You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slansf.c 44 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. /* > \brief \b SLANSF */
  486. /* =========== DOCUMENTATION =========== */
  487. /* Online html documentation available at */
  488. /* http://www.netlib.org/lapack/explore-html/ */
  489. /* > \htmlonly */
  490. /* > Download SLANSF + dependencies */
  491. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slansf.
  492. f"> */
  493. /* > [TGZ]</a> */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slansf.
  495. f"> */
  496. /* > [ZIP]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slansf.
  498. f"> */
  499. /* > [TXT]</a> */
  500. /* > \endhtmlonly */
  501. /* Definition: */
  502. /* =========== */
  503. /* REAL FUNCTION SLANSF( NORM, TRANSR, UPLO, N, A, WORK ) */
  504. /* CHARACTER NORM, TRANSR, UPLO */
  505. /* INTEGER N */
  506. /* REAL A( 0: * ), WORK( 0: * ) */
  507. /* > \par Purpose: */
  508. /* ============= */
  509. /* > */
  510. /* > \verbatim */
  511. /* > */
  512. /* > SLANSF returns the value of the one norm, or the Frobenius norm, or */
  513. /* > the infinity norm, or the element of largest absolute value of a */
  514. /* > real symmetric matrix A in RFP format. */
  515. /* > \endverbatim */
  516. /* > */
  517. /* > \return SLANSF */
  518. /* > \verbatim */
  519. /* > */
  520. /* > SLANSF = ( f2cmax(abs(A(i,j))), NORM = 'M' or 'm' */
  521. /* > ( */
  522. /* > ( norm1(A), NORM = '1', 'O' or 'o' */
  523. /* > ( */
  524. /* > ( normI(A), NORM = 'I' or 'i' */
  525. /* > ( */
  526. /* > ( normF(A), NORM = 'F', 'f', 'E' or 'e' */
  527. /* > */
  528. /* > where norm1 denotes the one norm of a matrix (maximum column sum), */
  529. /* > normI denotes the infinity norm of a matrix (maximum row sum) and */
  530. /* > normF denotes the Frobenius norm of a matrix (square root of sum of */
  531. /* > squares). Note that f2cmax(abs(A(i,j))) is not a matrix norm. */
  532. /* > \endverbatim */
  533. /* Arguments: */
  534. /* ========== */
  535. /* > \param[in] NORM */
  536. /* > \verbatim */
  537. /* > NORM is CHARACTER*1 */
  538. /* > Specifies the value to be returned in SLANSF as described */
  539. /* > above. */
  540. /* > \endverbatim */
  541. /* > */
  542. /* > \param[in] TRANSR */
  543. /* > \verbatim */
  544. /* > TRANSR is CHARACTER*1 */
  545. /* > Specifies whether the RFP format of A is normal or */
  546. /* > transposed format. */
  547. /* > = 'N': RFP format is Normal; */
  548. /* > = 'T': RFP format is Transpose. */
  549. /* > \endverbatim */
  550. /* > */
  551. /* > \param[in] UPLO */
  552. /* > \verbatim */
  553. /* > UPLO is CHARACTER*1 */
  554. /* > On entry, UPLO specifies whether the RFP matrix A came from */
  555. /* > an upper or lower triangular matrix as follows: */
  556. /* > = 'U': RFP A came from an upper triangular matrix; */
  557. /* > = 'L': RFP A came from a lower triangular matrix. */
  558. /* > \endverbatim */
  559. /* > */
  560. /* > \param[in] N */
  561. /* > \verbatim */
  562. /* > N is INTEGER */
  563. /* > The order of the matrix A. N >= 0. When N = 0, SLANSF is */
  564. /* > set to zero. */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[in] A */
  568. /* > \verbatim */
  569. /* > A is REAL array, dimension ( N*(N+1)/2 ); */
  570. /* > On entry, the upper (if UPLO = 'U') or lower (if UPLO = 'L') */
  571. /* > part of the symmetric matrix A stored in RFP format. See the */
  572. /* > "Notes" below for more details. */
  573. /* > Unchanged on exit. */
  574. /* > \endverbatim */
  575. /* > */
  576. /* > \param[out] WORK */
  577. /* > \verbatim */
  578. /* > WORK is REAL array, dimension (MAX(1,LWORK)), */
  579. /* > where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, */
  580. /* > WORK is not referenced. */
  581. /* > \endverbatim */
  582. /* Authors: */
  583. /* ======== */
  584. /* > \author Univ. of Tennessee */
  585. /* > \author Univ. of California Berkeley */
  586. /* > \author Univ. of Colorado Denver */
  587. /* > \author NAG Ltd. */
  588. /* > \date December 2016 */
  589. /* > \ingroup realOTHERcomputational */
  590. /* > \par Further Details: */
  591. /* ===================== */
  592. /* > */
  593. /* > \verbatim */
  594. /* > */
  595. /* > We first consider Rectangular Full Packed (RFP) Format when N is */
  596. /* > even. We give an example where N = 6. */
  597. /* > */
  598. /* > AP is Upper AP is Lower */
  599. /* > */
  600. /* > 00 01 02 03 04 05 00 */
  601. /* > 11 12 13 14 15 10 11 */
  602. /* > 22 23 24 25 20 21 22 */
  603. /* > 33 34 35 30 31 32 33 */
  604. /* > 44 45 40 41 42 43 44 */
  605. /* > 55 50 51 52 53 54 55 */
  606. /* > */
  607. /* > */
  608. /* > Let TRANSR = 'N'. RFP holds AP as follows: */
  609. /* > For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last */
  610. /* > three columns of AP upper. The lower triangle A(4:6,0:2) consists of */
  611. /* > the transpose of the first three columns of AP upper. */
  612. /* > For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first */
  613. /* > three columns of AP lower. The upper triangle A(0:2,0:2) consists of */
  614. /* > the transpose of the last three columns of AP lower. */
  615. /* > This covers the case N even and TRANSR = 'N'. */
  616. /* > */
  617. /* > RFP A RFP A */
  618. /* > */
  619. /* > 03 04 05 33 43 53 */
  620. /* > 13 14 15 00 44 54 */
  621. /* > 23 24 25 10 11 55 */
  622. /* > 33 34 35 20 21 22 */
  623. /* > 00 44 45 30 31 32 */
  624. /* > 01 11 55 40 41 42 */
  625. /* > 02 12 22 50 51 52 */
  626. /* > */
  627. /* > Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */
  628. /* > transpose of RFP A above. One therefore gets: */
  629. /* > */
  630. /* > */
  631. /* > RFP A RFP A */
  632. /* > */
  633. /* > 03 13 23 33 00 01 02 33 00 10 20 30 40 50 */
  634. /* > 04 14 24 34 44 11 12 43 44 11 21 31 41 51 */
  635. /* > 05 15 25 35 45 55 22 53 54 55 22 32 42 52 */
  636. /* > */
  637. /* > */
  638. /* > We then consider Rectangular Full Packed (RFP) Format when N is */
  639. /* > odd. We give an example where N = 5. */
  640. /* > */
  641. /* > AP is Upper AP is Lower */
  642. /* > */
  643. /* > 00 01 02 03 04 00 */
  644. /* > 11 12 13 14 10 11 */
  645. /* > 22 23 24 20 21 22 */
  646. /* > 33 34 30 31 32 33 */
  647. /* > 44 40 41 42 43 44 */
  648. /* > */
  649. /* > */
  650. /* > Let TRANSR = 'N'. RFP holds AP as follows: */
  651. /* > For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last */
  652. /* > three columns of AP upper. The lower triangle A(3:4,0:1) consists of */
  653. /* > the transpose of the first two columns of AP upper. */
  654. /* > For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first */
  655. /* > three columns of AP lower. The upper triangle A(0:1,1:2) consists of */
  656. /* > the transpose of the last two columns of AP lower. */
  657. /* > This covers the case N odd and TRANSR = 'N'. */
  658. /* > */
  659. /* > RFP A RFP A */
  660. /* > */
  661. /* > 02 03 04 00 33 43 */
  662. /* > 12 13 14 10 11 44 */
  663. /* > 22 23 24 20 21 22 */
  664. /* > 00 33 34 30 31 32 */
  665. /* > 01 11 44 40 41 42 */
  666. /* > */
  667. /* > Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */
  668. /* > transpose of RFP A above. One therefore gets: */
  669. /* > */
  670. /* > RFP A RFP A */
  671. /* > */
  672. /* > 02 12 22 00 01 00 10 20 30 40 50 */
  673. /* > 03 13 23 33 11 33 11 21 31 41 51 */
  674. /* > 04 14 24 34 44 43 44 22 32 42 52 */
  675. /* > \endverbatim */
  676. /* ===================================================================== */
  677. real slansf_(char *norm, char *transr, char *uplo, integer *n, real *a, real *
  678. work)
  679. {
  680. /* System generated locals */
  681. integer i__1, i__2;
  682. real ret_val, r__1;
  683. /* Local variables */
  684. real temp;
  685. integer i__, j, k, l;
  686. real s, scale;
  687. extern logical lsame_(char *, char *);
  688. real value;
  689. integer n1;
  690. real aa;
  691. extern logical sisnan_(real *);
  692. extern /* Subroutine */ void slassq_(integer *, real *, integer *, real *,
  693. real *);
  694. integer lda, ifm, noe, ilu;
  695. /* -- LAPACK computational routine (version 3.7.0) -- */
  696. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  697. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  698. /* December 2016 */
  699. /* ===================================================================== */
  700. if (*n == 0) {
  701. ret_val = 0.f;
  702. return ret_val;
  703. } else if (*n == 1) {
  704. ret_val = abs(a[0]);
  705. return ret_val;
  706. }
  707. /* set noe = 1 if n is odd. if n is even set noe=0 */
  708. noe = 1;
  709. if (*n % 2 == 0) {
  710. noe = 0;
  711. }
  712. /* set ifm = 0 when form='T or 't' and 1 otherwise */
  713. ifm = 1;
  714. if (lsame_(transr, "T")) {
  715. ifm = 0;
  716. }
  717. /* set ilu = 0 when uplo='U or 'u' and 1 otherwise */
  718. ilu = 1;
  719. if (lsame_(uplo, "U")) {
  720. ilu = 0;
  721. }
  722. /* set lda = (n+1)/2 when ifm = 0 */
  723. /* set lda = n when ifm = 1 and noe = 1 */
  724. /* set lda = n+1 when ifm = 1 and noe = 0 */
  725. if (ifm == 1) {
  726. if (noe == 1) {
  727. lda = *n;
  728. } else {
  729. /* noe=0 */
  730. lda = *n + 1;
  731. }
  732. } else {
  733. /* ifm=0 */
  734. lda = (*n + 1) / 2;
  735. }
  736. if (lsame_(norm, "M")) {
  737. /* Find f2cmax(abs(A(i,j))). */
  738. k = (*n + 1) / 2;
  739. value = 0.f;
  740. if (noe == 1) {
  741. /* n is odd */
  742. if (ifm == 1) {
  743. /* A is n by k */
  744. i__1 = k - 1;
  745. for (j = 0; j <= i__1; ++j) {
  746. i__2 = *n - 1;
  747. for (i__ = 0; i__ <= i__2; ++i__) {
  748. temp = (r__1 = a[i__ + j * lda], abs(r__1));
  749. if (value < temp || sisnan_(&temp)) {
  750. value = temp;
  751. }
  752. }
  753. }
  754. } else {
  755. /* xpose case; A is k by n */
  756. i__1 = *n - 1;
  757. for (j = 0; j <= i__1; ++j) {
  758. i__2 = k - 1;
  759. for (i__ = 0; i__ <= i__2; ++i__) {
  760. temp = (r__1 = a[i__ + j * lda], abs(r__1));
  761. if (value < temp || sisnan_(&temp)) {
  762. value = temp;
  763. }
  764. }
  765. }
  766. }
  767. } else {
  768. /* n is even */
  769. if (ifm == 1) {
  770. /* A is n+1 by k */
  771. i__1 = k - 1;
  772. for (j = 0; j <= i__1; ++j) {
  773. i__2 = *n;
  774. for (i__ = 0; i__ <= i__2; ++i__) {
  775. temp = (r__1 = a[i__ + j * lda], abs(r__1));
  776. if (value < temp || sisnan_(&temp)) {
  777. value = temp;
  778. }
  779. }
  780. }
  781. } else {
  782. /* xpose case; A is k by n+1 */
  783. i__1 = *n;
  784. for (j = 0; j <= i__1; ++j) {
  785. i__2 = k - 1;
  786. for (i__ = 0; i__ <= i__2; ++i__) {
  787. temp = (r__1 = a[i__ + j * lda], abs(r__1));
  788. if (value < temp || sisnan_(&temp)) {
  789. value = temp;
  790. }
  791. }
  792. }
  793. }
  794. }
  795. } else if (lsame_(norm, "I") || lsame_(norm, "O") || *(unsigned char *)norm == '1') {
  796. /* Find normI(A) ( = norm1(A), since A is symmetric). */
  797. if (ifm == 1) {
  798. k = *n / 2;
  799. if (noe == 1) {
  800. /* n is odd */
  801. if (ilu == 0) {
  802. i__1 = k - 1;
  803. for (i__ = 0; i__ <= i__1; ++i__) {
  804. work[i__] = 0.f;
  805. }
  806. i__1 = k;
  807. for (j = 0; j <= i__1; ++j) {
  808. s = 0.f;
  809. i__2 = k + j - 1;
  810. for (i__ = 0; i__ <= i__2; ++i__) {
  811. aa = (r__1 = a[i__ + j * lda], abs(r__1));
  812. /* -> A(i,j+k) */
  813. s += aa;
  814. work[i__] += aa;
  815. }
  816. aa = (r__1 = a[i__ + j * lda], abs(r__1));
  817. /* -> A(j+k,j+k) */
  818. work[j + k] = s + aa;
  819. if (i__ == k + k) {
  820. goto L10;
  821. }
  822. ++i__;
  823. aa = (r__1 = a[i__ + j * lda], abs(r__1));
  824. /* -> A(j,j) */
  825. work[j] += aa;
  826. s = 0.f;
  827. i__2 = k - 1;
  828. for (l = j + 1; l <= i__2; ++l) {
  829. ++i__;
  830. aa = (r__1 = a[i__ + j * lda], abs(r__1));
  831. /* -> A(l,j) */
  832. s += aa;
  833. work[l] += aa;
  834. }
  835. work[j] += s;
  836. }
  837. L10:
  838. value = work[0];
  839. i__1 = *n - 1;
  840. for (i__ = 1; i__ <= i__1; ++i__) {
  841. temp = work[i__];
  842. if (value < temp || sisnan_(&temp)) {
  843. value = temp;
  844. }
  845. }
  846. } else {
  847. /* ilu = 1 */
  848. ++k;
  849. /* k=(n+1)/2 for n odd and ilu=1 */
  850. i__1 = *n - 1;
  851. for (i__ = k; i__ <= i__1; ++i__) {
  852. work[i__] = 0.f;
  853. }
  854. for (j = k - 1; j >= 0; --j) {
  855. s = 0.f;
  856. i__1 = j - 2;
  857. for (i__ = 0; i__ <= i__1; ++i__) {
  858. aa = (r__1 = a[i__ + j * lda], abs(r__1));
  859. /* -> A(j+k,i+k) */
  860. s += aa;
  861. work[i__ + k] += aa;
  862. }
  863. if (j > 0) {
  864. aa = (r__1 = a[i__ + j * lda], abs(r__1));
  865. /* -> A(j+k,j+k) */
  866. s += aa;
  867. work[i__ + k] += s;
  868. /* i=j */
  869. ++i__;
  870. }
  871. aa = (r__1 = a[i__ + j * lda], abs(r__1));
  872. /* -> A(j,j) */
  873. work[j] = aa;
  874. s = 0.f;
  875. i__1 = *n - 1;
  876. for (l = j + 1; l <= i__1; ++l) {
  877. ++i__;
  878. aa = (r__1 = a[i__ + j * lda], abs(r__1));
  879. /* -> A(l,j) */
  880. s += aa;
  881. work[l] += aa;
  882. }
  883. work[j] += s;
  884. }
  885. value = work[0];
  886. i__1 = *n - 1;
  887. for (i__ = 1; i__ <= i__1; ++i__) {
  888. temp = work[i__];
  889. if (value < temp || sisnan_(&temp)) {
  890. value = temp;
  891. }
  892. }
  893. }
  894. } else {
  895. /* n is even */
  896. if (ilu == 0) {
  897. i__1 = k - 1;
  898. for (i__ = 0; i__ <= i__1; ++i__) {
  899. work[i__] = 0.f;
  900. }
  901. i__1 = k - 1;
  902. for (j = 0; j <= i__1; ++j) {
  903. s = 0.f;
  904. i__2 = k + j - 1;
  905. for (i__ = 0; i__ <= i__2; ++i__) {
  906. aa = (r__1 = a[i__ + j * lda], abs(r__1));
  907. /* -> A(i,j+k) */
  908. s += aa;
  909. work[i__] += aa;
  910. }
  911. aa = (r__1 = a[i__ + j * lda], abs(r__1));
  912. /* -> A(j+k,j+k) */
  913. work[j + k] = s + aa;
  914. ++i__;
  915. aa = (r__1 = a[i__ + j * lda], abs(r__1));
  916. /* -> A(j,j) */
  917. work[j] += aa;
  918. s = 0.f;
  919. i__2 = k - 1;
  920. for (l = j + 1; l <= i__2; ++l) {
  921. ++i__;
  922. aa = (r__1 = a[i__ + j * lda], abs(r__1));
  923. /* -> A(l,j) */
  924. s += aa;
  925. work[l] += aa;
  926. }
  927. work[j] += s;
  928. }
  929. value = work[0];
  930. i__1 = *n - 1;
  931. for (i__ = 1; i__ <= i__1; ++i__) {
  932. temp = work[i__];
  933. if (value < temp || sisnan_(&temp)) {
  934. value = temp;
  935. }
  936. }
  937. } else {
  938. /* ilu = 1 */
  939. i__1 = *n - 1;
  940. for (i__ = k; i__ <= i__1; ++i__) {
  941. work[i__] = 0.f;
  942. }
  943. for (j = k - 1; j >= 0; --j) {
  944. s = 0.f;
  945. i__1 = j - 1;
  946. for (i__ = 0; i__ <= i__1; ++i__) {
  947. aa = (r__1 = a[i__ + j * lda], abs(r__1));
  948. /* -> A(j+k,i+k) */
  949. s += aa;
  950. work[i__ + k] += aa;
  951. }
  952. aa = (r__1 = a[i__ + j * lda], abs(r__1));
  953. /* -> A(j+k,j+k) */
  954. s += aa;
  955. work[i__ + k] += s;
  956. /* i=j */
  957. ++i__;
  958. aa = (r__1 = a[i__ + j * lda], abs(r__1));
  959. /* -> A(j,j) */
  960. work[j] = aa;
  961. s = 0.f;
  962. i__1 = *n - 1;
  963. for (l = j + 1; l <= i__1; ++l) {
  964. ++i__;
  965. aa = (r__1 = a[i__ + j * lda], abs(r__1));
  966. /* -> A(l,j) */
  967. s += aa;
  968. work[l] += aa;
  969. }
  970. work[j] += s;
  971. }
  972. value = work[0];
  973. i__1 = *n - 1;
  974. for (i__ = 1; i__ <= i__1; ++i__) {
  975. temp = work[i__];
  976. if (value < temp || sisnan_(&temp)) {
  977. value = temp;
  978. }
  979. }
  980. }
  981. }
  982. } else {
  983. /* ifm=0 */
  984. k = *n / 2;
  985. if (noe == 1) {
  986. /* n is odd */
  987. if (ilu == 0) {
  988. n1 = k;
  989. /* n/2 */
  990. ++k;
  991. /* k is the row size and lda */
  992. i__1 = *n - 1;
  993. for (i__ = n1; i__ <= i__1; ++i__) {
  994. work[i__] = 0.f;
  995. }
  996. i__1 = n1 - 1;
  997. for (j = 0; j <= i__1; ++j) {
  998. s = 0.f;
  999. i__2 = k - 1;
  1000. for (i__ = 0; i__ <= i__2; ++i__) {
  1001. aa = (r__1 = a[i__ + j * lda], abs(r__1));
  1002. /* A(j,n1+i) */
  1003. work[i__ + n1] += aa;
  1004. s += aa;
  1005. }
  1006. work[j] = s;
  1007. }
  1008. /* j=n1=k-1 is special */
  1009. s = (r__1 = a[j * lda], abs(r__1));
  1010. /* A(k-1,k-1) */
  1011. i__1 = k - 1;
  1012. for (i__ = 1; i__ <= i__1; ++i__) {
  1013. aa = (r__1 = a[i__ + j * lda], abs(r__1));
  1014. /* A(k-1,i+n1) */
  1015. work[i__ + n1] += aa;
  1016. s += aa;
  1017. }
  1018. work[j] += s;
  1019. i__1 = *n - 1;
  1020. for (j = k; j <= i__1; ++j) {
  1021. s = 0.f;
  1022. i__2 = j - k - 1;
  1023. for (i__ = 0; i__ <= i__2; ++i__) {
  1024. aa = (r__1 = a[i__ + j * lda], abs(r__1));
  1025. /* A(i,j-k) */
  1026. work[i__] += aa;
  1027. s += aa;
  1028. }
  1029. /* i=j-k */
  1030. aa = (r__1 = a[i__ + j * lda], abs(r__1));
  1031. /* A(j-k,j-k) */
  1032. s += aa;
  1033. work[j - k] += s;
  1034. ++i__;
  1035. s = (r__1 = a[i__ + j * lda], abs(r__1));
  1036. /* A(j,j) */
  1037. i__2 = *n - 1;
  1038. for (l = j + 1; l <= i__2; ++l) {
  1039. ++i__;
  1040. aa = (r__1 = a[i__ + j * lda], abs(r__1));
  1041. /* A(j,l) */
  1042. work[l] += aa;
  1043. s += aa;
  1044. }
  1045. work[j] += s;
  1046. }
  1047. value = work[0];
  1048. i__1 = *n - 1;
  1049. for (i__ = 1; i__ <= i__1; ++i__) {
  1050. temp = work[i__];
  1051. if (value < temp || sisnan_(&temp)) {
  1052. value = temp;
  1053. }
  1054. }
  1055. } else {
  1056. /* ilu=1 */
  1057. ++k;
  1058. /* k=(n+1)/2 for n odd and ilu=1 */
  1059. i__1 = *n - 1;
  1060. for (i__ = k; i__ <= i__1; ++i__) {
  1061. work[i__] = 0.f;
  1062. }
  1063. i__1 = k - 2;
  1064. for (j = 0; j <= i__1; ++j) {
  1065. /* process */
  1066. s = 0.f;
  1067. i__2 = j - 1;
  1068. for (i__ = 0; i__ <= i__2; ++i__) {
  1069. aa = (r__1 = a[i__ + j * lda], abs(r__1));
  1070. /* A(j,i) */
  1071. work[i__] += aa;
  1072. s += aa;
  1073. }
  1074. aa = (r__1 = a[i__ + j * lda], abs(r__1));
  1075. /* i=j so process of A(j,j) */
  1076. s += aa;
  1077. work[j] = s;
  1078. /* is initialised here */
  1079. ++i__;
  1080. /* i=j process A(j+k,j+k) */
  1081. aa = (r__1 = a[i__ + j * lda], abs(r__1));
  1082. s = aa;
  1083. i__2 = *n - 1;
  1084. for (l = k + j + 1; l <= i__2; ++l) {
  1085. ++i__;
  1086. aa = (r__1 = a[i__ + j * lda], abs(r__1));
  1087. /* A(l,k+j) */
  1088. s += aa;
  1089. work[l] += aa;
  1090. }
  1091. work[k + j] += s;
  1092. }
  1093. /* j=k-1 is special :process col A(k-1,0:k-1) */
  1094. s = 0.f;
  1095. i__1 = k - 2;
  1096. for (i__ = 0; i__ <= i__1; ++i__) {
  1097. aa = (r__1 = a[i__ + j * lda], abs(r__1));
  1098. /* A(k,i) */
  1099. work[i__] += aa;
  1100. s += aa;
  1101. }
  1102. /* i=k-1 */
  1103. aa = (r__1 = a[i__ + j * lda], abs(r__1));
  1104. /* A(k-1,k-1) */
  1105. s += aa;
  1106. work[i__] = s;
  1107. /* done with col j=k+1 */
  1108. i__1 = *n - 1;
  1109. for (j = k; j <= i__1; ++j) {
  1110. /* process col j of A = A(j,0:k-1) */
  1111. s = 0.f;
  1112. i__2 = k - 1;
  1113. for (i__ = 0; i__ <= i__2; ++i__) {
  1114. aa = (r__1 = a[i__ + j * lda], abs(r__1));
  1115. /* A(j,i) */
  1116. work[i__] += aa;
  1117. s += aa;
  1118. }
  1119. work[j] += s;
  1120. }
  1121. value = work[0];
  1122. i__1 = *n - 1;
  1123. for (i__ = 1; i__ <= i__1; ++i__) {
  1124. temp = work[i__];
  1125. if (value < temp || sisnan_(&temp)) {
  1126. value = temp;
  1127. }
  1128. }
  1129. }
  1130. } else {
  1131. /* n is even */
  1132. if (ilu == 0) {
  1133. i__1 = *n - 1;
  1134. for (i__ = k; i__ <= i__1; ++i__) {
  1135. work[i__] = 0.f;
  1136. }
  1137. i__1 = k - 1;
  1138. for (j = 0; j <= i__1; ++j) {
  1139. s = 0.f;
  1140. i__2 = k - 1;
  1141. for (i__ = 0; i__ <= i__2; ++i__) {
  1142. aa = (r__1 = a[i__ + j * lda], abs(r__1));
  1143. /* A(j,i+k) */
  1144. work[i__ + k] += aa;
  1145. s += aa;
  1146. }
  1147. work[j] = s;
  1148. }
  1149. /* j=k */
  1150. aa = (r__1 = a[j * lda], abs(r__1));
  1151. /* A(k,k) */
  1152. s = aa;
  1153. i__1 = k - 1;
  1154. for (i__ = 1; i__ <= i__1; ++i__) {
  1155. aa = (r__1 = a[i__ + j * lda], abs(r__1));
  1156. /* A(k,k+i) */
  1157. work[i__ + k] += aa;
  1158. s += aa;
  1159. }
  1160. work[j] += s;
  1161. i__1 = *n - 1;
  1162. for (j = k + 1; j <= i__1; ++j) {
  1163. s = 0.f;
  1164. i__2 = j - 2 - k;
  1165. for (i__ = 0; i__ <= i__2; ++i__) {
  1166. aa = (r__1 = a[i__ + j * lda], abs(r__1));
  1167. /* A(i,j-k-1) */
  1168. work[i__] += aa;
  1169. s += aa;
  1170. }
  1171. /* i=j-1-k */
  1172. aa = (r__1 = a[i__ + j * lda], abs(r__1));
  1173. /* A(j-k-1,j-k-1) */
  1174. s += aa;
  1175. work[j - k - 1] += s;
  1176. ++i__;
  1177. aa = (r__1 = a[i__ + j * lda], abs(r__1));
  1178. /* A(j,j) */
  1179. s = aa;
  1180. i__2 = *n - 1;
  1181. for (l = j + 1; l <= i__2; ++l) {
  1182. ++i__;
  1183. aa = (r__1 = a[i__ + j * lda], abs(r__1));
  1184. /* A(j,l) */
  1185. work[l] += aa;
  1186. s += aa;
  1187. }
  1188. work[j] += s;
  1189. }
  1190. /* j=n */
  1191. s = 0.f;
  1192. i__1 = k - 2;
  1193. for (i__ = 0; i__ <= i__1; ++i__) {
  1194. aa = (r__1 = a[i__ + j * lda], abs(r__1));
  1195. /* A(i,k-1) */
  1196. work[i__] += aa;
  1197. s += aa;
  1198. }
  1199. /* i=k-1 */
  1200. aa = (r__1 = a[i__ + j * lda], abs(r__1));
  1201. /* A(k-1,k-1) */
  1202. s += aa;
  1203. work[i__] += s;
  1204. value = work[0];
  1205. i__1 = *n - 1;
  1206. for (i__ = 1; i__ <= i__1; ++i__) {
  1207. temp = work[i__];
  1208. if (value < temp || sisnan_(&temp)) {
  1209. value = temp;
  1210. }
  1211. }
  1212. } else {
  1213. /* ilu=1 */
  1214. i__1 = *n - 1;
  1215. for (i__ = k; i__ <= i__1; ++i__) {
  1216. work[i__] = 0.f;
  1217. }
  1218. /* j=0 is special :process col A(k:n-1,k) */
  1219. s = abs(a[0]);
  1220. /* A(k,k) */
  1221. i__1 = k - 1;
  1222. for (i__ = 1; i__ <= i__1; ++i__) {
  1223. aa = (r__1 = a[i__], abs(r__1));
  1224. /* A(k+i,k) */
  1225. work[i__ + k] += aa;
  1226. s += aa;
  1227. }
  1228. work[k] += s;
  1229. i__1 = k - 1;
  1230. for (j = 1; j <= i__1; ++j) {
  1231. /* process */
  1232. s = 0.f;
  1233. i__2 = j - 2;
  1234. for (i__ = 0; i__ <= i__2; ++i__) {
  1235. aa = (r__1 = a[i__ + j * lda], abs(r__1));
  1236. /* A(j-1,i) */
  1237. work[i__] += aa;
  1238. s += aa;
  1239. }
  1240. aa = (r__1 = a[i__ + j * lda], abs(r__1));
  1241. /* i=j-1 so process of A(j-1,j-1) */
  1242. s += aa;
  1243. work[j - 1] = s;
  1244. /* is initialised here */
  1245. ++i__;
  1246. /* i=j process A(j+k,j+k) */
  1247. aa = (r__1 = a[i__ + j * lda], abs(r__1));
  1248. s = aa;
  1249. i__2 = *n - 1;
  1250. for (l = k + j + 1; l <= i__2; ++l) {
  1251. ++i__;
  1252. aa = (r__1 = a[i__ + j * lda], abs(r__1));
  1253. /* A(l,k+j) */
  1254. s += aa;
  1255. work[l] += aa;
  1256. }
  1257. work[k + j] += s;
  1258. }
  1259. /* j=k is special :process col A(k,0:k-1) */
  1260. s = 0.f;
  1261. i__1 = k - 2;
  1262. for (i__ = 0; i__ <= i__1; ++i__) {
  1263. aa = (r__1 = a[i__ + j * lda], abs(r__1));
  1264. /* A(k,i) */
  1265. work[i__] += aa;
  1266. s += aa;
  1267. }
  1268. /* i=k-1 */
  1269. aa = (r__1 = a[i__ + j * lda], abs(r__1));
  1270. /* A(k-1,k-1) */
  1271. s += aa;
  1272. work[i__] = s;
  1273. /* done with col j=k+1 */
  1274. i__1 = *n;
  1275. for (j = k + 1; j <= i__1; ++j) {
  1276. /* process col j-1 of A = A(j-1,0:k-1) */
  1277. s = 0.f;
  1278. i__2 = k - 1;
  1279. for (i__ = 0; i__ <= i__2; ++i__) {
  1280. aa = (r__1 = a[i__ + j * lda], abs(r__1));
  1281. /* A(j-1,i) */
  1282. work[i__] += aa;
  1283. s += aa;
  1284. }
  1285. work[j - 1] += s;
  1286. }
  1287. value = work[0];
  1288. i__1 = *n - 1;
  1289. for (i__ = 1; i__ <= i__1; ++i__) {
  1290. temp = work[i__];
  1291. if (value < temp || sisnan_(&temp)) {
  1292. value = temp;
  1293. }
  1294. }
  1295. }
  1296. }
  1297. }
  1298. } else if (lsame_(norm, "F") || lsame_(norm, "E")) {
  1299. /* Find normF(A). */
  1300. k = (*n + 1) / 2;
  1301. scale = 0.f;
  1302. s = 1.f;
  1303. if (noe == 1) {
  1304. /* n is odd */
  1305. if (ifm == 1) {
  1306. /* A is normal */
  1307. if (ilu == 0) {
  1308. /* A is upper */
  1309. i__1 = k - 3;
  1310. for (j = 0; j <= i__1; ++j) {
  1311. i__2 = k - j - 2;
  1312. slassq_(&i__2, &a[k + j + 1 + j * lda], &c__1, &scale,
  1313. &s);
  1314. /* L at A(k,0) */
  1315. }
  1316. i__1 = k - 1;
  1317. for (j = 0; j <= i__1; ++j) {
  1318. i__2 = k + j - 1;
  1319. slassq_(&i__2, &a[j * lda], &c__1, &scale, &s);
  1320. /* trap U at A(0,0) */
  1321. }
  1322. s += s;
  1323. /* double s for the off diagonal elements */
  1324. i__1 = k - 1;
  1325. i__2 = lda + 1;
  1326. slassq_(&i__1, &a[k], &i__2, &scale, &s);
  1327. /* tri L at A(k,0) */
  1328. i__1 = lda + 1;
  1329. slassq_(&k, &a[k - 1], &i__1, &scale, &s);
  1330. /* tri U at A(k-1,0) */
  1331. } else {
  1332. /* ilu=1 & A is lower */
  1333. i__1 = k - 1;
  1334. for (j = 0; j <= i__1; ++j) {
  1335. i__2 = *n - j - 1;
  1336. slassq_(&i__2, &a[j + 1 + j * lda], &c__1, &scale, &s)
  1337. ;
  1338. /* trap L at A(0,0) */
  1339. }
  1340. i__1 = k - 2;
  1341. for (j = 0; j <= i__1; ++j) {
  1342. slassq_(&j, &a[(j + 1) * lda], &c__1, &scale, &s);
  1343. /* U at A(0,1) */
  1344. }
  1345. s += s;
  1346. /* double s for the off diagonal elements */
  1347. i__1 = lda + 1;
  1348. slassq_(&k, a, &i__1, &scale, &s);
  1349. /* tri L at A(0,0) */
  1350. i__1 = k - 1;
  1351. i__2 = lda + 1;
  1352. slassq_(&i__1, &a[lda], &i__2, &scale, &s);
  1353. /* tri U at A(0,1) */
  1354. }
  1355. } else {
  1356. /* A is xpose */
  1357. if (ilu == 0) {
  1358. /* A**T is upper */
  1359. i__1 = k - 2;
  1360. for (j = 1; j <= i__1; ++j) {
  1361. slassq_(&j, &a[(k + j) * lda], &c__1, &scale, &s);
  1362. /* U at A(0,k) */
  1363. }
  1364. i__1 = k - 2;
  1365. for (j = 0; j <= i__1; ++j) {
  1366. slassq_(&k, &a[j * lda], &c__1, &scale, &s);
  1367. /* k by k-1 rect. at A(0,0) */
  1368. }
  1369. i__1 = k - 2;
  1370. for (j = 0; j <= i__1; ++j) {
  1371. i__2 = k - j - 1;
  1372. slassq_(&i__2, &a[j + 1 + (j + k - 1) * lda], &c__1, &
  1373. scale, &s);
  1374. /* L at A(0,k-1) */
  1375. }
  1376. s += s;
  1377. /* double s for the off diagonal elements */
  1378. i__1 = k - 1;
  1379. i__2 = lda + 1;
  1380. slassq_(&i__1, &a[k * lda], &i__2, &scale, &s);
  1381. /* tri U at A(0,k) */
  1382. i__1 = lda + 1;
  1383. slassq_(&k, &a[(k - 1) * lda], &i__1, &scale, &s);
  1384. /* tri L at A(0,k-1) */
  1385. } else {
  1386. /* A**T is lower */
  1387. i__1 = k - 1;
  1388. for (j = 1; j <= i__1; ++j) {
  1389. slassq_(&j, &a[j * lda], &c__1, &scale, &s);
  1390. /* U at A(0,0) */
  1391. }
  1392. i__1 = *n - 1;
  1393. for (j = k; j <= i__1; ++j) {
  1394. slassq_(&k, &a[j * lda], &c__1, &scale, &s);
  1395. /* k by k-1 rect. at A(0,k) */
  1396. }
  1397. i__1 = k - 3;
  1398. for (j = 0; j <= i__1; ++j) {
  1399. i__2 = k - j - 2;
  1400. slassq_(&i__2, &a[j + 2 + j * lda], &c__1, &scale, &s)
  1401. ;
  1402. /* L at A(1,0) */
  1403. }
  1404. s += s;
  1405. /* double s for the off diagonal elements */
  1406. i__1 = lda + 1;
  1407. slassq_(&k, a, &i__1, &scale, &s);
  1408. /* tri U at A(0,0) */
  1409. i__1 = k - 1;
  1410. i__2 = lda + 1;
  1411. slassq_(&i__1, &a[1], &i__2, &scale, &s);
  1412. /* tri L at A(1,0) */
  1413. }
  1414. }
  1415. } else {
  1416. /* n is even */
  1417. if (ifm == 1) {
  1418. /* A is normal */
  1419. if (ilu == 0) {
  1420. /* A is upper */
  1421. i__1 = k - 2;
  1422. for (j = 0; j <= i__1; ++j) {
  1423. i__2 = k - j - 1;
  1424. slassq_(&i__2, &a[k + j + 2 + j * lda], &c__1, &scale,
  1425. &s);
  1426. /* L at A(k+1,0) */
  1427. }
  1428. i__1 = k - 1;
  1429. for (j = 0; j <= i__1; ++j) {
  1430. i__2 = k + j;
  1431. slassq_(&i__2, &a[j * lda], &c__1, &scale, &s);
  1432. /* trap U at A(0,0) */
  1433. }
  1434. s += s;
  1435. /* double s for the off diagonal elements */
  1436. i__1 = lda + 1;
  1437. slassq_(&k, &a[k + 1], &i__1, &scale, &s);
  1438. /* tri L at A(k+1,0) */
  1439. i__1 = lda + 1;
  1440. slassq_(&k, &a[k], &i__1, &scale, &s);
  1441. /* tri U at A(k,0) */
  1442. } else {
  1443. /* ilu=1 & A is lower */
  1444. i__1 = k - 1;
  1445. for (j = 0; j <= i__1; ++j) {
  1446. i__2 = *n - j - 1;
  1447. slassq_(&i__2, &a[j + 2 + j * lda], &c__1, &scale, &s)
  1448. ;
  1449. /* trap L at A(1,0) */
  1450. }
  1451. i__1 = k - 1;
  1452. for (j = 1; j <= i__1; ++j) {
  1453. slassq_(&j, &a[j * lda], &c__1, &scale, &s);
  1454. /* U at A(0,0) */
  1455. }
  1456. s += s;
  1457. /* double s for the off diagonal elements */
  1458. i__1 = lda + 1;
  1459. slassq_(&k, &a[1], &i__1, &scale, &s);
  1460. /* tri L at A(1,0) */
  1461. i__1 = lda + 1;
  1462. slassq_(&k, a, &i__1, &scale, &s);
  1463. /* tri U at A(0,0) */
  1464. }
  1465. } else {
  1466. /* A is xpose */
  1467. if (ilu == 0) {
  1468. /* A**T is upper */
  1469. i__1 = k - 1;
  1470. for (j = 1; j <= i__1; ++j) {
  1471. slassq_(&j, &a[(k + 1 + j) * lda], &c__1, &scale, &s);
  1472. /* U at A(0,k+1) */
  1473. }
  1474. i__1 = k - 1;
  1475. for (j = 0; j <= i__1; ++j) {
  1476. slassq_(&k, &a[j * lda], &c__1, &scale, &s);
  1477. /* k by k rect. at A(0,0) */
  1478. }
  1479. i__1 = k - 2;
  1480. for (j = 0; j <= i__1; ++j) {
  1481. i__2 = k - j - 1;
  1482. slassq_(&i__2, &a[j + 1 + (j + k) * lda], &c__1, &
  1483. scale, &s);
  1484. /* L at A(0,k) */
  1485. }
  1486. s += s;
  1487. /* double s for the off diagonal elements */
  1488. i__1 = lda + 1;
  1489. slassq_(&k, &a[(k + 1) * lda], &i__1, &scale, &s);
  1490. /* tri U at A(0,k+1) */
  1491. i__1 = lda + 1;
  1492. slassq_(&k, &a[k * lda], &i__1, &scale, &s);
  1493. /* tri L at A(0,k) */
  1494. } else {
  1495. /* A**T is lower */
  1496. i__1 = k - 1;
  1497. for (j = 1; j <= i__1; ++j) {
  1498. slassq_(&j, &a[(j + 1) * lda], &c__1, &scale, &s);
  1499. /* U at A(0,1) */
  1500. }
  1501. i__1 = *n;
  1502. for (j = k + 1; j <= i__1; ++j) {
  1503. slassq_(&k, &a[j * lda], &c__1, &scale, &s);
  1504. /* k by k rect. at A(0,k+1) */
  1505. }
  1506. i__1 = k - 2;
  1507. for (j = 0; j <= i__1; ++j) {
  1508. i__2 = k - j - 1;
  1509. slassq_(&i__2, &a[j + 1 + j * lda], &c__1, &scale, &s)
  1510. ;
  1511. /* L at A(0,0) */
  1512. }
  1513. s += s;
  1514. /* double s for the off diagonal elements */
  1515. i__1 = lda + 1;
  1516. slassq_(&k, &a[lda], &i__1, &scale, &s);
  1517. /* tri L at A(0,1) */
  1518. i__1 = lda + 1;
  1519. slassq_(&k, a, &i__1, &scale, &s);
  1520. /* tri U at A(0,0) */
  1521. }
  1522. }
  1523. }
  1524. value = scale * sqrt(s);
  1525. }
  1526. ret_val = value;
  1527. return ret_val;
  1528. /* End of SLANSF */
  1529. } /* slansf_ */