You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

chetf2.c 39 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. /* > \brief \b CHETF2 computes the factorization of a complex Hermitian matrix, using the diagonal pivoting me
  488. thod (unblocked algorithm calling Level 2 BLAS). */
  489. /* =========== DOCUMENTATION =========== */
  490. /* Online html documentation available at */
  491. /* http://www.netlib.org/lapack/explore-html/ */
  492. /* > \htmlonly */
  493. /* > Download CHETF2 + dependencies */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chetf2.
  495. f"> */
  496. /* > [TGZ]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chetf2.
  498. f"> */
  499. /* > [ZIP]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chetf2.
  501. f"> */
  502. /* > [TXT]</a> */
  503. /* > \endhtmlonly */
  504. /* Definition: */
  505. /* =========== */
  506. /* SUBROUTINE CHETF2( UPLO, N, A, LDA, IPIV, INFO ) */
  507. /* CHARACTER UPLO */
  508. /* INTEGER INFO, LDA, N */
  509. /* INTEGER IPIV( * ) */
  510. /* COMPLEX A( LDA, * ) */
  511. /* > \par Purpose: */
  512. /* ============= */
  513. /* > */
  514. /* > \verbatim */
  515. /* > */
  516. /* > CHETF2 computes the factorization of a complex Hermitian matrix A */
  517. /* > using the Bunch-Kaufman diagonal pivoting method: */
  518. /* > */
  519. /* > A = U*D*U**H or A = L*D*L**H */
  520. /* > */
  521. /* > where U (or L) is a product of permutation and unit upper (lower) */
  522. /* > triangular matrices, U**H is the conjugate transpose of U, and D is */
  523. /* > Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks. */
  524. /* > */
  525. /* > This is the unblocked version of the algorithm, calling Level 2 BLAS. */
  526. /* > \endverbatim */
  527. /* Arguments: */
  528. /* ========== */
  529. /* > \param[in] UPLO */
  530. /* > \verbatim */
  531. /* > UPLO is CHARACTER*1 */
  532. /* > Specifies whether the upper or lower triangular part of the */
  533. /* > Hermitian matrix A is stored: */
  534. /* > = 'U': Upper triangular */
  535. /* > = 'L': Lower triangular */
  536. /* > \endverbatim */
  537. /* > */
  538. /* > \param[in] N */
  539. /* > \verbatim */
  540. /* > N is INTEGER */
  541. /* > The order of the matrix A. N >= 0. */
  542. /* > \endverbatim */
  543. /* > */
  544. /* > \param[in,out] A */
  545. /* > \verbatim */
  546. /* > A is COMPLEX array, dimension (LDA,N) */
  547. /* > On entry, the Hermitian matrix A. If UPLO = 'U', the leading */
  548. /* > n-by-n upper triangular part of A contains the upper */
  549. /* > triangular part of the matrix A, and the strictly lower */
  550. /* > triangular part of A is not referenced. If UPLO = 'L', the */
  551. /* > leading n-by-n lower triangular part of A contains the lower */
  552. /* > triangular part of the matrix A, and the strictly upper */
  553. /* > triangular part of A is not referenced. */
  554. /* > */
  555. /* > On exit, the block diagonal matrix D and the multipliers used */
  556. /* > to obtain the factor U or L (see below for further details). */
  557. /* > \endverbatim */
  558. /* > */
  559. /* > \param[in] LDA */
  560. /* > \verbatim */
  561. /* > LDA is INTEGER */
  562. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  563. /* > \endverbatim */
  564. /* > */
  565. /* > \param[out] IPIV */
  566. /* > \verbatim */
  567. /* > IPIV is INTEGER array, dimension (N) */
  568. /* > Details of the interchanges and the block structure of D. */
  569. /* > */
  570. /* > If UPLO = 'U': */
  571. /* > If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
  572. /* > interchanged and D(k,k) is a 1-by-1 diagonal block. */
  573. /* > */
  574. /* > If IPIV(k) = IPIV(k-1) < 0, then rows and columns */
  575. /* > k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) */
  576. /* > is a 2-by-2 diagonal block. */
  577. /* > */
  578. /* > If UPLO = 'L': */
  579. /* > If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
  580. /* > interchanged and D(k,k) is a 1-by-1 diagonal block. */
  581. /* > */
  582. /* > If IPIV(k) = IPIV(k+1) < 0, then rows and columns */
  583. /* > k+1 and -IPIV(k) were interchanged and D(k:k+1,k:k+1) */
  584. /* > is a 2-by-2 diagonal block. */
  585. /* > \endverbatim */
  586. /* > */
  587. /* > \param[out] INFO */
  588. /* > \verbatim */
  589. /* > INFO is INTEGER */
  590. /* > = 0: successful exit */
  591. /* > < 0: if INFO = -k, the k-th argument had an illegal value */
  592. /* > > 0: if INFO = k, D(k,k) is exactly zero. The factorization */
  593. /* > has been completed, but the block diagonal matrix D is */
  594. /* > exactly singular, and division by zero will occur if it */
  595. /* > is used to solve a system of equations. */
  596. /* > \endverbatim */
  597. /* Authors: */
  598. /* ======== */
  599. /* > \author Univ. of Tennessee */
  600. /* > \author Univ. of California Berkeley */
  601. /* > \author Univ. of Colorado Denver */
  602. /* > \author NAG Ltd. */
  603. /* > \date December 2016 */
  604. /* > \ingroup complexHEcomputational */
  605. /* > \par Further Details: */
  606. /* ===================== */
  607. /* > */
  608. /* > \verbatim */
  609. /* > */
  610. /* > 09-29-06 - patch from */
  611. /* > Bobby Cheng, MathWorks */
  612. /* > */
  613. /* > Replace l.210 and l.392 */
  614. /* > IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN */
  615. /* > by */
  616. /* > IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. SISNAN(ABSAKK) ) THEN */
  617. /* > */
  618. /* > 01-01-96 - Based on modifications by */
  619. /* > J. Lewis, Boeing Computer Services Company */
  620. /* > A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA */
  621. /* > */
  622. /* > If UPLO = 'U', then A = U*D*U**H, where */
  623. /* > U = P(n)*U(n)* ... *P(k)U(k)* ..., */
  624. /* > i.e., U is a product of terms P(k)*U(k), where k decreases from n to */
  625. /* > 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
  626. /* > and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as */
  627. /* > defined by IPIV(k), and U(k) is a unit upper triangular matrix, such */
  628. /* > that if the diagonal block D(k) is of order s (s = 1 or 2), then */
  629. /* > */
  630. /* > ( I v 0 ) k-s */
  631. /* > U(k) = ( 0 I 0 ) s */
  632. /* > ( 0 0 I ) n-k */
  633. /* > k-s s n-k */
  634. /* > */
  635. /* > If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k). */
  636. /* > If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k), */
  637. /* > and A(k,k), and v overwrites A(1:k-2,k-1:k). */
  638. /* > */
  639. /* > If UPLO = 'L', then A = L*D*L**H, where */
  640. /* > L = P(1)*L(1)* ... *P(k)*L(k)* ..., */
  641. /* > i.e., L is a product of terms P(k)*L(k), where k increases from 1 to */
  642. /* > n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
  643. /* > and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as */
  644. /* > defined by IPIV(k), and L(k) is a unit lower triangular matrix, such */
  645. /* > that if the diagonal block D(k) is of order s (s = 1 or 2), then */
  646. /* > */
  647. /* > ( I 0 0 ) k-1 */
  648. /* > L(k) = ( 0 I 0 ) s */
  649. /* > ( 0 v I ) n-k-s+1 */
  650. /* > k-1 s n-k-s+1 */
  651. /* > */
  652. /* > If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k). */
  653. /* > If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k), */
  654. /* > and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1). */
  655. /* > \endverbatim */
  656. /* > */
  657. /* ===================================================================== */
  658. /* Subroutine */ void chetf2_(char *uplo, integer *n, complex *a, integer *lda,
  659. integer *ipiv, integer *info)
  660. {
  661. /* System generated locals */
  662. integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5, i__6;
  663. real r__1, r__2, r__3, r__4;
  664. complex q__1, q__2, q__3, q__4, q__5, q__6;
  665. /* Local variables */
  666. extern /* Subroutine */ void cher_(char *, integer *, real *, complex *,
  667. integer *, complex *, integer *);
  668. integer imax, jmax;
  669. real d__;
  670. integer i__, j, k;
  671. complex t;
  672. real alpha;
  673. extern logical lsame_(char *, char *);
  674. extern /* Subroutine */ void cswap_(integer *, complex *, integer *,
  675. complex *, integer *);
  676. integer kstep;
  677. logical upper;
  678. real r1, d11;
  679. complex d12;
  680. real d22;
  681. complex d21;
  682. extern real slapy2_(real *, real *);
  683. integer kk, kp;
  684. real absakk;
  685. complex wk;
  686. extern integer icamax_(integer *, complex *, integer *);
  687. real tt;
  688. extern /* Subroutine */ void csscal_(integer *, real *, complex *, integer
  689. *);
  690. extern int xerbla_(char *, integer *, ftnlen);
  691. real colmax;
  692. extern logical sisnan_(real *);
  693. real rowmax;
  694. complex wkm1, wkp1;
  695. /* -- LAPACK computational routine (version 3.7.0) -- */
  696. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  697. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  698. /* December 2016 */
  699. /* ===================================================================== */
  700. /* Test the input parameters. */
  701. /* Parameter adjustments */
  702. a_dim1 = *lda;
  703. a_offset = 1 + a_dim1 * 1;
  704. a -= a_offset;
  705. --ipiv;
  706. /* Function Body */
  707. *info = 0;
  708. upper = lsame_(uplo, "U");
  709. if (! upper && ! lsame_(uplo, "L")) {
  710. *info = -1;
  711. } else if (*n < 0) {
  712. *info = -2;
  713. } else if (*lda < f2cmax(1,*n)) {
  714. *info = -4;
  715. }
  716. if (*info != 0) {
  717. i__1 = -(*info);
  718. xerbla_("CHETF2", &i__1, (ftnlen)6);
  719. return;
  720. }
  721. /* Initialize ALPHA for use in choosing pivot block size. */
  722. alpha = (sqrt(17.f) + 1.f) / 8.f;
  723. if (upper) {
  724. /* Factorize A as U*D*U**H using the upper triangle of A */
  725. /* K is the main loop index, decreasing from N to 1 in steps of */
  726. /* 1 or 2 */
  727. k = *n;
  728. L10:
  729. /* If K < 1, exit from loop */
  730. if (k < 1) {
  731. goto L90;
  732. }
  733. kstep = 1;
  734. /* Determine rows and columns to be interchanged and whether */
  735. /* a 1-by-1 or 2-by-2 pivot block will be used */
  736. i__1 = k + k * a_dim1;
  737. absakk = (r__1 = a[i__1].r, abs(r__1));
  738. /* IMAX is the row-index of the largest off-diagonal element in */
  739. /* column K, and COLMAX is its absolute value. */
  740. /* Determine both COLMAX and IMAX. */
  741. if (k > 1) {
  742. i__1 = k - 1;
  743. imax = icamax_(&i__1, &a[k * a_dim1 + 1], &c__1);
  744. i__1 = imax + k * a_dim1;
  745. colmax = (r__1 = a[i__1].r, abs(r__1)) + (r__2 = r_imag(&a[imax +
  746. k * a_dim1]), abs(r__2));
  747. } else {
  748. colmax = 0.f;
  749. }
  750. if (f2cmax(absakk,colmax) == 0.f || sisnan_(&absakk)) {
  751. /* Column K is or underflow, or contains a NaN: */
  752. /* set INFO and continue */
  753. if (*info == 0) {
  754. *info = k;
  755. }
  756. kp = k;
  757. i__1 = k + k * a_dim1;
  758. i__2 = k + k * a_dim1;
  759. r__1 = a[i__2].r;
  760. a[i__1].r = r__1, a[i__1].i = 0.f;
  761. } else {
  762. if (absakk >= alpha * colmax) {
  763. /* no interchange, use 1-by-1 pivot block */
  764. kp = k;
  765. } else {
  766. /* JMAX is the column-index of the largest off-diagonal */
  767. /* element in row IMAX, and ROWMAX is its absolute value */
  768. i__1 = k - imax;
  769. jmax = imax + icamax_(&i__1, &a[imax + (imax + 1) * a_dim1],
  770. lda);
  771. i__1 = imax + jmax * a_dim1;
  772. rowmax = (r__1 = a[i__1].r, abs(r__1)) + (r__2 = r_imag(&a[
  773. imax + jmax * a_dim1]), abs(r__2));
  774. if (imax > 1) {
  775. i__1 = imax - 1;
  776. jmax = icamax_(&i__1, &a[imax * a_dim1 + 1], &c__1);
  777. /* Computing MAX */
  778. i__1 = jmax + imax * a_dim1;
  779. r__3 = rowmax, r__4 = (r__1 = a[i__1].r, abs(r__1)) + (
  780. r__2 = r_imag(&a[jmax + imax * a_dim1]), abs(r__2)
  781. );
  782. rowmax = f2cmax(r__3,r__4);
  783. }
  784. if (absakk >= alpha * colmax * (colmax / rowmax)) {
  785. /* no interchange, use 1-by-1 pivot block */
  786. kp = k;
  787. } else /* if(complicated condition) */ {
  788. i__1 = imax + imax * a_dim1;
  789. if ((r__1 = a[i__1].r, abs(r__1)) >= alpha * rowmax) {
  790. /* interchange rows and columns K and IMAX, use 1-by-1 */
  791. /* pivot block */
  792. kp = imax;
  793. } else {
  794. /* interchange rows and columns K-1 and IMAX, use 2-by-2 */
  795. /* pivot block */
  796. kp = imax;
  797. kstep = 2;
  798. }
  799. }
  800. }
  801. kk = k - kstep + 1;
  802. if (kp != kk) {
  803. /* Interchange rows and columns KK and KP in the leading */
  804. /* submatrix A(1:k,1:k) */
  805. i__1 = kp - 1;
  806. cswap_(&i__1, &a[kk * a_dim1 + 1], &c__1, &a[kp * a_dim1 + 1],
  807. &c__1);
  808. i__1 = kk - 1;
  809. for (j = kp + 1; j <= i__1; ++j) {
  810. r_cnjg(&q__1, &a[j + kk * a_dim1]);
  811. t.r = q__1.r, t.i = q__1.i;
  812. i__2 = j + kk * a_dim1;
  813. r_cnjg(&q__1, &a[kp + j * a_dim1]);
  814. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  815. i__2 = kp + j * a_dim1;
  816. a[i__2].r = t.r, a[i__2].i = t.i;
  817. /* L20: */
  818. }
  819. i__1 = kp + kk * a_dim1;
  820. r_cnjg(&q__1, &a[kp + kk * a_dim1]);
  821. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  822. i__1 = kk + kk * a_dim1;
  823. r1 = a[i__1].r;
  824. i__1 = kk + kk * a_dim1;
  825. i__2 = kp + kp * a_dim1;
  826. r__1 = a[i__2].r;
  827. a[i__1].r = r__1, a[i__1].i = 0.f;
  828. i__1 = kp + kp * a_dim1;
  829. a[i__1].r = r1, a[i__1].i = 0.f;
  830. if (kstep == 2) {
  831. i__1 = k + k * a_dim1;
  832. i__2 = k + k * a_dim1;
  833. r__1 = a[i__2].r;
  834. a[i__1].r = r__1, a[i__1].i = 0.f;
  835. i__1 = k - 1 + k * a_dim1;
  836. t.r = a[i__1].r, t.i = a[i__1].i;
  837. i__1 = k - 1 + k * a_dim1;
  838. i__2 = kp + k * a_dim1;
  839. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  840. i__1 = kp + k * a_dim1;
  841. a[i__1].r = t.r, a[i__1].i = t.i;
  842. }
  843. } else {
  844. i__1 = k + k * a_dim1;
  845. i__2 = k + k * a_dim1;
  846. r__1 = a[i__2].r;
  847. a[i__1].r = r__1, a[i__1].i = 0.f;
  848. if (kstep == 2) {
  849. i__1 = k - 1 + (k - 1) * a_dim1;
  850. i__2 = k - 1 + (k - 1) * a_dim1;
  851. r__1 = a[i__2].r;
  852. a[i__1].r = r__1, a[i__1].i = 0.f;
  853. }
  854. }
  855. /* Update the leading submatrix */
  856. if (kstep == 1) {
  857. /* 1-by-1 pivot block D(k): column k now holds */
  858. /* W(k) = U(k)*D(k) */
  859. /* where U(k) is the k-th column of U */
  860. /* Perform a rank-1 update of A(1:k-1,1:k-1) as */
  861. /* A := A - U(k)*D(k)*U(k)**H = A - W(k)*1/D(k)*W(k)**H */
  862. i__1 = k + k * a_dim1;
  863. r1 = 1.f / a[i__1].r;
  864. i__1 = k - 1;
  865. r__1 = -r1;
  866. cher_(uplo, &i__1, &r__1, &a[k * a_dim1 + 1], &c__1, &a[
  867. a_offset], lda);
  868. /* Store U(k) in column k */
  869. i__1 = k - 1;
  870. csscal_(&i__1, &r1, &a[k * a_dim1 + 1], &c__1);
  871. } else {
  872. /* 2-by-2 pivot block D(k): columns k and k-1 now hold */
  873. /* ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k) */
  874. /* where U(k) and U(k-1) are the k-th and (k-1)-th columns */
  875. /* of U */
  876. /* Perform a rank-2 update of A(1:k-2,1:k-2) as */
  877. /* A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**H */
  878. /* = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )**H */
  879. if (k > 2) {
  880. i__1 = k - 1 + k * a_dim1;
  881. r__1 = a[i__1].r;
  882. r__2 = r_imag(&a[k - 1 + k * a_dim1]);
  883. d__ = slapy2_(&r__1, &r__2);
  884. i__1 = k - 1 + (k - 1) * a_dim1;
  885. d22 = a[i__1].r / d__;
  886. i__1 = k + k * a_dim1;
  887. d11 = a[i__1].r / d__;
  888. tt = 1.f / (d11 * d22 - 1.f);
  889. i__1 = k - 1 + k * a_dim1;
  890. q__1.r = a[i__1].r / d__, q__1.i = a[i__1].i / d__;
  891. d12.r = q__1.r, d12.i = q__1.i;
  892. d__ = tt / d__;
  893. for (j = k - 2; j >= 1; --j) {
  894. i__1 = j + (k - 1) * a_dim1;
  895. q__3.r = d11 * a[i__1].r, q__3.i = d11 * a[i__1].i;
  896. r_cnjg(&q__5, &d12);
  897. i__2 = j + k * a_dim1;
  898. q__4.r = q__5.r * a[i__2].r - q__5.i * a[i__2].i,
  899. q__4.i = q__5.r * a[i__2].i + q__5.i * a[i__2]
  900. .r;
  901. q__2.r = q__3.r - q__4.r, q__2.i = q__3.i - q__4.i;
  902. q__1.r = d__ * q__2.r, q__1.i = d__ * q__2.i;
  903. wkm1.r = q__1.r, wkm1.i = q__1.i;
  904. i__1 = j + k * a_dim1;
  905. q__3.r = d22 * a[i__1].r, q__3.i = d22 * a[i__1].i;
  906. i__2 = j + (k - 1) * a_dim1;
  907. q__4.r = d12.r * a[i__2].r - d12.i * a[i__2].i,
  908. q__4.i = d12.r * a[i__2].i + d12.i * a[i__2]
  909. .r;
  910. q__2.r = q__3.r - q__4.r, q__2.i = q__3.i - q__4.i;
  911. q__1.r = d__ * q__2.r, q__1.i = d__ * q__2.i;
  912. wk.r = q__1.r, wk.i = q__1.i;
  913. for (i__ = j; i__ >= 1; --i__) {
  914. i__1 = i__ + j * a_dim1;
  915. i__2 = i__ + j * a_dim1;
  916. i__3 = i__ + k * a_dim1;
  917. r_cnjg(&q__4, &wk);
  918. q__3.r = a[i__3].r * q__4.r - a[i__3].i * q__4.i,
  919. q__3.i = a[i__3].r * q__4.i + a[i__3].i *
  920. q__4.r;
  921. q__2.r = a[i__2].r - q__3.r, q__2.i = a[i__2].i -
  922. q__3.i;
  923. i__4 = i__ + (k - 1) * a_dim1;
  924. r_cnjg(&q__6, &wkm1);
  925. q__5.r = a[i__4].r * q__6.r - a[i__4].i * q__6.i,
  926. q__5.i = a[i__4].r * q__6.i + a[i__4].i *
  927. q__6.r;
  928. q__1.r = q__2.r - q__5.r, q__1.i = q__2.i -
  929. q__5.i;
  930. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  931. /* L30: */
  932. }
  933. i__1 = j + k * a_dim1;
  934. a[i__1].r = wk.r, a[i__1].i = wk.i;
  935. i__1 = j + (k - 1) * a_dim1;
  936. a[i__1].r = wkm1.r, a[i__1].i = wkm1.i;
  937. i__1 = j + j * a_dim1;
  938. i__2 = j + j * a_dim1;
  939. r__1 = a[i__2].r;
  940. q__1.r = r__1, q__1.i = 0.f;
  941. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  942. /* L40: */
  943. }
  944. }
  945. }
  946. }
  947. /* Store details of the interchanges in IPIV */
  948. if (kstep == 1) {
  949. ipiv[k] = kp;
  950. } else {
  951. ipiv[k] = -kp;
  952. ipiv[k - 1] = -kp;
  953. }
  954. /* Decrease K and return to the start of the main loop */
  955. k -= kstep;
  956. goto L10;
  957. } else {
  958. /* Factorize A as L*D*L**H using the lower triangle of A */
  959. /* K is the main loop index, increasing from 1 to N in steps of */
  960. /* 1 or 2 */
  961. k = 1;
  962. L50:
  963. /* If K > N, exit from loop */
  964. if (k > *n) {
  965. goto L90;
  966. }
  967. kstep = 1;
  968. /* Determine rows and columns to be interchanged and whether */
  969. /* a 1-by-1 or 2-by-2 pivot block will be used */
  970. i__1 = k + k * a_dim1;
  971. absakk = (r__1 = a[i__1].r, abs(r__1));
  972. /* IMAX is the row-index of the largest off-diagonal element in */
  973. /* column K, and COLMAX is its absolute value. */
  974. /* Determine both COLMAX and IMAX. */
  975. if (k < *n) {
  976. i__1 = *n - k;
  977. imax = k + icamax_(&i__1, &a[k + 1 + k * a_dim1], &c__1);
  978. i__1 = imax + k * a_dim1;
  979. colmax = (r__1 = a[i__1].r, abs(r__1)) + (r__2 = r_imag(&a[imax +
  980. k * a_dim1]), abs(r__2));
  981. } else {
  982. colmax = 0.f;
  983. }
  984. if (f2cmax(absakk,colmax) == 0.f || sisnan_(&absakk)) {
  985. /* Column K is zero or underflow, contains a NaN: */
  986. /* set INFO and continue */
  987. if (*info == 0) {
  988. *info = k;
  989. }
  990. kp = k;
  991. i__1 = k + k * a_dim1;
  992. i__2 = k + k * a_dim1;
  993. r__1 = a[i__2].r;
  994. a[i__1].r = r__1, a[i__1].i = 0.f;
  995. } else {
  996. if (absakk >= alpha * colmax) {
  997. /* no interchange, use 1-by-1 pivot block */
  998. kp = k;
  999. } else {
  1000. /* JMAX is the column-index of the largest off-diagonal */
  1001. /* element in row IMAX, and ROWMAX is its absolute value */
  1002. i__1 = imax - k;
  1003. jmax = k - 1 + icamax_(&i__1, &a[imax + k * a_dim1], lda);
  1004. i__1 = imax + jmax * a_dim1;
  1005. rowmax = (r__1 = a[i__1].r, abs(r__1)) + (r__2 = r_imag(&a[
  1006. imax + jmax * a_dim1]), abs(r__2));
  1007. if (imax < *n) {
  1008. i__1 = *n - imax;
  1009. jmax = imax + icamax_(&i__1, &a[imax + 1 + imax * a_dim1],
  1010. &c__1);
  1011. /* Computing MAX */
  1012. i__1 = jmax + imax * a_dim1;
  1013. r__3 = rowmax, r__4 = (r__1 = a[i__1].r, abs(r__1)) + (
  1014. r__2 = r_imag(&a[jmax + imax * a_dim1]), abs(r__2)
  1015. );
  1016. rowmax = f2cmax(r__3,r__4);
  1017. }
  1018. if (absakk >= alpha * colmax * (colmax / rowmax)) {
  1019. /* no interchange, use 1-by-1 pivot block */
  1020. kp = k;
  1021. } else /* if(complicated condition) */ {
  1022. i__1 = imax + imax * a_dim1;
  1023. if ((r__1 = a[i__1].r, abs(r__1)) >= alpha * rowmax) {
  1024. /* interchange rows and columns K and IMAX, use 1-by-1 */
  1025. /* pivot block */
  1026. kp = imax;
  1027. } else {
  1028. /* interchange rows and columns K+1 and IMAX, use 2-by-2 */
  1029. /* pivot block */
  1030. kp = imax;
  1031. kstep = 2;
  1032. }
  1033. }
  1034. }
  1035. kk = k + kstep - 1;
  1036. if (kp != kk) {
  1037. /* Interchange rows and columns KK and KP in the trailing */
  1038. /* submatrix A(k:n,k:n) */
  1039. if (kp < *n) {
  1040. i__1 = *n - kp;
  1041. cswap_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + 1
  1042. + kp * a_dim1], &c__1);
  1043. }
  1044. i__1 = kp - 1;
  1045. for (j = kk + 1; j <= i__1; ++j) {
  1046. r_cnjg(&q__1, &a[j + kk * a_dim1]);
  1047. t.r = q__1.r, t.i = q__1.i;
  1048. i__2 = j + kk * a_dim1;
  1049. r_cnjg(&q__1, &a[kp + j * a_dim1]);
  1050. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  1051. i__2 = kp + j * a_dim1;
  1052. a[i__2].r = t.r, a[i__2].i = t.i;
  1053. /* L60: */
  1054. }
  1055. i__1 = kp + kk * a_dim1;
  1056. r_cnjg(&q__1, &a[kp + kk * a_dim1]);
  1057. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  1058. i__1 = kk + kk * a_dim1;
  1059. r1 = a[i__1].r;
  1060. i__1 = kk + kk * a_dim1;
  1061. i__2 = kp + kp * a_dim1;
  1062. r__1 = a[i__2].r;
  1063. a[i__1].r = r__1, a[i__1].i = 0.f;
  1064. i__1 = kp + kp * a_dim1;
  1065. a[i__1].r = r1, a[i__1].i = 0.f;
  1066. if (kstep == 2) {
  1067. i__1 = k + k * a_dim1;
  1068. i__2 = k + k * a_dim1;
  1069. r__1 = a[i__2].r;
  1070. a[i__1].r = r__1, a[i__1].i = 0.f;
  1071. i__1 = k + 1 + k * a_dim1;
  1072. t.r = a[i__1].r, t.i = a[i__1].i;
  1073. i__1 = k + 1 + k * a_dim1;
  1074. i__2 = kp + k * a_dim1;
  1075. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  1076. i__1 = kp + k * a_dim1;
  1077. a[i__1].r = t.r, a[i__1].i = t.i;
  1078. }
  1079. } else {
  1080. i__1 = k + k * a_dim1;
  1081. i__2 = k + k * a_dim1;
  1082. r__1 = a[i__2].r;
  1083. a[i__1].r = r__1, a[i__1].i = 0.f;
  1084. if (kstep == 2) {
  1085. i__1 = k + 1 + (k + 1) * a_dim1;
  1086. i__2 = k + 1 + (k + 1) * a_dim1;
  1087. r__1 = a[i__2].r;
  1088. a[i__1].r = r__1, a[i__1].i = 0.f;
  1089. }
  1090. }
  1091. /* Update the trailing submatrix */
  1092. if (kstep == 1) {
  1093. /* 1-by-1 pivot block D(k): column k now holds */
  1094. /* W(k) = L(k)*D(k) */
  1095. /* where L(k) is the k-th column of L */
  1096. if (k < *n) {
  1097. /* Perform a rank-1 update of A(k+1:n,k+1:n) as */
  1098. /* A := A - L(k)*D(k)*L(k)**H = A - W(k)*(1/D(k))*W(k)**H */
  1099. i__1 = k + k * a_dim1;
  1100. r1 = 1.f / a[i__1].r;
  1101. i__1 = *n - k;
  1102. r__1 = -r1;
  1103. cher_(uplo, &i__1, &r__1, &a[k + 1 + k * a_dim1], &c__1, &
  1104. a[k + 1 + (k + 1) * a_dim1], lda);
  1105. /* Store L(k) in column K */
  1106. i__1 = *n - k;
  1107. csscal_(&i__1, &r1, &a[k + 1 + k * a_dim1], &c__1);
  1108. }
  1109. } else {
  1110. /* 2-by-2 pivot block D(k) */
  1111. if (k < *n - 1) {
  1112. /* Perform a rank-2 update of A(k+2:n,k+2:n) as */
  1113. /* A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )**H */
  1114. /* = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )**H */
  1115. /* where L(k) and L(k+1) are the k-th and (k+1)-th */
  1116. /* columns of L */
  1117. i__1 = k + 1 + k * a_dim1;
  1118. r__1 = a[i__1].r;
  1119. r__2 = r_imag(&a[k + 1 + k * a_dim1]);
  1120. d__ = slapy2_(&r__1, &r__2);
  1121. i__1 = k + 1 + (k + 1) * a_dim1;
  1122. d11 = a[i__1].r / d__;
  1123. i__1 = k + k * a_dim1;
  1124. d22 = a[i__1].r / d__;
  1125. tt = 1.f / (d11 * d22 - 1.f);
  1126. i__1 = k + 1 + k * a_dim1;
  1127. q__1.r = a[i__1].r / d__, q__1.i = a[i__1].i / d__;
  1128. d21.r = q__1.r, d21.i = q__1.i;
  1129. d__ = tt / d__;
  1130. i__1 = *n;
  1131. for (j = k + 2; j <= i__1; ++j) {
  1132. i__2 = j + k * a_dim1;
  1133. q__3.r = d11 * a[i__2].r, q__3.i = d11 * a[i__2].i;
  1134. i__3 = j + (k + 1) * a_dim1;
  1135. q__4.r = d21.r * a[i__3].r - d21.i * a[i__3].i,
  1136. q__4.i = d21.r * a[i__3].i + d21.i * a[i__3]
  1137. .r;
  1138. q__2.r = q__3.r - q__4.r, q__2.i = q__3.i - q__4.i;
  1139. q__1.r = d__ * q__2.r, q__1.i = d__ * q__2.i;
  1140. wk.r = q__1.r, wk.i = q__1.i;
  1141. i__2 = j + (k + 1) * a_dim1;
  1142. q__3.r = d22 * a[i__2].r, q__3.i = d22 * a[i__2].i;
  1143. r_cnjg(&q__5, &d21);
  1144. i__3 = j + k * a_dim1;
  1145. q__4.r = q__5.r * a[i__3].r - q__5.i * a[i__3].i,
  1146. q__4.i = q__5.r * a[i__3].i + q__5.i * a[i__3]
  1147. .r;
  1148. q__2.r = q__3.r - q__4.r, q__2.i = q__3.i - q__4.i;
  1149. q__1.r = d__ * q__2.r, q__1.i = d__ * q__2.i;
  1150. wkp1.r = q__1.r, wkp1.i = q__1.i;
  1151. i__2 = *n;
  1152. for (i__ = j; i__ <= i__2; ++i__) {
  1153. i__3 = i__ + j * a_dim1;
  1154. i__4 = i__ + j * a_dim1;
  1155. i__5 = i__ + k * a_dim1;
  1156. r_cnjg(&q__4, &wk);
  1157. q__3.r = a[i__5].r * q__4.r - a[i__5].i * q__4.i,
  1158. q__3.i = a[i__5].r * q__4.i + a[i__5].i *
  1159. q__4.r;
  1160. q__2.r = a[i__4].r - q__3.r, q__2.i = a[i__4].i -
  1161. q__3.i;
  1162. i__6 = i__ + (k + 1) * a_dim1;
  1163. r_cnjg(&q__6, &wkp1);
  1164. q__5.r = a[i__6].r * q__6.r - a[i__6].i * q__6.i,
  1165. q__5.i = a[i__6].r * q__6.i + a[i__6].i *
  1166. q__6.r;
  1167. q__1.r = q__2.r - q__5.r, q__1.i = q__2.i -
  1168. q__5.i;
  1169. a[i__3].r = q__1.r, a[i__3].i = q__1.i;
  1170. /* L70: */
  1171. }
  1172. i__2 = j + k * a_dim1;
  1173. a[i__2].r = wk.r, a[i__2].i = wk.i;
  1174. i__2 = j + (k + 1) * a_dim1;
  1175. a[i__2].r = wkp1.r, a[i__2].i = wkp1.i;
  1176. i__2 = j + j * a_dim1;
  1177. i__3 = j + j * a_dim1;
  1178. r__1 = a[i__3].r;
  1179. q__1.r = r__1, q__1.i = 0.f;
  1180. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  1181. /* L80: */
  1182. }
  1183. }
  1184. }
  1185. }
  1186. /* Store details of the interchanges in IPIV */
  1187. if (kstep == 1) {
  1188. ipiv[k] = kp;
  1189. } else {
  1190. ipiv[k] = -kp;
  1191. ipiv[k + 1] = -kp;
  1192. }
  1193. /* Increase K and return to the start of the main loop */
  1194. k += kstep;
  1195. goto L50;
  1196. }
  1197. L90:
  1198. return;
  1199. /* End of CHETF2 */
  1200. } /* chetf2_ */