You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sgerfsx.c 43 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c_n1 = -1;
  485. static integer c__0 = 0;
  486. static integer c__1 = 1;
  487. /* > \brief \b SGERFSX */
  488. /* =========== DOCUMENTATION =========== */
  489. /* Online html documentation available at */
  490. /* http://www.netlib.org/lapack/explore-html/ */
  491. /* > \htmlonly */
  492. /* > Download SGERFSX + dependencies */
  493. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgerfsx
  494. .f"> */
  495. /* > [TGZ]</a> */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgerfsx
  497. .f"> */
  498. /* > [ZIP]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgerfsx
  500. .f"> */
  501. /* > [TXT]</a> */
  502. /* > \endhtmlonly */
  503. /* Definition: */
  504. /* =========== */
  505. /* SUBROUTINE SGERFSX( TRANS, EQUED, N, NRHS, A, LDA, AF, LDAF, IPIV, */
  506. /* R, C, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS, */
  507. /* ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS, */
  508. /* WORK, IWORK, INFO ) */
  509. /* CHARACTER TRANS, EQUED */
  510. /* INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS, */
  511. /* $ N_ERR_BNDS */
  512. /* REAL RCOND */
  513. /* INTEGER IPIV( * ), IWORK( * ) */
  514. /* REAL A( LDA, * ), AF( LDAF, * ), B( LDB, * ), */
  515. /* $ X( LDX , * ), WORK( * ) */
  516. /* REAL R( * ), C( * ), PARAMS( * ), BERR( * ), */
  517. /* $ ERR_BNDS_NORM( NRHS, * ), */
  518. /* $ ERR_BNDS_COMP( NRHS, * ) */
  519. /* > \par Purpose: */
  520. /* ============= */
  521. /* > */
  522. /* > \verbatim */
  523. /* > */
  524. /* > SGERFSX improves the computed solution to a system of linear */
  525. /* > equations and provides error bounds and backward error estimates */
  526. /* > for the solution. In addition to normwise error bound, the code */
  527. /* > provides maximum componentwise error bound if possible. See */
  528. /* > comments for ERR_BNDS_NORM and ERR_BNDS_COMP for details of the */
  529. /* > error bounds. */
  530. /* > */
  531. /* > The original system of linear equations may have been equilibrated */
  532. /* > before calling this routine, as described by arguments EQUED, R */
  533. /* > and C below. In this case, the solution and error bounds returned */
  534. /* > are for the original unequilibrated system. */
  535. /* > \endverbatim */
  536. /* Arguments: */
  537. /* ========== */
  538. /* > \verbatim */
  539. /* > Some optional parameters are bundled in the PARAMS array. These */
  540. /* > settings determine how refinement is performed, but often the */
  541. /* > defaults are acceptable. If the defaults are acceptable, users */
  542. /* > can pass NPARAMS = 0 which prevents the source code from accessing */
  543. /* > the PARAMS argument. */
  544. /* > \endverbatim */
  545. /* > */
  546. /* > \param[in] TRANS */
  547. /* > \verbatim */
  548. /* > TRANS is CHARACTER*1 */
  549. /* > Specifies the form of the system of equations: */
  550. /* > = 'N': A * X = B (No transpose) */
  551. /* > = 'T': A**T * X = B (Transpose) */
  552. /* > = 'C': A**H * X = B (Conjugate transpose = Transpose) */
  553. /* > \endverbatim */
  554. /* > */
  555. /* > \param[in] EQUED */
  556. /* > \verbatim */
  557. /* > EQUED is CHARACTER*1 */
  558. /* > Specifies the form of equilibration that was done to A */
  559. /* > before calling this routine. This is needed to compute */
  560. /* > the solution and error bounds correctly. */
  561. /* > = 'N': No equilibration */
  562. /* > = 'R': Row equilibration, i.e., A has been premultiplied by */
  563. /* > diag(R). */
  564. /* > = 'C': Column equilibration, i.e., A has been postmultiplied */
  565. /* > by diag(C). */
  566. /* > = 'B': Both row and column equilibration, i.e., A has been */
  567. /* > replaced by diag(R) * A * diag(C). */
  568. /* > The right hand side B has been changed accordingly. */
  569. /* > \endverbatim */
  570. /* > */
  571. /* > \param[in] N */
  572. /* > \verbatim */
  573. /* > N is INTEGER */
  574. /* > The order of the matrix A. N >= 0. */
  575. /* > \endverbatim */
  576. /* > */
  577. /* > \param[in] NRHS */
  578. /* > \verbatim */
  579. /* > NRHS is INTEGER */
  580. /* > The number of right hand sides, i.e., the number of columns */
  581. /* > of the matrices B and X. NRHS >= 0. */
  582. /* > \endverbatim */
  583. /* > */
  584. /* > \param[in] A */
  585. /* > \verbatim */
  586. /* > A is REAL array, dimension (LDA,N) */
  587. /* > The original N-by-N matrix A. */
  588. /* > \endverbatim */
  589. /* > */
  590. /* > \param[in] LDA */
  591. /* > \verbatim */
  592. /* > LDA is INTEGER */
  593. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  594. /* > \endverbatim */
  595. /* > */
  596. /* > \param[in] AF */
  597. /* > \verbatim */
  598. /* > AF is REAL array, dimension (LDAF,N) */
  599. /* > The factors L and U from the factorization A = P*L*U */
  600. /* > as computed by SGETRF. */
  601. /* > \endverbatim */
  602. /* > */
  603. /* > \param[in] LDAF */
  604. /* > \verbatim */
  605. /* > LDAF is INTEGER */
  606. /* > The leading dimension of the array AF. LDAF >= f2cmax(1,N). */
  607. /* > \endverbatim */
  608. /* > */
  609. /* > \param[in] IPIV */
  610. /* > \verbatim */
  611. /* > IPIV is INTEGER array, dimension (N) */
  612. /* > The pivot indices from SGETRF; for 1<=i<=N, row i of the */
  613. /* > matrix was interchanged with row IPIV(i). */
  614. /* > \endverbatim */
  615. /* > */
  616. /* > \param[in] R */
  617. /* > \verbatim */
  618. /* > R is REAL array, dimension (N) */
  619. /* > The row scale factors for A. If EQUED = 'R' or 'B', A is */
  620. /* > multiplied on the left by diag(R); if EQUED = 'N' or 'C', R */
  621. /* > is not accessed. */
  622. /* > If R is accessed, each element of R should be a power of the radix */
  623. /* > to ensure a reliable solution and error estimates. Scaling by */
  624. /* > powers of the radix does not cause rounding errors unless the */
  625. /* > result underflows or overflows. Rounding errors during scaling */
  626. /* > lead to refining with a matrix that is not equivalent to the */
  627. /* > input matrix, producing error estimates that may not be */
  628. /* > reliable. */
  629. /* > \endverbatim */
  630. /* > */
  631. /* > \param[in] C */
  632. /* > \verbatim */
  633. /* > C is REAL array, dimension (N) */
  634. /* > The column scale factors for A. If EQUED = 'C' or 'B', A is */
  635. /* > multiplied on the right by diag(C); if EQUED = 'N' or 'R', C */
  636. /* > is not accessed. */
  637. /* > If C is accessed, each element of C should be a power of the radix */
  638. /* > to ensure a reliable solution and error estimates. Scaling by */
  639. /* > powers of the radix does not cause rounding errors unless the */
  640. /* > result underflows or overflows. Rounding errors during scaling */
  641. /* > lead to refining with a matrix that is not equivalent to the */
  642. /* > input matrix, producing error estimates that may not be */
  643. /* > reliable. */
  644. /* > \endverbatim */
  645. /* > */
  646. /* > \param[in] B */
  647. /* > \verbatim */
  648. /* > B is REAL array, dimension (LDB,NRHS) */
  649. /* > The right hand side matrix B. */
  650. /* > \endverbatim */
  651. /* > */
  652. /* > \param[in] LDB */
  653. /* > \verbatim */
  654. /* > LDB is INTEGER */
  655. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  656. /* > \endverbatim */
  657. /* > */
  658. /* > \param[in,out] X */
  659. /* > \verbatim */
  660. /* > X is REAL array, dimension (LDX,NRHS) */
  661. /* > On entry, the solution matrix X, as computed by SGETRS. */
  662. /* > On exit, the improved solution matrix X. */
  663. /* > \endverbatim */
  664. /* > */
  665. /* > \param[in] LDX */
  666. /* > \verbatim */
  667. /* > LDX is INTEGER */
  668. /* > The leading dimension of the array X. LDX >= f2cmax(1,N). */
  669. /* > \endverbatim */
  670. /* > */
  671. /* > \param[out] RCOND */
  672. /* > \verbatim */
  673. /* > RCOND is REAL */
  674. /* > Reciprocal scaled condition number. This is an estimate of the */
  675. /* > reciprocal Skeel condition number of the matrix A after */
  676. /* > equilibration (if done). If this is less than the machine */
  677. /* > precision (in particular, if it is zero), the matrix is singular */
  678. /* > to working precision. Note that the error may still be small even */
  679. /* > if this number is very small and the matrix appears ill- */
  680. /* > conditioned. */
  681. /* > \endverbatim */
  682. /* > */
  683. /* > \param[out] BERR */
  684. /* > \verbatim */
  685. /* > BERR is REAL array, dimension (NRHS) */
  686. /* > Componentwise relative backward error. This is the */
  687. /* > componentwise relative backward error of each solution vector X(j) */
  688. /* > (i.e., the smallest relative change in any element of A or B that */
  689. /* > makes X(j) an exact solution). */
  690. /* > \endverbatim */
  691. /* > */
  692. /* > \param[in] N_ERR_BNDS */
  693. /* > \verbatim */
  694. /* > N_ERR_BNDS is INTEGER */
  695. /* > Number of error bounds to return for each right hand side */
  696. /* > and each type (normwise or componentwise). See ERR_BNDS_NORM and */
  697. /* > ERR_BNDS_COMP below. */
  698. /* > \endverbatim */
  699. /* > */
  700. /* > \param[out] ERR_BNDS_NORM */
  701. /* > \verbatim */
  702. /* > ERR_BNDS_NORM is REAL array, dimension (NRHS, N_ERR_BNDS) */
  703. /* > For each right-hand side, this array contains information about */
  704. /* > various error bounds and condition numbers corresponding to the */
  705. /* > normwise relative error, which is defined as follows: */
  706. /* > */
  707. /* > Normwise relative error in the ith solution vector: */
  708. /* > max_j (abs(XTRUE(j,i) - X(j,i))) */
  709. /* > ------------------------------ */
  710. /* > max_j abs(X(j,i)) */
  711. /* > */
  712. /* > The array is indexed by the type of error information as described */
  713. /* > below. There currently are up to three pieces of information */
  714. /* > returned. */
  715. /* > */
  716. /* > The first index in ERR_BNDS_NORM(i,:) corresponds to the ith */
  717. /* > right-hand side. */
  718. /* > */
  719. /* > The second index in ERR_BNDS_NORM(:,err) contains the following */
  720. /* > three fields: */
  721. /* > err = 1 "Trust/don't trust" boolean. Trust the answer if the */
  722. /* > reciprocal condition number is less than the threshold */
  723. /* > sqrt(n) * slamch('Epsilon'). */
  724. /* > */
  725. /* > err = 2 "Guaranteed" error bound: The estimated forward error, */
  726. /* > almost certainly within a factor of 10 of the true error */
  727. /* > so long as the next entry is greater than the threshold */
  728. /* > sqrt(n) * slamch('Epsilon'). This error bound should only */
  729. /* > be trusted if the previous boolean is true. */
  730. /* > */
  731. /* > err = 3 Reciprocal condition number: Estimated normwise */
  732. /* > reciprocal condition number. Compared with the threshold */
  733. /* > sqrt(n) * slamch('Epsilon') to determine if the error */
  734. /* > estimate is "guaranteed". These reciprocal condition */
  735. /* > numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
  736. /* > appropriately scaled matrix Z. */
  737. /* > Let Z = S*A, where S scales each row by a power of the */
  738. /* > radix so all absolute row sums of Z are approximately 1. */
  739. /* > */
  740. /* > See Lapack Working Note 165 for further details and extra */
  741. /* > cautions. */
  742. /* > \endverbatim */
  743. /* > */
  744. /* > \param[out] ERR_BNDS_COMP */
  745. /* > \verbatim */
  746. /* > ERR_BNDS_COMP is REAL array, dimension (NRHS, N_ERR_BNDS) */
  747. /* > For each right-hand side, this array contains information about */
  748. /* > various error bounds and condition numbers corresponding to the */
  749. /* > componentwise relative error, which is defined as follows: */
  750. /* > */
  751. /* > Componentwise relative error in the ith solution vector: */
  752. /* > abs(XTRUE(j,i) - X(j,i)) */
  753. /* > max_j ---------------------- */
  754. /* > abs(X(j,i)) */
  755. /* > */
  756. /* > The array is indexed by the right-hand side i (on which the */
  757. /* > componentwise relative error depends), and the type of error */
  758. /* > information as described below. There currently are up to three */
  759. /* > pieces of information returned for each right-hand side. If */
  760. /* > componentwise accuracy is not requested (PARAMS(3) = 0.0), then */
  761. /* > ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most */
  762. /* > the first (:,N_ERR_BNDS) entries are returned. */
  763. /* > */
  764. /* > The first index in ERR_BNDS_COMP(i,:) corresponds to the ith */
  765. /* > right-hand side. */
  766. /* > */
  767. /* > The second index in ERR_BNDS_COMP(:,err) contains the following */
  768. /* > three fields: */
  769. /* > err = 1 "Trust/don't trust" boolean. Trust the answer if the */
  770. /* > reciprocal condition number is less than the threshold */
  771. /* > sqrt(n) * slamch('Epsilon'). */
  772. /* > */
  773. /* > err = 2 "Guaranteed" error bound: The estimated forward error, */
  774. /* > almost certainly within a factor of 10 of the true error */
  775. /* > so long as the next entry is greater than the threshold */
  776. /* > sqrt(n) * slamch('Epsilon'). This error bound should only */
  777. /* > be trusted if the previous boolean is true. */
  778. /* > */
  779. /* > err = 3 Reciprocal condition number: Estimated componentwise */
  780. /* > reciprocal condition number. Compared with the threshold */
  781. /* > sqrt(n) * slamch('Epsilon') to determine if the error */
  782. /* > estimate is "guaranteed". These reciprocal condition */
  783. /* > numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
  784. /* > appropriately scaled matrix Z. */
  785. /* > Let Z = S*(A*diag(x)), where x is the solution for the */
  786. /* > current right-hand side and S scales each row of */
  787. /* > A*diag(x) by a power of the radix so all absolute row */
  788. /* > sums of Z are approximately 1. */
  789. /* > */
  790. /* > See Lapack Working Note 165 for further details and extra */
  791. /* > cautions. */
  792. /* > \endverbatim */
  793. /* > */
  794. /* > \param[in] NPARAMS */
  795. /* > \verbatim */
  796. /* > NPARAMS is INTEGER */
  797. /* > Specifies the number of parameters set in PARAMS. If <= 0, the */
  798. /* > PARAMS array is never referenced and default values are used. */
  799. /* > \endverbatim */
  800. /* > */
  801. /* > \param[in,out] PARAMS */
  802. /* > \verbatim */
  803. /* > PARAMS is REAL array, dimension NPARAMS */
  804. /* > Specifies algorithm parameters. If an entry is < 0.0, then */
  805. /* > that entry will be filled with default value used for that */
  806. /* > parameter. Only positions up to NPARAMS are accessed; defaults */
  807. /* > are used for higher-numbered parameters. */
  808. /* > */
  809. /* > PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative */
  810. /* > refinement or not. */
  811. /* > Default: 1.0 */
  812. /* > = 0.0: No refinement is performed, and no error bounds are */
  813. /* > computed. */
  814. /* > = 1.0: Use the double-precision refinement algorithm, */
  815. /* > possibly with doubled-single computations if the */
  816. /* > compilation environment does not support DOUBLE */
  817. /* > PRECISION. */
  818. /* > (other values are reserved for future use) */
  819. /* > */
  820. /* > PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual */
  821. /* > computations allowed for refinement. */
  822. /* > Default: 10 */
  823. /* > Aggressive: Set to 100 to permit convergence using approximate */
  824. /* > factorizations or factorizations other than LU. If */
  825. /* > the factorization uses a technique other than */
  826. /* > Gaussian elimination, the guarantees in */
  827. /* > err_bnds_norm and err_bnds_comp may no longer be */
  828. /* > trustworthy. */
  829. /* > */
  830. /* > PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code */
  831. /* > will attempt to find a solution with small componentwise */
  832. /* > relative error in the double-precision algorithm. Positive */
  833. /* > is true, 0.0 is false. */
  834. /* > Default: 1.0 (attempt componentwise convergence) */
  835. /* > \endverbatim */
  836. /* > */
  837. /* > \param[out] WORK */
  838. /* > \verbatim */
  839. /* > WORK is REAL array, dimension (4*N) */
  840. /* > \endverbatim */
  841. /* > */
  842. /* > \param[out] IWORK */
  843. /* > \verbatim */
  844. /* > IWORK is INTEGER array, dimension (N) */
  845. /* > \endverbatim */
  846. /* > */
  847. /* > \param[out] INFO */
  848. /* > \verbatim */
  849. /* > INFO is INTEGER */
  850. /* > = 0: Successful exit. The solution to every right-hand side is */
  851. /* > guaranteed. */
  852. /* > < 0: If INFO = -i, the i-th argument had an illegal value */
  853. /* > > 0 and <= N: U(INFO,INFO) is exactly zero. The factorization */
  854. /* > has been completed, but the factor U is exactly singular, so */
  855. /* > the solution and error bounds could not be computed. RCOND = 0 */
  856. /* > is returned. */
  857. /* > = N+J: The solution corresponding to the Jth right-hand side is */
  858. /* > not guaranteed. The solutions corresponding to other right- */
  859. /* > hand sides K with K > J may not be guaranteed as well, but */
  860. /* > only the first such right-hand side is reported. If a small */
  861. /* > componentwise error is not requested (PARAMS(3) = 0.0) then */
  862. /* > the Jth right-hand side is the first with a normwise error */
  863. /* > bound that is not guaranteed (the smallest J such */
  864. /* > that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0) */
  865. /* > the Jth right-hand side is the first with either a normwise or */
  866. /* > componentwise error bound that is not guaranteed (the smallest */
  867. /* > J such that either ERR_BNDS_NORM(J,1) = 0.0 or */
  868. /* > ERR_BNDS_COMP(J,1) = 0.0). See the definition of */
  869. /* > ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information */
  870. /* > about all of the right-hand sides check ERR_BNDS_NORM or */
  871. /* > ERR_BNDS_COMP. */
  872. /* > \endverbatim */
  873. /* Authors: */
  874. /* ======== */
  875. /* > \author Univ. of Tennessee */
  876. /* > \author Univ. of California Berkeley */
  877. /* > \author Univ. of Colorado Denver */
  878. /* > \author NAG Ltd. */
  879. /* > \date December 2016 */
  880. /* > \ingroup realGEcomputational */
  881. /* ===================================================================== */
  882. /* Subroutine */ void sgerfsx_(char *trans, char *equed, integer *n, integer *
  883. nrhs, real *a, integer *lda, real *af, integer *ldaf, integer *ipiv,
  884. real *r__, real *c__, real *b, integer *ldb, real *x, integer *ldx,
  885. real *rcond, real *berr, integer *n_err_bnds__, real *err_bnds_norm__,
  886. real *err_bnds_comp__, integer *nparams, real *params, real *work,
  887. integer *iwork, integer *info)
  888. {
  889. /* System generated locals */
  890. integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, x_dim1,
  891. x_offset, err_bnds_norm_dim1, err_bnds_norm_offset,
  892. err_bnds_comp_dim1, err_bnds_comp_offset, i__1;
  893. real r__1, r__2;
  894. /* Local variables */
  895. real illrcond_thresh__, unstable_thresh__;
  896. extern /* Subroutine */ void sla_gerfsx_extended_(integer *, integer *,
  897. integer *, integer *, real *, integer *, real *, integer *,
  898. integer *, logical *, real *, real *, integer *, real *, integer *
  899. , real *, integer *, real *, real *, real *, real *, real *, real
  900. *, real *, integer *, real *, real *, logical *, integer *);
  901. real err_lbnd__;
  902. char norm[1];
  903. integer ref_type__;
  904. extern integer ilatrans_(char *);
  905. logical ignore_cwise__;
  906. integer j;
  907. extern logical lsame_(char *, char *);
  908. real anorm, rcond_tmp__;
  909. integer prec_type__;
  910. extern real slamch_(char *), slange_(char *, integer *, integer *,
  911. real *, integer *, real *);
  912. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  913. extern void sgecon_(
  914. char *, integer *, real *, integer *, real *, real *, real *,
  915. integer *, integer *);
  916. logical colequ, notran, rowequ;
  917. integer trans_type__;
  918. extern integer ilaprec_(char *);
  919. extern real sla_gercond_(char *, integer *, real *, integer *, real *,
  920. integer *, integer *, integer *, real *, integer *, real *,
  921. integer *);
  922. integer ithresh, n_norms__;
  923. real rthresh, cwise_wrong__;
  924. /* -- LAPACK computational routine (version 3.7.0) -- */
  925. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  926. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  927. /* December 2016 */
  928. /* ================================================================== */
  929. /* Check the input parameters. */
  930. /* Parameter adjustments */
  931. err_bnds_comp_dim1 = *nrhs;
  932. err_bnds_comp_offset = 1 + err_bnds_comp_dim1 * 1;
  933. err_bnds_comp__ -= err_bnds_comp_offset;
  934. err_bnds_norm_dim1 = *nrhs;
  935. err_bnds_norm_offset = 1 + err_bnds_norm_dim1 * 1;
  936. err_bnds_norm__ -= err_bnds_norm_offset;
  937. a_dim1 = *lda;
  938. a_offset = 1 + a_dim1 * 1;
  939. a -= a_offset;
  940. af_dim1 = *ldaf;
  941. af_offset = 1 + af_dim1 * 1;
  942. af -= af_offset;
  943. --ipiv;
  944. --r__;
  945. --c__;
  946. b_dim1 = *ldb;
  947. b_offset = 1 + b_dim1 * 1;
  948. b -= b_offset;
  949. x_dim1 = *ldx;
  950. x_offset = 1 + x_dim1 * 1;
  951. x -= x_offset;
  952. --berr;
  953. --params;
  954. --work;
  955. --iwork;
  956. /* Function Body */
  957. *info = 0;
  958. trans_type__ = ilatrans_(trans);
  959. ref_type__ = 1;
  960. if (*nparams >= 1) {
  961. if (params[1] < 0.f) {
  962. params[1] = 1.f;
  963. } else {
  964. ref_type__ = params[1];
  965. }
  966. }
  967. /* Set default parameters. */
  968. illrcond_thresh__ = (real) (*n) * slamch_("Epsilon");
  969. ithresh = 10;
  970. rthresh = .5f;
  971. unstable_thresh__ = .25f;
  972. ignore_cwise__ = FALSE_;
  973. if (*nparams >= 2) {
  974. if (params[2] < 0.f) {
  975. params[2] = (real) ithresh;
  976. } else {
  977. ithresh = (integer) params[2];
  978. }
  979. }
  980. if (*nparams >= 3) {
  981. if (params[3] < 0.f) {
  982. if (ignore_cwise__) {
  983. params[3] = 0.f;
  984. } else {
  985. params[3] = 1.f;
  986. }
  987. } else {
  988. ignore_cwise__ = params[3] == 0.f;
  989. }
  990. }
  991. if (ref_type__ == 0 || *n_err_bnds__ == 0) {
  992. n_norms__ = 0;
  993. } else if (ignore_cwise__) {
  994. n_norms__ = 1;
  995. } else {
  996. n_norms__ = 2;
  997. }
  998. notran = lsame_(trans, "N");
  999. rowequ = lsame_(equed, "R") || lsame_(equed, "B");
  1000. colequ = lsame_(equed, "C") || lsame_(equed, "B");
  1001. /* Test input parameters. */
  1002. if (trans_type__ == -1) {
  1003. *info = -1;
  1004. } else if (! rowequ && ! colequ && ! lsame_(equed, "N")) {
  1005. *info = -2;
  1006. } else if (*n < 0) {
  1007. *info = -3;
  1008. } else if (*nrhs < 0) {
  1009. *info = -4;
  1010. } else if (*lda < f2cmax(1,*n)) {
  1011. *info = -6;
  1012. } else if (*ldaf < f2cmax(1,*n)) {
  1013. *info = -8;
  1014. } else if (*ldb < f2cmax(1,*n)) {
  1015. *info = -13;
  1016. } else if (*ldx < f2cmax(1,*n)) {
  1017. *info = -15;
  1018. }
  1019. if (*info != 0) {
  1020. i__1 = -(*info);
  1021. xerbla_("SGERFSX", &i__1, (ftnlen)7);
  1022. return;
  1023. }
  1024. /* Quick return if possible. */
  1025. if (*n == 0 || *nrhs == 0) {
  1026. *rcond = 1.f;
  1027. i__1 = *nrhs;
  1028. for (j = 1; j <= i__1; ++j) {
  1029. berr[j] = 0.f;
  1030. if (*n_err_bnds__ >= 1) {
  1031. err_bnds_norm__[j + err_bnds_norm_dim1] = 1.f;
  1032. err_bnds_comp__[j + err_bnds_comp_dim1] = 1.f;
  1033. }
  1034. if (*n_err_bnds__ >= 2) {
  1035. err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 0.f;
  1036. err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 0.f;
  1037. }
  1038. if (*n_err_bnds__ >= 3) {
  1039. err_bnds_norm__[j + err_bnds_norm_dim1 * 3] = 1.f;
  1040. err_bnds_comp__[j + err_bnds_comp_dim1 * 3] = 1.f;
  1041. }
  1042. }
  1043. return;
  1044. }
  1045. /* Default to failure. */
  1046. *rcond = 0.f;
  1047. i__1 = *nrhs;
  1048. for (j = 1; j <= i__1; ++j) {
  1049. berr[j] = 1.f;
  1050. if (*n_err_bnds__ >= 1) {
  1051. err_bnds_norm__[j + err_bnds_norm_dim1] = 1.f;
  1052. err_bnds_comp__[j + err_bnds_comp_dim1] = 1.f;
  1053. }
  1054. if (*n_err_bnds__ >= 2) {
  1055. err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 1.f;
  1056. err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 1.f;
  1057. }
  1058. if (*n_err_bnds__ >= 3) {
  1059. err_bnds_norm__[j + err_bnds_norm_dim1 * 3] = 0.f;
  1060. err_bnds_comp__[j + err_bnds_comp_dim1 * 3] = 0.f;
  1061. }
  1062. }
  1063. /* Compute the norm of A and the reciprocal of the condition */
  1064. /* number of A. */
  1065. if (notran) {
  1066. *(unsigned char *)norm = 'I';
  1067. } else {
  1068. *(unsigned char *)norm = '1';
  1069. }
  1070. anorm = slange_(norm, n, n, &a[a_offset], lda, &work[1]);
  1071. sgecon_(norm, n, &af[af_offset], ldaf, &anorm, rcond, &work[1], &iwork[1],
  1072. info);
  1073. /* Perform refinement on each right-hand side */
  1074. if (ref_type__ != 0) {
  1075. prec_type__ = ilaprec_("D");
  1076. if (notran) {
  1077. sla_gerfsx_extended_(&prec_type__, &trans_type__, n, nrhs, &a[
  1078. a_offset], lda, &af[af_offset], ldaf, &ipiv[1], &colequ, &
  1079. c__[1], &b[b_offset], ldb, &x[x_offset], ldx, &berr[1], &
  1080. n_norms__, &err_bnds_norm__[err_bnds_norm_offset], &
  1081. err_bnds_comp__[err_bnds_comp_offset], &work[*n + 1], &
  1082. work[1], &work[(*n << 1) + 1], &work[1], rcond, &ithresh,
  1083. &rthresh, &unstable_thresh__, &ignore_cwise__, info);
  1084. } else {
  1085. sla_gerfsx_extended_(&prec_type__, &trans_type__, n, nrhs, &a[
  1086. a_offset], lda, &af[af_offset], ldaf, &ipiv[1], &rowequ, &
  1087. r__[1], &b[b_offset], ldb, &x[x_offset], ldx, &berr[1], &
  1088. n_norms__, &err_bnds_norm__[err_bnds_norm_offset], &
  1089. err_bnds_comp__[err_bnds_comp_offset], &work[*n + 1], &
  1090. work[1], &work[(*n << 1) + 1], &work[1], rcond, &ithresh,
  1091. &rthresh, &unstable_thresh__, &ignore_cwise__, info);
  1092. }
  1093. }
  1094. /* Computing MAX */
  1095. r__1 = 10.f, r__2 = sqrt((real) (*n));
  1096. err_lbnd__ = f2cmax(r__1,r__2) * slamch_("Epsilon");
  1097. if (*n_err_bnds__ >= 1 && n_norms__ >= 1) {
  1098. /* Compute scaled normwise condition number cond(A*C). */
  1099. if (colequ && notran) {
  1100. rcond_tmp__ = sla_gercond_(trans, n, &a[a_offset], lda, &af[
  1101. af_offset], ldaf, &ipiv[1], &c_n1, &c__[1], info, &work[1]
  1102. , &iwork[1]);
  1103. } else if (rowequ && ! notran) {
  1104. rcond_tmp__ = sla_gercond_(trans, n, &a[a_offset], lda, &af[
  1105. af_offset], ldaf, &ipiv[1], &c_n1, &r__[1], info, &work[1]
  1106. , &iwork[1]);
  1107. } else {
  1108. rcond_tmp__ = sla_gercond_(trans, n, &a[a_offset], lda, &af[
  1109. af_offset], ldaf, &ipiv[1], &c__0, &r__[1], info, &work[1]
  1110. , &iwork[1]);
  1111. }
  1112. i__1 = *nrhs;
  1113. for (j = 1; j <= i__1; ++j) {
  1114. /* Cap the error at 1.0. */
  1115. if (*n_err_bnds__ >= 2 && err_bnds_norm__[j + (err_bnds_norm_dim1
  1116. << 1)] > 1.f) {
  1117. err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 1.f;
  1118. }
  1119. /* Threshold the error (see LAWN). */
  1120. if (rcond_tmp__ < illrcond_thresh__) {
  1121. err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 1.f;
  1122. err_bnds_norm__[j + err_bnds_norm_dim1] = 0.f;
  1123. if (*info <= *n) {
  1124. *info = *n + j;
  1125. }
  1126. } else if (err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] <
  1127. err_lbnd__) {
  1128. err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = err_lbnd__;
  1129. err_bnds_norm__[j + err_bnds_norm_dim1] = 1.f;
  1130. }
  1131. /* Save the condition number. */
  1132. if (*n_err_bnds__ >= 3) {
  1133. err_bnds_norm__[j + err_bnds_norm_dim1 * 3] = rcond_tmp__;
  1134. }
  1135. }
  1136. }
  1137. if (*n_err_bnds__ >= 1 && n_norms__ >= 2) {
  1138. /* Compute componentwise condition number cond(A*diag(Y(:,J))) for */
  1139. /* each right-hand side using the current solution as an estimate of */
  1140. /* the true solution. If the componentwise error estimate is too */
  1141. /* large, then the solution is a lousy estimate of truth and the */
  1142. /* estimated RCOND may be too optimistic. To avoid misleading users, */
  1143. /* the inverse condition number is set to 0.0 when the estimated */
  1144. /* cwise error is at least CWISE_WRONG. */
  1145. cwise_wrong__ = sqrt(slamch_("Epsilon"));
  1146. i__1 = *nrhs;
  1147. for (j = 1; j <= i__1; ++j) {
  1148. if (err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] <
  1149. cwise_wrong__) {
  1150. rcond_tmp__ = sla_gercond_(trans, n, &a[a_offset], lda, &af[
  1151. af_offset], ldaf, &ipiv[1], &c__1, &x[j * x_dim1 + 1],
  1152. info, &work[1], &iwork[1]);
  1153. } else {
  1154. rcond_tmp__ = 0.f;
  1155. }
  1156. /* Cap the error at 1.0. */
  1157. if (*n_err_bnds__ >= 2 && err_bnds_comp__[j + (err_bnds_comp_dim1
  1158. << 1)] > 1.f) {
  1159. err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 1.f;
  1160. }
  1161. /* Threshold the error (see LAWN). */
  1162. if (rcond_tmp__ < illrcond_thresh__) {
  1163. err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 1.f;
  1164. err_bnds_comp__[j + err_bnds_comp_dim1] = 0.f;
  1165. if (params[3] == 1.f && *info < *n + j) {
  1166. *info = *n + j;
  1167. }
  1168. } else if (err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] <
  1169. err_lbnd__) {
  1170. err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = err_lbnd__;
  1171. err_bnds_comp__[j + err_bnds_comp_dim1] = 1.f;
  1172. }
  1173. /* Save the condition number. */
  1174. if (*n_err_bnds__ >= 3) {
  1175. err_bnds_comp__[j + err_bnds_comp_dim1 * 3] = rcond_tmp__;
  1176. }
  1177. }
  1178. }
  1179. return;
  1180. /* End of SGERFSX */
  1181. } /* sgerfsx_ */