You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

strsna.c 35 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. static logical c_true = TRUE_;
  486. static logical c_false = FALSE_;
  487. /* > \brief \b STRSNA */
  488. /* =========== DOCUMENTATION =========== */
  489. /* Online html documentation available at */
  490. /* http://www.netlib.org/lapack/explore-html/ */
  491. /* > \htmlonly */
  492. /* > Download STRSNA + dependencies */
  493. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/strsna.
  494. f"> */
  495. /* > [TGZ]</a> */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/strsna.
  497. f"> */
  498. /* > [ZIP]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/strsna.
  500. f"> */
  501. /* > [TXT]</a> */
  502. /* > \endhtmlonly */
  503. /* Definition: */
  504. /* =========== */
  505. /* SUBROUTINE STRSNA( JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR, */
  506. /* LDVR, S, SEP, MM, M, WORK, LDWORK, IWORK, */
  507. /* INFO ) */
  508. /* CHARACTER HOWMNY, JOB */
  509. /* INTEGER INFO, LDT, LDVL, LDVR, LDWORK, M, MM, N */
  510. /* LOGICAL SELECT( * ) */
  511. /* INTEGER IWORK( * ) */
  512. /* REAL S( * ), SEP( * ), T( LDT, * ), VL( LDVL, * ), */
  513. /* $ VR( LDVR, * ), WORK( LDWORK, * ) */
  514. /* > \par Purpose: */
  515. /* ============= */
  516. /* > */
  517. /* > \verbatim */
  518. /* > */
  519. /* > STRSNA estimates reciprocal condition numbers for specified */
  520. /* > eigenvalues and/or right eigenvectors of a real upper */
  521. /* > quasi-triangular matrix T (or of any matrix Q*T*Q**T with Q */
  522. /* > orthogonal). */
  523. /* > */
  524. /* > T must be in Schur canonical form (as returned by SHSEQR), that is, */
  525. /* > block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each */
  526. /* > 2-by-2 diagonal block has its diagonal elements equal and its */
  527. /* > off-diagonal elements of opposite sign. */
  528. /* > \endverbatim */
  529. /* Arguments: */
  530. /* ========== */
  531. /* > \param[in] JOB */
  532. /* > \verbatim */
  533. /* > JOB is CHARACTER*1 */
  534. /* > Specifies whether condition numbers are required for */
  535. /* > eigenvalues (S) or eigenvectors (SEP): */
  536. /* > = 'E': for eigenvalues only (S); */
  537. /* > = 'V': for eigenvectors only (SEP); */
  538. /* > = 'B': for both eigenvalues and eigenvectors (S and SEP). */
  539. /* > \endverbatim */
  540. /* > */
  541. /* > \param[in] HOWMNY */
  542. /* > \verbatim */
  543. /* > HOWMNY is CHARACTER*1 */
  544. /* > = 'A': compute condition numbers for all eigenpairs; */
  545. /* > = 'S': compute condition numbers for selected eigenpairs */
  546. /* > specified by the array SELECT. */
  547. /* > \endverbatim */
  548. /* > */
  549. /* > \param[in] SELECT */
  550. /* > \verbatim */
  551. /* > SELECT is LOGICAL array, dimension (N) */
  552. /* > If HOWMNY = 'S', SELECT specifies the eigenpairs for which */
  553. /* > condition numbers are required. To select condition numbers */
  554. /* > for the eigenpair corresponding to a real eigenvalue w(j), */
  555. /* > SELECT(j) must be set to .TRUE.. To select condition numbers */
  556. /* > corresponding to a complex conjugate pair of eigenvalues w(j) */
  557. /* > and w(j+1), either SELECT(j) or SELECT(j+1) or both, must be */
  558. /* > set to .TRUE.. */
  559. /* > If HOWMNY = 'A', SELECT is not referenced. */
  560. /* > \endverbatim */
  561. /* > */
  562. /* > \param[in] N */
  563. /* > \verbatim */
  564. /* > N is INTEGER */
  565. /* > The order of the matrix T. N >= 0. */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[in] T */
  569. /* > \verbatim */
  570. /* > T is REAL array, dimension (LDT,N) */
  571. /* > The upper quasi-triangular matrix T, in Schur canonical form. */
  572. /* > \endverbatim */
  573. /* > */
  574. /* > \param[in] LDT */
  575. /* > \verbatim */
  576. /* > LDT is INTEGER */
  577. /* > The leading dimension of the array T. LDT >= f2cmax(1,N). */
  578. /* > \endverbatim */
  579. /* > */
  580. /* > \param[in] VL */
  581. /* > \verbatim */
  582. /* > VL is REAL array, dimension (LDVL,M) */
  583. /* > If JOB = 'E' or 'B', VL must contain left eigenvectors of T */
  584. /* > (or of any Q*T*Q**T with Q orthogonal), corresponding to the */
  585. /* > eigenpairs specified by HOWMNY and SELECT. The eigenvectors */
  586. /* > must be stored in consecutive columns of VL, as returned by */
  587. /* > SHSEIN or STREVC. */
  588. /* > If JOB = 'V', VL is not referenced. */
  589. /* > \endverbatim */
  590. /* > */
  591. /* > \param[in] LDVL */
  592. /* > \verbatim */
  593. /* > LDVL is INTEGER */
  594. /* > The leading dimension of the array VL. */
  595. /* > LDVL >= 1; and if JOB = 'E' or 'B', LDVL >= N. */
  596. /* > \endverbatim */
  597. /* > */
  598. /* > \param[in] VR */
  599. /* > \verbatim */
  600. /* > VR is REAL array, dimension (LDVR,M) */
  601. /* > If JOB = 'E' or 'B', VR must contain right eigenvectors of T */
  602. /* > (or of any Q*T*Q**T with Q orthogonal), corresponding to the */
  603. /* > eigenpairs specified by HOWMNY and SELECT. The eigenvectors */
  604. /* > must be stored in consecutive columns of VR, as returned by */
  605. /* > SHSEIN or STREVC. */
  606. /* > If JOB = 'V', VR is not referenced. */
  607. /* > \endverbatim */
  608. /* > */
  609. /* > \param[in] LDVR */
  610. /* > \verbatim */
  611. /* > LDVR is INTEGER */
  612. /* > The leading dimension of the array VR. */
  613. /* > LDVR >= 1; and if JOB = 'E' or 'B', LDVR >= N. */
  614. /* > \endverbatim */
  615. /* > */
  616. /* > \param[out] S */
  617. /* > \verbatim */
  618. /* > S is REAL array, dimension (MM) */
  619. /* > If JOB = 'E' or 'B', the reciprocal condition numbers of the */
  620. /* > selected eigenvalues, stored in consecutive elements of the */
  621. /* > array. For a complex conjugate pair of eigenvalues two */
  622. /* > consecutive elements of S are set to the same value. Thus */
  623. /* > S(j), SEP(j), and the j-th columns of VL and VR all */
  624. /* > correspond to the same eigenpair (but not in general the */
  625. /* > j-th eigenpair, unless all eigenpairs are selected). */
  626. /* > If JOB = 'V', S is not referenced. */
  627. /* > \endverbatim */
  628. /* > */
  629. /* > \param[out] SEP */
  630. /* > \verbatim */
  631. /* > SEP is REAL array, dimension (MM) */
  632. /* > If JOB = 'V' or 'B', the estimated reciprocal condition */
  633. /* > numbers of the selected eigenvectors, stored in consecutive */
  634. /* > elements of the array. For a complex eigenvector two */
  635. /* > consecutive elements of SEP are set to the same value. If */
  636. /* > the eigenvalues cannot be reordered to compute SEP(j), SEP(j) */
  637. /* > is set to 0; this can only occur when the true value would be */
  638. /* > very small anyway. */
  639. /* > If JOB = 'E', SEP is not referenced. */
  640. /* > \endverbatim */
  641. /* > */
  642. /* > \param[in] MM */
  643. /* > \verbatim */
  644. /* > MM is INTEGER */
  645. /* > The number of elements in the arrays S (if JOB = 'E' or 'B') */
  646. /* > and/or SEP (if JOB = 'V' or 'B'). MM >= M. */
  647. /* > \endverbatim */
  648. /* > */
  649. /* > \param[out] M */
  650. /* > \verbatim */
  651. /* > M is INTEGER */
  652. /* > The number of elements of the arrays S and/or SEP actually */
  653. /* > used to store the estimated condition numbers. */
  654. /* > If HOWMNY = 'A', M is set to N. */
  655. /* > \endverbatim */
  656. /* > */
  657. /* > \param[out] WORK */
  658. /* > \verbatim */
  659. /* > WORK is REAL array, dimension (LDWORK,N+6) */
  660. /* > If JOB = 'E', WORK is not referenced. */
  661. /* > \endverbatim */
  662. /* > */
  663. /* > \param[in] LDWORK */
  664. /* > \verbatim */
  665. /* > LDWORK is INTEGER */
  666. /* > The leading dimension of the array WORK. */
  667. /* > LDWORK >= 1; and if JOB = 'V' or 'B', LDWORK >= N. */
  668. /* > \endverbatim */
  669. /* > */
  670. /* > \param[out] IWORK */
  671. /* > \verbatim */
  672. /* > IWORK is INTEGER array, dimension (2*(N-1)) */
  673. /* > If JOB = 'E', IWORK is not referenced. */
  674. /* > \endverbatim */
  675. /* > */
  676. /* > \param[out] INFO */
  677. /* > \verbatim */
  678. /* > INFO is INTEGER */
  679. /* > = 0: successful exit */
  680. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  681. /* > \endverbatim */
  682. /* Authors: */
  683. /* ======== */
  684. /* > \author Univ. of Tennessee */
  685. /* > \author Univ. of California Berkeley */
  686. /* > \author Univ. of Colorado Denver */
  687. /* > \author NAG Ltd. */
  688. /* > \date December 2016 */
  689. /* > \ingroup realOTHERcomputational */
  690. /* > \par Further Details: */
  691. /* ===================== */
  692. /* > */
  693. /* > \verbatim */
  694. /* > */
  695. /* > The reciprocal of the condition number of an eigenvalue lambda is */
  696. /* > defined as */
  697. /* > */
  698. /* > S(lambda) = |v**T*u| / (norm(u)*norm(v)) */
  699. /* > */
  700. /* > where u and v are the right and left eigenvectors of T corresponding */
  701. /* > to lambda; v**T denotes the transpose of v, and norm(u) */
  702. /* > denotes the Euclidean norm. These reciprocal condition numbers always */
  703. /* > lie between zero (very badly conditioned) and one (very well */
  704. /* > conditioned). If n = 1, S(lambda) is defined to be 1. */
  705. /* > */
  706. /* > An approximate error bound for a computed eigenvalue W(i) is given by */
  707. /* > */
  708. /* > EPS * norm(T) / S(i) */
  709. /* > */
  710. /* > where EPS is the machine precision. */
  711. /* > */
  712. /* > The reciprocal of the condition number of the right eigenvector u */
  713. /* > corresponding to lambda is defined as follows. Suppose */
  714. /* > */
  715. /* > T = ( lambda c ) */
  716. /* > ( 0 T22 ) */
  717. /* > */
  718. /* > Then the reciprocal condition number is */
  719. /* > */
  720. /* > SEP( lambda, T22 ) = sigma-f2cmin( T22 - lambda*I ) */
  721. /* > */
  722. /* > where sigma-f2cmin denotes the smallest singular value. We approximate */
  723. /* > the smallest singular value by the reciprocal of an estimate of the */
  724. /* > one-norm of the inverse of T22 - lambda*I. If n = 1, SEP(1) is */
  725. /* > defined to be abs(T(1,1)). */
  726. /* > */
  727. /* > An approximate error bound for a computed right eigenvector VR(i) */
  728. /* > is given by */
  729. /* > */
  730. /* > EPS * norm(T) / SEP(i) */
  731. /* > \endverbatim */
  732. /* > */
  733. /* ===================================================================== */
  734. /* Subroutine */ void strsna_(char *job, char *howmny, logical *select,
  735. integer *n, real *t, integer *ldt, real *vl, integer *ldvl, real *vr,
  736. integer *ldvr, real *s, real *sep, integer *mm, integer *m, real *
  737. work, integer *ldwork, integer *iwork, integer *info)
  738. {
  739. /* System generated locals */
  740. integer t_dim1, t_offset, vl_dim1, vl_offset, vr_dim1, vr_offset,
  741. work_dim1, work_offset, i__1, i__2;
  742. real r__1, r__2;
  743. /* Local variables */
  744. integer kase;
  745. real cond;
  746. logical pair;
  747. integer ierr;
  748. real dumm, prod;
  749. integer ifst;
  750. real lnrm;
  751. extern real sdot_(integer *, real *, integer *, real *, integer *);
  752. integer ilst;
  753. real rnrm, prod1, prod2;
  754. extern real snrm2_(integer *, real *, integer *);
  755. integer i__, j, k;
  756. real scale, delta;
  757. extern logical lsame_(char *, char *);
  758. integer isave[3];
  759. logical wants;
  760. real dummy[1];
  761. integer n2;
  762. extern /* Subroutine */ void slacn2_(integer *, real *, real *, integer *,
  763. real *, integer *, integer *);
  764. extern real slapy2_(real *, real *);
  765. real cs;
  766. extern /* Subroutine */ void slabad_(real *, real *);
  767. integer nn, ks;
  768. real sn, mu;
  769. extern real slamch_(char *);
  770. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  771. real bignum;
  772. logical wantbh;
  773. extern /* Subroutine */ void slacpy_(char *, integer *, integer *, real *,
  774. integer *, real *, integer *);
  775. logical somcon;
  776. extern /* Subroutine */ void slaqtr_(logical *, logical *, integer *, real
  777. *, integer *, real *, real *, real *, real *, real *, integer *),
  778. strexc_(char *, integer *, real *, integer *, real *, integer *,
  779. integer *, integer *, real *, integer *);
  780. real smlnum;
  781. logical wantsp;
  782. real eps, est;
  783. /* -- LAPACK computational routine (version 3.7.0) -- */
  784. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  785. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  786. /* December 2016 */
  787. /* ===================================================================== */
  788. /* Decode and test the input parameters */
  789. /* Parameter adjustments */
  790. --select;
  791. t_dim1 = *ldt;
  792. t_offset = 1 + t_dim1 * 1;
  793. t -= t_offset;
  794. vl_dim1 = *ldvl;
  795. vl_offset = 1 + vl_dim1 * 1;
  796. vl -= vl_offset;
  797. vr_dim1 = *ldvr;
  798. vr_offset = 1 + vr_dim1 * 1;
  799. vr -= vr_offset;
  800. --s;
  801. --sep;
  802. work_dim1 = *ldwork;
  803. work_offset = 1 + work_dim1 * 1;
  804. work -= work_offset;
  805. --iwork;
  806. /* Function Body */
  807. wantbh = lsame_(job, "B");
  808. wants = lsame_(job, "E") || wantbh;
  809. wantsp = lsame_(job, "V") || wantbh;
  810. somcon = lsame_(howmny, "S");
  811. *info = 0;
  812. if (! wants && ! wantsp) {
  813. *info = -1;
  814. } else if (! lsame_(howmny, "A") && ! somcon) {
  815. *info = -2;
  816. } else if (*n < 0) {
  817. *info = -4;
  818. } else if (*ldt < f2cmax(1,*n)) {
  819. *info = -6;
  820. } else if (*ldvl < 1 || wants && *ldvl < *n) {
  821. *info = -8;
  822. } else if (*ldvr < 1 || wants && *ldvr < *n) {
  823. *info = -10;
  824. } else {
  825. /* Set M to the number of eigenpairs for which condition numbers */
  826. /* are required, and test MM. */
  827. if (somcon) {
  828. *m = 0;
  829. pair = FALSE_;
  830. i__1 = *n;
  831. for (k = 1; k <= i__1; ++k) {
  832. if (pair) {
  833. pair = FALSE_;
  834. } else {
  835. if (k < *n) {
  836. if (t[k + 1 + k * t_dim1] == 0.f) {
  837. if (select[k]) {
  838. ++(*m);
  839. }
  840. } else {
  841. pair = TRUE_;
  842. if (select[k] || select[k + 1]) {
  843. *m += 2;
  844. }
  845. }
  846. } else {
  847. if (select[*n]) {
  848. ++(*m);
  849. }
  850. }
  851. }
  852. /* L10: */
  853. }
  854. } else {
  855. *m = *n;
  856. }
  857. if (*mm < *m) {
  858. *info = -13;
  859. } else if (*ldwork < 1 || wantsp && *ldwork < *n) {
  860. *info = -16;
  861. }
  862. }
  863. if (*info != 0) {
  864. i__1 = -(*info);
  865. xerbla_("STRSNA", &i__1, (ftnlen)6);
  866. return;
  867. }
  868. /* Quick return if possible */
  869. if (*n == 0) {
  870. return;
  871. }
  872. if (*n == 1) {
  873. if (somcon) {
  874. if (! select[1]) {
  875. return;
  876. }
  877. }
  878. if (wants) {
  879. s[1] = 1.f;
  880. }
  881. if (wantsp) {
  882. sep[1] = (r__1 = t[t_dim1 + 1], abs(r__1));
  883. }
  884. return;
  885. }
  886. /* Get machine constants */
  887. eps = slamch_("P");
  888. smlnum = slamch_("S") / eps;
  889. bignum = 1.f / smlnum;
  890. slabad_(&smlnum, &bignum);
  891. ks = 0;
  892. pair = FALSE_;
  893. i__1 = *n;
  894. for (k = 1; k <= i__1; ++k) {
  895. /* Determine whether T(k,k) begins a 1-by-1 or 2-by-2 block. */
  896. if (pair) {
  897. pair = FALSE_;
  898. goto L60;
  899. } else {
  900. if (k < *n) {
  901. pair = t[k + 1 + k * t_dim1] != 0.f;
  902. }
  903. }
  904. /* Determine whether condition numbers are required for the k-th */
  905. /* eigenpair. */
  906. if (somcon) {
  907. if (pair) {
  908. if (! select[k] && ! select[k + 1]) {
  909. goto L60;
  910. }
  911. } else {
  912. if (! select[k]) {
  913. goto L60;
  914. }
  915. }
  916. }
  917. ++ks;
  918. if (wants) {
  919. /* Compute the reciprocal condition number of the k-th */
  920. /* eigenvalue. */
  921. if (! pair) {
  922. /* Real eigenvalue. */
  923. prod = sdot_(n, &vr[ks * vr_dim1 + 1], &c__1, &vl[ks *
  924. vl_dim1 + 1], &c__1);
  925. rnrm = snrm2_(n, &vr[ks * vr_dim1 + 1], &c__1);
  926. lnrm = snrm2_(n, &vl[ks * vl_dim1 + 1], &c__1);
  927. s[ks] = abs(prod) / (rnrm * lnrm);
  928. } else {
  929. /* Complex eigenvalue. */
  930. prod1 = sdot_(n, &vr[ks * vr_dim1 + 1], &c__1, &vl[ks *
  931. vl_dim1 + 1], &c__1);
  932. prod1 += sdot_(n, &vr[(ks + 1) * vr_dim1 + 1], &c__1, &vl[(ks
  933. + 1) * vl_dim1 + 1], &c__1);
  934. prod2 = sdot_(n, &vl[ks * vl_dim1 + 1], &c__1, &vr[(ks + 1) *
  935. vr_dim1 + 1], &c__1);
  936. prod2 -= sdot_(n, &vl[(ks + 1) * vl_dim1 + 1], &c__1, &vr[ks *
  937. vr_dim1 + 1], &c__1);
  938. r__1 = snrm2_(n, &vr[ks * vr_dim1 + 1], &c__1);
  939. r__2 = snrm2_(n, &vr[(ks + 1) * vr_dim1 + 1], &c__1);
  940. rnrm = slapy2_(&r__1, &r__2);
  941. r__1 = snrm2_(n, &vl[ks * vl_dim1 + 1], &c__1);
  942. r__2 = snrm2_(n, &vl[(ks + 1) * vl_dim1 + 1], &c__1);
  943. lnrm = slapy2_(&r__1, &r__2);
  944. cond = slapy2_(&prod1, &prod2) / (rnrm * lnrm);
  945. s[ks] = cond;
  946. s[ks + 1] = cond;
  947. }
  948. }
  949. if (wantsp) {
  950. /* Estimate the reciprocal condition number of the k-th */
  951. /* eigenvector. */
  952. /* Copy the matrix T to the array WORK and swap the diagonal */
  953. /* block beginning at T(k,k) to the (1,1) position. */
  954. slacpy_("Full", n, n, &t[t_offset], ldt, &work[work_offset],
  955. ldwork);
  956. ifst = k;
  957. ilst = 1;
  958. strexc_("No Q", n, &work[work_offset], ldwork, dummy, &c__1, &
  959. ifst, &ilst, &work[(*n + 1) * work_dim1 + 1], &ierr);
  960. if (ierr == 1 || ierr == 2) {
  961. /* Could not swap because blocks not well separated */
  962. scale = 1.f;
  963. est = bignum;
  964. } else {
  965. /* Reordering successful */
  966. if (work[work_dim1 + 2] == 0.f) {
  967. /* Form C = T22 - lambda*I in WORK(2:N,2:N). */
  968. i__2 = *n;
  969. for (i__ = 2; i__ <= i__2; ++i__) {
  970. work[i__ + i__ * work_dim1] -= work[work_dim1 + 1];
  971. /* L20: */
  972. }
  973. n2 = 1;
  974. nn = *n - 1;
  975. } else {
  976. /* Triangularize the 2 by 2 block by unitary */
  977. /* transformation U = [ cs i*ss ] */
  978. /* [ i*ss cs ]. */
  979. /* such that the (1,1) position of WORK is complex */
  980. /* eigenvalue lambda with positive imaginary part. (2,2) */
  981. /* position of WORK is the complex eigenvalue lambda */
  982. /* with negative imaginary part. */
  983. mu = sqrt((r__1 = work[(work_dim1 << 1) + 1], abs(r__1)))
  984. * sqrt((r__2 = work[work_dim1 + 2], abs(r__2)));
  985. delta = slapy2_(&mu, &work[work_dim1 + 2]);
  986. cs = mu / delta;
  987. sn = -work[work_dim1 + 2] / delta;
  988. /* Form */
  989. /* C**T = WORK(2:N,2:N) + i*[rwork(1) ..... rwork(n-1) ] */
  990. /* [ mu ] */
  991. /* [ .. ] */
  992. /* [ .. ] */
  993. /* [ mu ] */
  994. /* where C**T is transpose of matrix C, */
  995. /* and RWORK is stored starting in the N+1-st column of */
  996. /* WORK. */
  997. i__2 = *n;
  998. for (j = 3; j <= i__2; ++j) {
  999. work[j * work_dim1 + 2] = cs * work[j * work_dim1 + 2]
  1000. ;
  1001. work[j + j * work_dim1] -= work[work_dim1 + 1];
  1002. /* L30: */
  1003. }
  1004. work[(work_dim1 << 1) + 2] = 0.f;
  1005. work[(*n + 1) * work_dim1 + 1] = mu * 2.f;
  1006. i__2 = *n - 1;
  1007. for (i__ = 2; i__ <= i__2; ++i__) {
  1008. work[i__ + (*n + 1) * work_dim1] = sn * work[(i__ + 1)
  1009. * work_dim1 + 1];
  1010. /* L40: */
  1011. }
  1012. n2 = 2;
  1013. nn = *n - 1 << 1;
  1014. }
  1015. /* Estimate norm(inv(C**T)) */
  1016. est = 0.f;
  1017. kase = 0;
  1018. L50:
  1019. slacn2_(&nn, &work[(*n + 2) * work_dim1 + 1], &work[(*n + 4) *
  1020. work_dim1 + 1], &iwork[1], &est, &kase, isave);
  1021. if (kase != 0) {
  1022. if (kase == 1) {
  1023. if (n2 == 1) {
  1024. /* Real eigenvalue: solve C**T*x = scale*c. */
  1025. i__2 = *n - 1;
  1026. slaqtr_(&c_true, &c_true, &i__2, &work[(work_dim1
  1027. << 1) + 2], ldwork, dummy, &dumm, &scale,
  1028. &work[(*n + 4) * work_dim1 + 1], &work[(*
  1029. n + 6) * work_dim1 + 1], &ierr);
  1030. } else {
  1031. /* Complex eigenvalue: solve */
  1032. /* C**T*(p+iq) = scale*(c+id) in real arithmetic. */
  1033. i__2 = *n - 1;
  1034. slaqtr_(&c_true, &c_false, &i__2, &work[(
  1035. work_dim1 << 1) + 2], ldwork, &work[(*n +
  1036. 1) * work_dim1 + 1], &mu, &scale, &work[(*
  1037. n + 4) * work_dim1 + 1], &work[(*n + 6) *
  1038. work_dim1 + 1], &ierr);
  1039. }
  1040. } else {
  1041. if (n2 == 1) {
  1042. /* Real eigenvalue: solve C*x = scale*c. */
  1043. i__2 = *n - 1;
  1044. slaqtr_(&c_false, &c_true, &i__2, &work[(
  1045. work_dim1 << 1) + 2], ldwork, dummy, &
  1046. dumm, &scale, &work[(*n + 4) * work_dim1
  1047. + 1], &work[(*n + 6) * work_dim1 + 1], &
  1048. ierr);
  1049. } else {
  1050. /* Complex eigenvalue: solve */
  1051. /* C*(p+iq) = scale*(c+id) in real arithmetic. */
  1052. i__2 = *n - 1;
  1053. slaqtr_(&c_false, &c_false, &i__2, &work[(
  1054. work_dim1 << 1) + 2], ldwork, &work[(*n +
  1055. 1) * work_dim1 + 1], &mu, &scale, &work[(*
  1056. n + 4) * work_dim1 + 1], &work[(*n + 6) *
  1057. work_dim1 + 1], &ierr);
  1058. }
  1059. }
  1060. goto L50;
  1061. }
  1062. }
  1063. sep[ks] = scale / f2cmax(est,smlnum);
  1064. if (pair) {
  1065. sep[ks + 1] = sep[ks];
  1066. }
  1067. }
  1068. if (pair) {
  1069. ++ks;
  1070. }
  1071. L60:
  1072. ;
  1073. }
  1074. return;
  1075. /* End of STRSNA */
  1076. } /* strsna_ */