: */
  522. /* ============= */
  523. /* > */
  524. /* > \verbatim */
  525. /* > */
  526. /* > SGGES computes for a pair of N-by-N real nonsymmetric matrices (A,B), */
  527. /* > the generalized eigenvalues, the generalized real Schur form (S,T), */
  528. /* > optionally, the left and/or right matrices of Schur vectors (VSL and */
  529. /* > VSR). This gives the generalized Schur factorization */
  530. /* > */
  531. /* > (A,B) = ( (VSL)*S*(VSR)**T, (VSL)*T*(VSR)**T ) */
  532. /* > */
  533. /* > Optionally, it also orders the eigenvalues so that a selected cluster */
  534. /* > of eigenvalues appears in the leading diagonal blocks of the upper */
  535. /* > quasi-triangular matrix S and the upper triangular matrix T.The */
  536. /* > leading columns of VSL and VSR then form an orthonormal basis for the */
  537. /* > corresponding left and right eigenspaces (deflating subspaces). */
  538. /* > */
  539. /* > (If only the generalized eigenvalues are needed, use the driver */
  540. /* > SGGEV instead, which is faster.) */
  541. /* > */
  542. /* > A generalized eigenvalue for a pair of matrices (A,B) is a scalar w */
  543. /* > or a ratio alpha/beta = w, such that A - w*B is singular. It is */
  544. /* > usually represented as the pair (alpha,beta), as there is a */
  545. /* > reasonable interpretation for beta=0 or both being zero. */
  546. /* > */
  547. /* > A pair of matrices (S,T) is in generalized real Schur form if T is */
  548. /* > upper triangular with non-negative diagonal and S is block upper */
  549. /* > triangular with 1-by-1 and 2-by-2 blocks. 1-by-1 blocks correspond */
  550. /* > to real generalized eigenvalues, while 2-by-2 blocks of S will be */
  551. /* > "standardized" by making the corresponding elements of T have the */
  552. /* > form: */
  553. /* > [ a 0 ] */
  554. /* > [ 0 b ] */
  555. /* > */
  556. /* > and the pair of corresponding 2-by-2 blocks in S and T will have a */
  557. /* > complex conjugate pair of generalized eigenvalues. */
  558. /* > */
  559. /* > \endverbatim */
  560. /* Arguments: */
  561. /* ========== */
  562. /* > \param[in] JOBVSL */
  563. /* > \verbatim */
  564. /* > JOBVSL is CHARACTER*1 */
  565. /* > = 'N': do not compute the left Schur vectors; */
  566. /* > = 'V': compute the left Schur vectors. */
  567. /* > \endverbatim */
  568. /* > */
  569. /* > \param[in] JOBVSR */
  570. /* > \verbatim */
  571. /* > JOBVSR is CHARACTER*1 */
  572. /* > = 'N': do not compute the right Schur vectors; */
  573. /* > = 'V': compute the right Schur vectors. */
  574. /* > \endverbatim */
  575. /* > */
  576. /* > \param[in] SORT */
  577. /* > \verbatim */
  578. /* > SORT is CHARACTER*1 */
  579. /* > Specifies whether or not to order the eigenvalues on the */
  580. /* > diagonal of the generalized Schur form. */
  581. /* > = 'N': Eigenvalues are not ordered; */
  582. /* > = 'S': Eigenvalues are ordered (see SELCTG); */
  583. /* > \endverbatim */
  584. /* > */
  585. /* > \param[in] SELCTG */
  586. /* > \verbatim */
  587. /* > SELCTG is a LOGICAL FUNCTION of three REAL arguments */
  588. /* > SELCTG must be declared EXTERNAL in the calling subroutine. */
  589. /* > If SORT = 'N', SELCTG is not referenced. */
  590. /* > If SORT = 'S', SELCTG is used to select eigenvalues to sort */
  591. /* > to the top left of the Schur form. */
  592. /* > An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j) is selected if */
  593. /* > SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e. if either */
  594. /* > one of a complex conjugate pair of eigenvalues is selected, */
  595. /* > then both complex eigenvalues are selected. */
  596. /* > */
  597. /* > Note that in the ill-conditioned case, a selected complex */
  598. /* > eigenvalue may no longer satisfy SELCTG(ALPHAR(j),ALPHAI(j), */
  599. /* > BETA(j)) = .TRUE. after ordering. INFO is to be set to N+2 */
  600. /* > in this case. */
  601. /* > \endverbatim */
  602. /* > */
  603. /* > \param[in] N */
  604. /* > \verbatim */
  605. /* > N is INTEGER */
  606. /* > The order of the matrices A, B, VSL, and VSR. N >= 0. */
  607. /* > \endverbatim */
  608. /* > */
  609. /* > \param[in,out] A */
  610. /* > \verbatim */
  611. /* > A is REAL array, dimension (LDA, N) */
  612. /* > On entry, the first of the pair of matrices. */
  613. /* > On exit, A has been overwritten by its generalized Schur */
  614. /* > form S. */
  615. /* > \endverbatim */
  616. /* > */
  617. /* > \param[in] LDA */
  618. /* > \verbatim */
  619. /* > LDA is INTEGER */
  620. /* > The leading dimension of A. LDA >= f2cmax(1,N). */
  621. /* > \endverbatim */
  622. /* > */
  623. /* > \param[in,out] B */
  624. /* > \verbatim */
  625. /* > B is REAL array, dimension (LDB, N) */
  626. /* > On entry, the second of the pair of matrices. */
  627. /* > On exit, B has been overwritten by its generalized Schur */
  628. /* > form T. */
  629. /* > \endverbatim */
  630. /* > */
  631. /* > \param[in] LDB */
  632. /* > \verbatim */
  633. /* > LDB is INTEGER */
  634. /* > The leading dimension of B. LDB >= f2cmax(1,N). */
  635. /* > \endverbatim */
  636. /* > */
  637. /* > \param[out] SDIM */
  638. /* > \verbatim */
  639. /* > SDIM is INTEGER */
  640. /* > If SORT = 'N', SDIM = 0. */
  641. /* > If SORT = 'S', SDIM = number of eigenvalues (after sorting) */
  642. /* > for which SELCTG is true. (Complex conjugate pairs for which */
  643. /* > SELCTG is true for either eigenvalue count as 2.) */
  644. /* > \endverbatim */
  645. /* > */
  646. /* > \param[out] ALPHAR */
  647. /* > \verbatim */
  648. /* > ALPHAR is REAL array, dimension (N) */
  649. /* > \endverbatim */
  650. /* > */
  651. /* > \param[out] ALPHAI */
  652. /* > \verbatim */
  653. /* > ALPHAI is REAL array, dimension (N) */
  654. /* > \endverbatim */
  655. /* > */
  656. /* > \param[out] BETA */
  657. /* > \verbatim */
  658. /* > BETA is REAL array, dimension (N) */
  659. /* > On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will */
  660. /* > be the generalized eigenvalues. ALPHAR(j) + ALPHAI(j)*i, */
  661. /* > and BETA(j),j=1,...,N are the diagonals of the complex Schur */
  662. /* > form (S,T) that would result if the 2-by-2 diagonal blocks of */
  663. /* > the real Schur form of (A,B) were further reduced to */
  664. /* > triangular form using 2-by-2 complex unitary transformations. */
  665. /* > If ALPHAI(j) is zero, then the j-th eigenvalue is real; if */
  666. /* > positive, then the j-th and (j+1)-st eigenvalues are a */
  667. /* > complex conjugate pair, with ALPHAI(j+1) negative. */
  668. /* > */
  669. /* > Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j) */
  670. /* > may easily over- or underflow, and BETA(j) may even be zero. */
  671. /* > Thus, the user should avoid naively computing the ratio. */
  672. /* > However, ALPHAR and ALPHAI will be always less than and */
  673. /* > usually comparable with norm(A) in magnitude, and BETA always */
  674. /* > less than and usually comparable with norm(B). */
  675. /* > \endverbatim */
  676. /* > */
  677. /* > \param[out] VSL */
  678. /* > \verbatim */
  679. /* > VSL is REAL array, dimension (LDVSL,N) */
  680. /* > If JOBVSL = 'V', VSL will contain the left Schur vectors. */
  681. /* > Not referenced if JOBVSL = 'N'. */
  682. /* > \endverbatim */
  683. /* > */
  684. /* > \param[in] LDVSL */
  685. /* > \verbatim */
  686. /* > LDVSL is INTEGER */
  687. /* > The leading dimension of the matrix VSL. LDVSL >=1, and */
  688. /* > if JOBVSL = 'V', LDVSL >= N. */
  689. /* > \endverbatim */
  690. /* > */
  691. /* > \param[out] VSR */
  692. /* > \verbatim */
  693. /* > VSR is REAL array, dimension (LDVSR,N) */
  694. /* > If JOBVSR = 'V', VSR will contain the right Schur vectors. */
  695. /* > Not referenced if JOBVSR = 'N'. */
  696. /* > \endverbatim */
  697. /* > */
  698. /* > \param[in] LDVSR */
  699. /* > \verbatim */
  700. /* > LDVSR is INTEGER */
  701. /* > The leading dimension of the matrix VSR. LDVSR >= 1, and */
  702. /* > if JOBVSR = 'V', LDVSR >= N. */
  703. /* > \endverbatim */
  704. /* > */
  705. /* > \param[out] WORK */
  706. /* > \verbatim */
  707. /* > WORK is REAL array, dimension (MAX(1,LWORK)) */
  708. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  709. /* > \endverbatim */
  710. /* > */
  711. /* > \param[in] LWORK */
  712. /* > \verbatim */
  713. /* > LWORK is INTEGER */
  714. /* > The dimension of the array WORK. */
  715. /* > If N = 0, LWORK >= 1, else LWORK >= f2cmax(8*N,6*N+16). */
  716. /* > For good performance , LWORK must generally be larger. */
  717. /* > */
  718. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  719. /* > only calculates the optimal size of the WORK array, returns */
  720. /* > this value as the first entry of the WORK array, and no error */
  721. /* > message related to LWORK is issued by XERBLA. */
  722. /* > \endverbatim */
  723. /* > */
  724. /* > \param[out] BWORK */
  725. /* > \verbatim */
  726. /* > BWORK is LOGICAL array, dimension (N) */
  727. /* > Not referenced if SORT = 'N'. */
  728. /* > \endverbatim */
  729. /* > */
  730. /* > \param[out] INFO */
  731. /* > \verbatim */
  732. /* > INFO is INTEGER */
  733. /* > = 0: successful exit */
  734. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  735. /* > = 1,...,N: */
  736. /* > The QZ iteration failed. (A,B) are not in Schur */
  737. /* > form, but ALPHAR(j), ALPHAI(j), and BETA(j) should */
  738. /* > be correct for j=INFO+1,...,N. */
  739. /* > > N: =N+1: other than QZ iteration failed in SHGEQZ. */
  740. /* > =N+2: after reordering, roundoff changed values of */
  741. /* > some complex eigenvalues so that leading */
  742. /* > eigenvalues in the Generalized Schur form no */
  743. /* > longer satisfy SELCTG=.TRUE. This could also */
  744. /* > be caused due to scaling. */
  745. /* > =N+3: reordering failed in STGSEN. */
  746. /* > \endverbatim */
  747. /* Authors: */
  748. /* ======== */
  749. /* > \author Univ. of Tennessee */
  750. /* > \author Univ. of California Berkeley */
  751. /* > \author Univ. of Colorado Denver */
  752. /* > \author NAG Ltd. */
  753. /* > \date December 2016 */
  754. /* > \ingroup realGEeigen */
  755. /* ===================================================================== */
  756. /* Subroutine */ void sgges_(char *jobvsl, char *jobvsr, char *sort, L_fp
  757. selctg, integer *n, real *a, integer *lda, real *b, integer *ldb,
  758. integer *sdim, real *alphar, real *alphai, real *beta, real *vsl,
  759. integer *ldvsl, real *vsr, integer *ldvsr, real *work, integer *lwork,
  760. logical *bwork, integer *info)
  761. {
  762. /* System generated locals */
  763. integer a_dim1, a_offset, b_dim1, b_offset, vsl_dim1, vsl_offset,
  764. vsr_dim1, vsr_offset, i__1, i__2;
  765. real r__1;
  766. /* Local variables */
  767. real anrm, bnrm;
  768. integer idum[1], ierr, itau, iwrk;
  769. real pvsl, pvsr;
  770. integer i__;
  771. extern logical lsame_(char *, char *);
  772. integer ileft, icols;
  773. logical cursl, ilvsl, ilvsr;
  774. integer irows;
  775. logical lst2sl;
  776. extern /* Subroutine */ void slabad_(real *, real *);
  777. integer ip;
  778. extern /* Subroutine */ void sggbak_(char *, char *, integer *, integer *,
  779. integer *, real *, real *, integer *, real *, integer *, integer *
  780. ), sggbal_(char *, integer *, real *, integer *,
  781. real *, integer *, integer *, integer *, real *, real *, real *,
  782. integer *);
  783. logical ilascl, ilbscl;
  784. extern real slamch_(char *), slange_(char *, integer *, integer *,
  785. real *, integer *, real *);
  786. real safmin;
  787. extern /* Subroutine */ void sgghrd_(char *, char *, integer *, integer *,
  788. integer *, real *, integer *, real *, integer *, real *, integer *
  789. , real *, integer *, integer *);
  790. real safmax;
  791. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  792. real bignum;
  793. extern /* Subroutine */ void slascl_(char *, integer *, integer *, real *,
  794. real *, integer *, integer *, real *, integer *, integer *);
  795. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  796. integer *, integer *, ftnlen, ftnlen);
  797. integer ijobvl, iright;
  798. extern /* Subroutine */ void sgeqrf_(integer *, integer *, real *, integer
  799. *, real *, real *, integer *, integer *);
  800. integer ijobvr;
  801. extern /* Subroutine */ void slacpy_(char *, integer *, integer *, real *,
  802. integer *, real *, integer *), slaset_(char *, integer *,
  803. integer *, real *, real *, real *, integer *);
  804. real anrmto, bnrmto;
  805. logical lastsl;
  806. extern /* Subroutine */ void shgeqz_(char *, char *, char *, integer *,
  807. integer *, integer *, real *, integer *, real *, integer *, real *
  808. , real *, real *, real *, integer *, real *, integer *, real *,
  809. integer *, integer *), stgsen_(integer *,
  810. logical *, logical *, logical *, integer *, real *, integer *,
  811. real *, integer *, real *, real *, real *, real *, integer *,
  812. real *, integer *, integer *, real *, real *, real *, real *,
  813. integer *, integer *, integer *, integer *);
  814. integer minwrk, maxwrk;
  815. real smlnum;
  816. extern /* Subroutine */ void sorgqr_(integer *, integer *, integer *, real
  817. *, integer *, real *, real *, integer *, integer *);
  818. logical wantst, lquery;
  819. extern /* Subroutine */ void sormqr_(char *, char *, integer *, integer *,
  820. integer *, real *, integer *, real *, real *, integer *, real *,
  821. integer *, integer *);
  822. real dif[2];
  823. integer ihi, ilo;
  824. real eps;
  825. /* -- LAPACK driver routine (version 3.7.0) -- */
  826. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  827. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  828. /* December 2016 */
  829. /* ===================================================================== */
  830. /* Decode the input arguments */
  831. /* Parameter adjustments */
  832. a_dim1 = *lda;
  833. a_offset = 1 + a_dim1 * 1;
  834. a -= a_offset;
  835. b_dim1 = *ldb;
  836. b_offset = 1 + b_dim1 * 1;
  837. b -= b_offset;
  838. --alphar;
  839. --alphai;
  840. --beta;
  841. vsl_dim1 = *ldvsl;
  842. vsl_offset = 1 + vsl_dim1 * 1;
  843. vsl -= vsl_offset;
  844. vsr_dim1 = *ldvsr;
  845. vsr_offset = 1 + vsr_dim1 * 1;
  846. vsr -= vsr_offset;
  847. --work;
  848. --bwork;
  849. /* Function Body */
  850. if (lsame_(jobvsl, "N")) {
  851. ijobvl = 1;
  852. ilvsl = FALSE_;
  853. } else if (lsame_(jobvsl, "V")) {
  854. ijobvl = 2;
  855. ilvsl = TRUE_;
  856. } else {
  857. ijobvl = -1;
  858. ilvsl = FALSE_;
  859. }
  860. if (lsame_(jobvsr, "N")) {
  861. ijobvr = 1;
  862. ilvsr = FALSE_;
  863. } else if (lsame_(jobvsr, "V")) {
  864. ijobvr = 2;
  865. ilvsr = TRUE_;
  866. } else {
  867. ijobvr = -1;
  868. ilvsr = FALSE_;
  869. }
  870. wantst = lsame_(sort, "S");
  871. /* Test the input arguments */
  872. *info = 0;
  873. lquery = *lwork == -1;
  874. if (ijobvl <= 0) {
  875. *info = -1;
  876. } else if (ijobvr <= 0) {
  877. *info = -2;
  878. } else if (! wantst && ! lsame_(sort, "N")) {
  879. *info = -3;
  880. } else if (*n < 0) {
  881. *info = -5;
  882. } else if (*lda < f2cmax(1,*n)) {
  883. *info = -7;
  884. } else if (*ldb < f2cmax(1,*n)) {
  885. *info = -9;
  886. } else if (*ldvsl < 1 || ilvsl && *ldvsl < *n) {
  887. *info = -15;
  888. } else if (*ldvsr < 1 || ilvsr && *ldvsr < *n) {
  889. *info = -17;
  890. }
  891. /* Compute workspace */
  892. /* (Note: Comments in the code beginning "Workspace:" describe the */
  893. /* minimal amount of workspace needed at that point in the code, */
  894. /* as well as the preferred amount for good performance. */
  895. /* NB refers to the optimal block size for the immediately */
  896. /* following subroutine, as returned by ILAENV.) */
  897. if (*info == 0) {
  898. if (*n > 0) {
  899. /* Computing MAX */
  900. i__1 = *n << 3, i__2 = *n * 6 + 16;
  901. minwrk = f2cmax(i__1,i__2);
  902. maxwrk = minwrk - *n + *n * ilaenv_(&c__1, "SGEQRF", " ", n, &
  903. c__1, n, &c__0, (ftnlen)6, (ftnlen)1);
  904. /* Computing MAX */
  905. i__1 = maxwrk, i__2 = minwrk - *n + *n * ilaenv_(&c__1, "SORMQR",
  906. " ", n, &c__1, n, &c_n1, (ftnlen)6, (ftnlen)1);
  907. maxwrk = f2cmax(i__1,i__2);
  908. if (ilvsl) {
  909. /* Computing MAX */
  910. i__1 = maxwrk, i__2 = minwrk - *n + *n * ilaenv_(&c__1, "SOR"
  911. "GQR", " ", n, &c__1, n, &c_n1, (ftnlen)6, (ftnlen)1);
  912. maxwrk = f2cmax(i__1,i__2);
  913. }
  914. } else {
  915. minwrk = 1;
  916. maxwrk = 1;
  917. }
  918. work[1] = (real) maxwrk;
  919. if (*lwork < minwrk && ! lquery) {
  920. *info = -19;
  921. }
  922. }
  923. if (*info != 0) {
  924. i__1 = -(*info);
  925. xerbla_("SGGES ", &i__1, (ftnlen)5);
  926. return;
  927. } else if (lquery) {
  928. return;
  929. }
  930. /* Quick return if possible */
  931. if (*n == 0) {
  932. *sdim = 0;
  933. return;
  934. }
  935. /* Get machine constants */
  936. eps = slamch_("P");
  937. safmin = slamch_("S");
  938. safmax = 1.f / safmin;
  939. slabad_(&safmin, &safmax);
  940. smlnum = sqrt(safmin) / eps;
  941. bignum = 1.f / smlnum;
  942. /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
  943. anrm = slange_("M", n, n, &a[a_offset], lda, &work[1]);
  944. ilascl = FALSE_;
  945. if (anrm > 0.f && anrm < smlnum) {
  946. anrmto = smlnum;
  947. ilascl = TRUE_;
  948. } else if (anrm > bignum) {
  949. anrmto = bignum;
  950. ilascl = TRUE_;
  951. }
  952. if (ilascl) {
  953. slascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, &
  954. ierr);
  955. }
  956. /* Scale B if f2cmax element outside range [SMLNUM,BIGNUM] */
  957. bnrm = slange_("M", n, n, &b[b_offset], ldb, &work[1]);
  958. ilbscl = FALSE_;
  959. if (bnrm > 0.f && bnrm < smlnum) {
  960. bnrmto = smlnum;
  961. ilbscl = TRUE_;
  962. } else if (bnrm > bignum) {
  963. bnrmto = bignum;
  964. ilbscl = TRUE_;
  965. }
  966. if (ilbscl) {
  967. slascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &
  968. ierr);
  969. }
  970. /* Permute the matrix to make it more nearly triangular */
  971. /* (Workspace: need 6*N + 2*N space for storing balancing factors) */
  972. ileft = 1;
  973. iright = *n + 1;
  974. iwrk = iright + *n;
  975. sggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[
  976. ileft], &work[iright], &work[iwrk], &ierr);
  977. /* Reduce B to triangular form (QR decomposition of B) */
  978. /* (Workspace: need N, prefer N*NB) */
  979. irows = ihi + 1 - ilo;
  980. icols = *n + 1 - ilo;
  981. itau = iwrk;
  982. iwrk = itau + irows;
  983. i__1 = *lwork + 1 - iwrk;
  984. sgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[
  985. iwrk], &i__1, &ierr);
  986. /* Apply the orthogonal transformation to matrix A */
  987. /* (Workspace: need N, prefer N*NB) */
  988. i__1 = *lwork + 1 - iwrk;
  989. sormqr_("L", "T", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, &
  990. work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwrk], &i__1, &
  991. ierr);
  992. /* Initialize VSL */
  993. /* (Workspace: need N, prefer N*NB) */
  994. if (ilvsl) {
  995. slaset_("Full", n, n, &c_b38, &c_b39, &vsl[vsl_offset], ldvsl);
  996. if (irows > 1) {
  997. i__1 = irows - 1;
  998. i__2 = irows - 1;
  999. slacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vsl[
  1000. ilo + 1 + ilo * vsl_dim1], ldvsl);
  1001. }
  1002. i__1 = *lwork + 1 - iwrk;
  1003. sorgqr_(&irows, &irows, &irows, &vsl[ilo + ilo * vsl_dim1], ldvsl, &
  1004. work[itau], &work[iwrk], &i__1, &ierr);
  1005. }
  1006. /* Initialize VSR */
  1007. if (ilvsr) {
  1008. slaset_("Full", n, n, &c_b38, &c_b39, &vsr[vsr_offset], ldvsr);
  1009. }
  1010. /* Reduce to generalized Hessenberg form */
  1011. /* (Workspace: none needed) */
  1012. sgghrd_(jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset],
  1013. ldb, &vsl[vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, &ierr);
  1014. /* Perform QZ algorithm, computing Schur vectors if desired */
  1015. /* (Workspace: need N) */
  1016. iwrk = itau;
  1017. i__1 = *lwork + 1 - iwrk;
  1018. shgeqz_("S", jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[
  1019. b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[vsl_offset]
  1020. , ldvsl, &vsr[vsr_offset], ldvsr, &work[iwrk], &i__1, &ierr);
  1021. if (ierr != 0) {
  1022. if (ierr > 0 && ierr <= *n) {
  1023. *info = ierr;
  1024. } else if (ierr > *n && ierr <= *n << 1) {
  1025. *info = ierr - *n;
  1026. } else {
  1027. *info = *n + 1;
  1028. }
  1029. goto L40;
  1030. }
  1031. /* Sort eigenvalues ALPHA/BETA if desired */
  1032. /* (Workspace: need 4*N+16 ) */
  1033. *sdim = 0;
  1034. if (wantst) {
  1035. /* Undo scaling on eigenvalues before SELCTGing */
  1036. if (ilascl) {
  1037. slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1],
  1038. n, &ierr);
  1039. slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1],
  1040. n, &ierr);
  1041. }
  1042. if (ilbscl) {
  1043. slascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n,
  1044. &ierr);
  1045. }
  1046. /* Select eigenvalues */
  1047. i__1 = *n;
  1048. for (i__ = 1; i__ <= i__1; ++i__) {
  1049. bwork[i__] = (*selctg)(&alphar[i__], &alphai[i__], &beta[i__]);
  1050. /* L10: */
  1051. }
  1052. i__1 = *lwork - iwrk + 1;
  1053. stgsen_(&c__0, &ilvsl, &ilvsr, &bwork[1], n, &a[a_offset], lda, &b[
  1054. b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[
  1055. vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, sdim, &pvsl, &
  1056. pvsr, dif, &work[iwrk], &i__1, idum, &c__1, &ierr);
  1057. if (ierr == 1) {
  1058. *info = *n + 3;
  1059. }
  1060. }
  1061. /* Apply back-permutation to VSL and VSR */
  1062. /* (Workspace: none needed) */
  1063. if (ilvsl) {
  1064. sggbak_("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsl[
  1065. vsl_offset], ldvsl, &ierr);
  1066. }
  1067. if (ilvsr) {
  1068. sggbak_("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsr[
  1069. vsr_offset], ldvsr, &ierr);
  1070. }
  1071. /* Check if unscaling would cause over/underflow, if so, rescale */
  1072. /* (ALPHAR(I),ALPHAI(I),BETA(I)) so BETA(I) is on the order of */
  1073. /* B(I,I) and ALPHAR(I) and ALPHAI(I) are on the order of A(I,I) */
  1074. if (ilascl) {
  1075. i__1 = *n;
  1076. for (i__ = 1; i__ <= i__1; ++i__) {
  1077. if (alphai[i__] != 0.f) {
  1078. if (alphar[i__] / safmax > anrmto / anrm || safmin / alphar[
  1079. i__] > anrm / anrmto) {
  1080. work[1] = (r__1 = a[i__ + i__ * a_dim1] / alphar[i__],
  1081. abs(r__1));
  1082. beta[i__] *= work[1];
  1083. alphar[i__] *= work[1];
  1084. alphai[i__] *= work[1];
  1085. } else if (alphai[i__] / safmax > anrmto / anrm || safmin /
  1086. alphai[i__] > anrm / anrmto) {
  1087. work[1] = (r__1 = a[i__ + (i__ + 1) * a_dim1] / alphai[
  1088. i__], abs(r__1));
  1089. beta[i__] *= work[1];
  1090. alphar[i__] *= work[1];
  1091. alphai[i__] *= work[1];
  1092. }
  1093. }
  1094. /* L50: */
  1095. }
  1096. }
  1097. if (ilbscl) {
  1098. i__1 = *n;
  1099. for (i__ = 1; i__ <= i__1; ++i__) {
  1100. if (alphai[i__] != 0.f) {
  1101. if (beta[i__] / safmax > bnrmto / bnrm || safmin / beta[i__]
  1102. > bnrm / bnrmto) {
  1103. work[1] = (r__1 = b[i__ + i__ * b_dim1] / beta[i__], abs(
  1104. r__1));
  1105. beta[i__] *= work[1];
  1106. alphar[i__] *= work[1];
  1107. alphai[i__] *= work[1];
  1108. }
  1109. }
  1110. /* L60: */
  1111. }
  1112. }
  1113. /* Undo scaling */
  1114. if (ilascl) {
  1115. slascl_("H", &c__0, &c__0, &anrmto, &anrm, n, n, &a[a_offset], lda, &
  1116. ierr);
  1117. slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1], n, &
  1118. ierr);
  1119. slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1], n, &
  1120. ierr);
  1121. }
  1122. if (ilbscl) {
  1123. slascl_("U", &c__0, &c__0, &bnrmto, &bnrm, n, n, &b[b_offset], ldb, &
  1124. ierr);
  1125. slascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &
  1126. ierr);
  1127. }
  1128. if (wantst) {
  1129. /* Check if reordering is correct */
  1130. lastsl = TRUE_;
  1131. lst2sl = TRUE_;
  1132. *sdim = 0;
  1133. ip = 0;
  1134. i__1 = *n;
  1135. for (i__ = 1; i__ <= i__1; ++i__) {
  1136. cursl = (*selctg)(&alphar[i__], &alphai[i__], &beta[i__]);
  1137. if (alphai[i__] == 0.f) {
  1138. if (cursl) {
  1139. ++(*sdim);
  1140. }
  1141. ip = 0;
  1142. if (cursl && ! lastsl) {
  1143. *info = *n + 2;
  1144. }
  1145. } else {
  1146. if (ip == 1) {
  1147. /* Last eigenvalue of conjugate pair */
  1148. cursl = cursl || lastsl;
  1149. lastsl = cursl;
  1150. if (cursl) {
  1151. *sdim += 2;
  1152. }
  1153. ip = -1;
  1154. if (cursl && ! lst2sl) {
  1155. *info = *n + 2;
  1156. }
  1157. } else {
  1158. /* First eigenvalue of conjugate pair */
  1159. ip = 1;
  1160. }
  1161. }
  1162. lst2sl = lastsl;
  1163. lastsl = cursl;
  1164. /* L30: */
  1165. }
  1166. }
  1167. L40:
  1168. work[1] = (real) maxwrk;
  1169. return;
  1170. /* End of SGGES */
  1171. } /* sgges_ */