You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlahqr.c 36 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. /* > \brief \b DLAHQR computes the eigenvalues and Schur factorization of an upper Hessenberg matrix, using th
  486. e double-shift/single-shift QR algorithm. */
  487. /* =========== DOCUMENTATION =========== */
  488. /* Online html documentation available at */
  489. /* http://www.netlib.org/lapack/explore-html/ */
  490. /* > \htmlonly */
  491. /* > Download DLAHQR + dependencies */
  492. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlahqr.
  493. f"> */
  494. /* > [TGZ]</a> */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlahqr.
  496. f"> */
  497. /* > [ZIP]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlahqr.
  499. f"> */
  500. /* > [TXT]</a> */
  501. /* > \endhtmlonly */
  502. /* Definition: */
  503. /* =========== */
  504. /* SUBROUTINE DLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI, */
  505. /* ILOZ, IHIZ, Z, LDZ, INFO ) */
  506. /* INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, N */
  507. /* LOGICAL WANTT, WANTZ */
  508. /* DOUBLE PRECISION H( LDH, * ), WI( * ), WR( * ), Z( LDZ, * ) */
  509. /* > \par Purpose: */
  510. /* ============= */
  511. /* > */
  512. /* > \verbatim */
  513. /* > */
  514. /* > DLAHQR is an auxiliary routine called by DHSEQR to update the */
  515. /* > eigenvalues and Schur decomposition already computed by DHSEQR, by */
  516. /* > dealing with the Hessenberg submatrix in rows and columns ILO to */
  517. /* > IHI. */
  518. /* > \endverbatim */
  519. /* Arguments: */
  520. /* ========== */
  521. /* > \param[in] WANTT */
  522. /* > \verbatim */
  523. /* > WANTT is LOGICAL */
  524. /* > = .TRUE. : the full Schur form T is required; */
  525. /* > = .FALSE.: only eigenvalues are required. */
  526. /* > \endverbatim */
  527. /* > */
  528. /* > \param[in] WANTZ */
  529. /* > \verbatim */
  530. /* > WANTZ is LOGICAL */
  531. /* > = .TRUE. : the matrix of Schur vectors Z is required; */
  532. /* > = .FALSE.: Schur vectors are not required. */
  533. /* > \endverbatim */
  534. /* > */
  535. /* > \param[in] N */
  536. /* > \verbatim */
  537. /* > N is INTEGER */
  538. /* > The order of the matrix H. N >= 0. */
  539. /* > \endverbatim */
  540. /* > */
  541. /* > \param[in] ILO */
  542. /* > \verbatim */
  543. /* > ILO is INTEGER */
  544. /* > \endverbatim */
  545. /* > */
  546. /* > \param[in] IHI */
  547. /* > \verbatim */
  548. /* > IHI is INTEGER */
  549. /* > It is assumed that H is already upper quasi-triangular in */
  550. /* > rows and columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless */
  551. /* > ILO = 1). DLAHQR works primarily with the Hessenberg */
  552. /* > submatrix in rows and columns ILO to IHI, but applies */
  553. /* > transformations to all of H if WANTT is .TRUE.. */
  554. /* > 1 <= ILO <= f2cmax(1,IHI); IHI <= N. */
  555. /* > \endverbatim */
  556. /* > */
  557. /* > \param[in,out] H */
  558. /* > \verbatim */
  559. /* > H is DOUBLE PRECISION array, dimension (LDH,N) */
  560. /* > On entry, the upper Hessenberg matrix H. */
  561. /* > On exit, if INFO is zero and if WANTT is .TRUE., H is upper */
  562. /* > quasi-triangular in rows and columns ILO:IHI, with any */
  563. /* > 2-by-2 diagonal blocks in standard form. If INFO is zero */
  564. /* > and WANTT is .FALSE., the contents of H are unspecified on */
  565. /* > exit. The output state of H if INFO is nonzero is given */
  566. /* > below under the description of INFO. */
  567. /* > \endverbatim */
  568. /* > */
  569. /* > \param[in] LDH */
  570. /* > \verbatim */
  571. /* > LDH is INTEGER */
  572. /* > The leading dimension of the array H. LDH >= f2cmax(1,N). */
  573. /* > \endverbatim */
  574. /* > */
  575. /* > \param[out] WR */
  576. /* > \verbatim */
  577. /* > WR is DOUBLE PRECISION array, dimension (N) */
  578. /* > \endverbatim */
  579. /* > */
  580. /* > \param[out] WI */
  581. /* > \verbatim */
  582. /* > WI is DOUBLE PRECISION array, dimension (N) */
  583. /* > The real and imaginary parts, respectively, of the computed */
  584. /* > eigenvalues ILO to IHI are stored in the corresponding */
  585. /* > elements of WR and WI. If two eigenvalues are computed as a */
  586. /* > complex conjugate pair, they are stored in consecutive */
  587. /* > elements of WR and WI, say the i-th and (i+1)th, with */
  588. /* > WI(i) > 0 and WI(i+1) < 0. If WANTT is .TRUE., the */
  589. /* > eigenvalues are stored in the same order as on the diagonal */
  590. /* > of the Schur form returned in H, with WR(i) = H(i,i), and, if */
  591. /* > H(i:i+1,i:i+1) is a 2-by-2 diagonal block, */
  592. /* > WI(i) = sqrt(H(i+1,i)*H(i,i+1)) and WI(i+1) = -WI(i). */
  593. /* > \endverbatim */
  594. /* > */
  595. /* > \param[in] ILOZ */
  596. /* > \verbatim */
  597. /* > ILOZ is INTEGER */
  598. /* > \endverbatim */
  599. /* > */
  600. /* > \param[in] IHIZ */
  601. /* > \verbatim */
  602. /* > IHIZ is INTEGER */
  603. /* > Specify the rows of Z to which transformations must be */
  604. /* > applied if WANTZ is .TRUE.. */
  605. /* > 1 <= ILOZ <= ILO; IHI <= IHIZ <= N. */
  606. /* > \endverbatim */
  607. /* > */
  608. /* > \param[in,out] Z */
  609. /* > \verbatim */
  610. /* > Z is DOUBLE PRECISION array, dimension (LDZ,N) */
  611. /* > If WANTZ is .TRUE., on entry Z must contain the current */
  612. /* > matrix Z of transformations accumulated by DHSEQR, and on */
  613. /* > exit Z has been updated; transformations are applied only to */
  614. /* > the submatrix Z(ILOZ:IHIZ,ILO:IHI). */
  615. /* > If WANTZ is .FALSE., Z is not referenced. */
  616. /* > \endverbatim */
  617. /* > */
  618. /* > \param[in] LDZ */
  619. /* > \verbatim */
  620. /* > LDZ is INTEGER */
  621. /* > The leading dimension of the array Z. LDZ >= f2cmax(1,N). */
  622. /* > \endverbatim */
  623. /* > */
  624. /* > \param[out] INFO */
  625. /* > \verbatim */
  626. /* > INFO is INTEGER */
  627. /* > = 0: successful exit */
  628. /* > > 0: If INFO = i, DLAHQR failed to compute all the */
  629. /* > eigenvalues ILO to IHI in a total of 30 iterations */
  630. /* > per eigenvalue; elements i+1:ihi of WR and WI */
  631. /* > contain those eigenvalues which have been */
  632. /* > successfully computed. */
  633. /* > */
  634. /* > If INFO > 0 and WANTT is .FALSE., then on exit, */
  635. /* > the remaining unconverged eigenvalues are the */
  636. /* > eigenvalues of the upper Hessenberg matrix rows */
  637. /* > and columns ILO through INFO of the final, output */
  638. /* > value of H. */
  639. /* > */
  640. /* > If INFO > 0 and WANTT is .TRUE., then on exit */
  641. /* > (*) (initial value of H)*U = U*(final value of H) */
  642. /* > where U is an orthogonal matrix. The final */
  643. /* > value of H is upper Hessenberg and triangular in */
  644. /* > rows and columns INFO+1 through IHI. */
  645. /* > */
  646. /* > If INFO > 0 and WANTZ is .TRUE., then on exit */
  647. /* > (final value of Z) = (initial value of Z)*U */
  648. /* > where U is the orthogonal matrix in (*) */
  649. /* > (regardless of the value of WANTT.) */
  650. /* > \endverbatim */
  651. /* Authors: */
  652. /* ======== */
  653. /* > \author Univ. of Tennessee */
  654. /* > \author Univ. of California Berkeley */
  655. /* > \author Univ. of Colorado Denver */
  656. /* > \author NAG Ltd. */
  657. /* > \date December 2016 */
  658. /* > \ingroup doubleOTHERauxiliary */
  659. /* > \par Further Details: */
  660. /* ===================== */
  661. /* > */
  662. /* > \verbatim */
  663. /* > */
  664. /* > 02-96 Based on modifications by */
  665. /* > David Day, Sandia National Laboratory, USA */
  666. /* > */
  667. /* > 12-04 Further modifications by */
  668. /* > Ralph Byers, University of Kansas, USA */
  669. /* > This is a modified version of DLAHQR from LAPACK version 3.0. */
  670. /* > It is (1) more robust against overflow and underflow and */
  671. /* > (2) adopts the more conservative Ahues & Tisseur stopping */
  672. /* > criterion (LAWN 122, 1997). */
  673. /* > \endverbatim */
  674. /* > */
  675. /* ===================================================================== */
  676. /* Subroutine */ void dlahqr_(logical *wantt, logical *wantz, integer *n,
  677. integer *ilo, integer *ihi, doublereal *h__, integer *ldh, doublereal
  678. *wr, doublereal *wi, integer *iloz, integer *ihiz, doublereal *z__,
  679. integer *ldz, integer *info)
  680. {
  681. /* System generated locals */
  682. integer h_dim1, h_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4;
  683. doublereal d__1, d__2, d__3, d__4;
  684. /* Local variables */
  685. extern /* Subroutine */ void drot_(integer *, doublereal *, integer *,
  686. doublereal *, integer *, doublereal *, doublereal *);
  687. integer i__, j, k, l, m;
  688. doublereal s, v[3];
  689. extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *,
  690. doublereal *, integer *);
  691. integer itmax, i1, i2;
  692. doublereal t1, t2, t3, v2, v3;
  693. extern /* Subroutine */ void dlanv2_(doublereal *, doublereal *,
  694. doublereal *, doublereal *, doublereal *, doublereal *,
  695. doublereal *, doublereal *, doublereal *, doublereal *);
  696. doublereal aa, ab, ba, bb;
  697. extern /* Subroutine */ void dlabad_(doublereal *, doublereal *);
  698. doublereal h11, h12, h21, h22, cs;
  699. integer nh;
  700. extern doublereal dlamch_(char *);
  701. extern /* Subroutine */ void dlarfg_(integer *, doublereal *, doublereal *,
  702. integer *, doublereal *);
  703. doublereal sn;
  704. integer nr;
  705. doublereal tr;
  706. integer nz;
  707. doublereal safmin, safmax, rtdisc, smlnum, det, h21s;
  708. integer its;
  709. doublereal ulp, sum, tst, rt1i, rt2i, rt1r, rt2r;
  710. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  711. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  712. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  713. /* December 2016 */
  714. /* ========================================================= */
  715. /* Parameter adjustments */
  716. h_dim1 = *ldh;
  717. h_offset = 1 + h_dim1 * 1;
  718. h__ -= h_offset;
  719. --wr;
  720. --wi;
  721. z_dim1 = *ldz;
  722. z_offset = 1 + z_dim1 * 1;
  723. z__ -= z_offset;
  724. /* Function Body */
  725. *info = 0;
  726. /* Quick return if possible */
  727. if (*n == 0) {
  728. return;
  729. }
  730. if (*ilo == *ihi) {
  731. wr[*ilo] = h__[*ilo + *ilo * h_dim1];
  732. wi[*ilo] = 0.;
  733. return;
  734. }
  735. /* ==== clear out the trash ==== */
  736. i__1 = *ihi - 3;
  737. for (j = *ilo; j <= i__1; ++j) {
  738. h__[j + 2 + j * h_dim1] = 0.;
  739. h__[j + 3 + j * h_dim1] = 0.;
  740. /* L10: */
  741. }
  742. if (*ilo <= *ihi - 2) {
  743. h__[*ihi + (*ihi - 2) * h_dim1] = 0.;
  744. }
  745. nh = *ihi - *ilo + 1;
  746. nz = *ihiz - *iloz + 1;
  747. /* Set machine-dependent constants for the stopping criterion. */
  748. safmin = dlamch_("SAFE MINIMUM");
  749. safmax = 1. / safmin;
  750. dlabad_(&safmin, &safmax);
  751. ulp = dlamch_("PRECISION");
  752. smlnum = safmin * ((doublereal) nh / ulp);
  753. /* I1 and I2 are the indices of the first row and last column of H */
  754. /* to which transformations must be applied. If eigenvalues only are */
  755. /* being computed, I1 and I2 are set inside the main loop. */
  756. if (*wantt) {
  757. i1 = 1;
  758. i2 = *n;
  759. }
  760. /* ITMAX is the total number of QR iterations allowed. */
  761. itmax = f2cmax(10,nh) * 30;
  762. /* The main loop begins here. I is the loop index and decreases from */
  763. /* IHI to ILO in steps of 1 or 2. Each iteration of the loop works */
  764. /* with the active submatrix in rows and columns L to I. */
  765. /* Eigenvalues I+1 to IHI have already converged. Either L = ILO or */
  766. /* H(L,L-1) is negligible so that the matrix splits. */
  767. i__ = *ihi;
  768. L20:
  769. l = *ilo;
  770. if (i__ < *ilo) {
  771. goto L160;
  772. }
  773. /* Perform QR iterations on rows and columns ILO to I until a */
  774. /* submatrix of order 1 or 2 splits off at the bottom because a */
  775. /* subdiagonal element has become negligible. */
  776. i__1 = itmax;
  777. for (its = 0; its <= i__1; ++its) {
  778. /* Look for a single small subdiagonal element. */
  779. i__2 = l + 1;
  780. for (k = i__; k >= i__2; --k) {
  781. if ((d__1 = h__[k + (k - 1) * h_dim1], abs(d__1)) <= smlnum) {
  782. goto L40;
  783. }
  784. tst = (d__1 = h__[k - 1 + (k - 1) * h_dim1], abs(d__1)) + (d__2 =
  785. h__[k + k * h_dim1], abs(d__2));
  786. if (tst == 0.) {
  787. if (k - 2 >= *ilo) {
  788. tst += (d__1 = h__[k - 1 + (k - 2) * h_dim1], abs(d__1));
  789. }
  790. if (k + 1 <= *ihi) {
  791. tst += (d__1 = h__[k + 1 + k * h_dim1], abs(d__1));
  792. }
  793. }
  794. /* ==== The following is a conservative small subdiagonal */
  795. /* . deflation criterion due to Ahues & Tisseur (LAWN 122, */
  796. /* . 1997). It has better mathematical foundation and */
  797. /* . improves accuracy in some cases. ==== */
  798. if ((d__1 = h__[k + (k - 1) * h_dim1], abs(d__1)) <= ulp * tst) {
  799. /* Computing MAX */
  800. d__3 = (d__1 = h__[k + (k - 1) * h_dim1], abs(d__1)), d__4 = (
  801. d__2 = h__[k - 1 + k * h_dim1], abs(d__2));
  802. ab = f2cmax(d__3,d__4);
  803. /* Computing MIN */
  804. d__3 = (d__1 = h__[k + (k - 1) * h_dim1], abs(d__1)), d__4 = (
  805. d__2 = h__[k - 1 + k * h_dim1], abs(d__2));
  806. ba = f2cmin(d__3,d__4);
  807. /* Computing MAX */
  808. d__3 = (d__1 = h__[k + k * h_dim1], abs(d__1)), d__4 = (d__2 =
  809. h__[k - 1 + (k - 1) * h_dim1] - h__[k + k * h_dim1],
  810. abs(d__2));
  811. aa = f2cmax(d__3,d__4);
  812. /* Computing MIN */
  813. d__3 = (d__1 = h__[k + k * h_dim1], abs(d__1)), d__4 = (d__2 =
  814. h__[k - 1 + (k - 1) * h_dim1] - h__[k + k * h_dim1],
  815. abs(d__2));
  816. bb = f2cmin(d__3,d__4);
  817. s = aa + ab;
  818. /* Computing MAX */
  819. d__1 = smlnum, d__2 = ulp * (bb * (aa / s));
  820. if (ba * (ab / s) <= f2cmax(d__1,d__2)) {
  821. goto L40;
  822. }
  823. }
  824. /* L30: */
  825. }
  826. L40:
  827. l = k;
  828. if (l > *ilo) {
  829. /* H(L,L-1) is negligible */
  830. h__[l + (l - 1) * h_dim1] = 0.;
  831. }
  832. /* Exit from loop if a submatrix of order 1 or 2 has split off. */
  833. if (l >= i__ - 1) {
  834. goto L150;
  835. }
  836. /* Now the active submatrix is in rows and columns L to I. If */
  837. /* eigenvalues only are being computed, only the active submatrix */
  838. /* need be transformed. */
  839. if (! (*wantt)) {
  840. i1 = l;
  841. i2 = i__;
  842. }
  843. if (its == 10) {
  844. /* Exceptional shift. */
  845. s = (d__1 = h__[l + 1 + l * h_dim1], abs(d__1)) + (d__2 = h__[l +
  846. 2 + (l + 1) * h_dim1], abs(d__2));
  847. h11 = s * .75 + h__[l + l * h_dim1];
  848. h12 = s * -.4375;
  849. h21 = s;
  850. h22 = h11;
  851. } else if (its == 20) {
  852. /* Exceptional shift. */
  853. s = (d__1 = h__[i__ + (i__ - 1) * h_dim1], abs(d__1)) + (d__2 =
  854. h__[i__ - 1 + (i__ - 2) * h_dim1], abs(d__2));
  855. h11 = s * .75 + h__[i__ + i__ * h_dim1];
  856. h12 = s * -.4375;
  857. h21 = s;
  858. h22 = h11;
  859. } else {
  860. /* Prepare to use Francis' double shift */
  861. /* (i.e. 2nd degree generalized Rayleigh quotient) */
  862. h11 = h__[i__ - 1 + (i__ - 1) * h_dim1];
  863. h21 = h__[i__ + (i__ - 1) * h_dim1];
  864. h12 = h__[i__ - 1 + i__ * h_dim1];
  865. h22 = h__[i__ + i__ * h_dim1];
  866. }
  867. s = abs(h11) + abs(h12) + abs(h21) + abs(h22);
  868. if (s == 0.) {
  869. rt1r = 0.;
  870. rt1i = 0.;
  871. rt2r = 0.;
  872. rt2i = 0.;
  873. } else {
  874. h11 /= s;
  875. h21 /= s;
  876. h12 /= s;
  877. h22 /= s;
  878. tr = (h11 + h22) / 2.;
  879. det = (h11 - tr) * (h22 - tr) - h12 * h21;
  880. rtdisc = sqrt((abs(det)));
  881. if (det >= 0.) {
  882. /* ==== complex conjugate shifts ==== */
  883. rt1r = tr * s;
  884. rt2r = rt1r;
  885. rt1i = rtdisc * s;
  886. rt2i = -rt1i;
  887. } else {
  888. /* ==== real shifts (use only one of them) ==== */
  889. rt1r = tr + rtdisc;
  890. rt2r = tr - rtdisc;
  891. if ((d__1 = rt1r - h22, abs(d__1)) <= (d__2 = rt2r - h22, abs(
  892. d__2))) {
  893. rt1r *= s;
  894. rt2r = rt1r;
  895. } else {
  896. rt2r *= s;
  897. rt1r = rt2r;
  898. }
  899. rt1i = 0.;
  900. rt2i = 0.;
  901. }
  902. }
  903. /* Look for two consecutive small subdiagonal elements. */
  904. i__2 = l;
  905. for (m = i__ - 2; m >= i__2; --m) {
  906. /* Determine the effect of starting the double-shift QR */
  907. /* iteration at row M, and see if this would make H(M,M-1) */
  908. /* negligible. (The following uses scaling to avoid */
  909. /* overflows and most underflows.) */
  910. h21s = h__[m + 1 + m * h_dim1];
  911. s = (d__1 = h__[m + m * h_dim1] - rt2r, abs(d__1)) + abs(rt2i) +
  912. abs(h21s);
  913. h21s = h__[m + 1 + m * h_dim1] / s;
  914. v[0] = h21s * h__[m + (m + 1) * h_dim1] + (h__[m + m * h_dim1] -
  915. rt1r) * ((h__[m + m * h_dim1] - rt2r) / s) - rt1i * (rt2i
  916. / s);
  917. v[1] = h21s * (h__[m + m * h_dim1] + h__[m + 1 + (m + 1) * h_dim1]
  918. - rt1r - rt2r);
  919. v[2] = h21s * h__[m + 2 + (m + 1) * h_dim1];
  920. s = abs(v[0]) + abs(v[1]) + abs(v[2]);
  921. v[0] /= s;
  922. v[1] /= s;
  923. v[2] /= s;
  924. if (m == l) {
  925. goto L60;
  926. }
  927. if ((d__1 = h__[m + (m - 1) * h_dim1], abs(d__1)) * (abs(v[1]) +
  928. abs(v[2])) <= ulp * abs(v[0]) * ((d__2 = h__[m - 1 + (m -
  929. 1) * h_dim1], abs(d__2)) + (d__3 = h__[m + m * h_dim1],
  930. abs(d__3)) + (d__4 = h__[m + 1 + (m + 1) * h_dim1], abs(
  931. d__4)))) {
  932. goto L60;
  933. }
  934. /* L50: */
  935. }
  936. L60:
  937. /* Double-shift QR step */
  938. i__2 = i__ - 1;
  939. for (k = m; k <= i__2; ++k) {
  940. /* The first iteration of this loop determines a reflection G */
  941. /* from the vector V and applies it from left and right to H, */
  942. /* thus creating a nonzero bulge below the subdiagonal. */
  943. /* Each subsequent iteration determines a reflection G to */
  944. /* restore the Hessenberg form in the (K-1)th column, and thus */
  945. /* chases the bulge one step toward the bottom of the active */
  946. /* submatrix. NR is the order of G. */
  947. /* Computing MIN */
  948. i__3 = 3, i__4 = i__ - k + 1;
  949. nr = f2cmin(i__3,i__4);
  950. if (k > m) {
  951. dcopy_(&nr, &h__[k + (k - 1) * h_dim1], &c__1, v, &c__1);
  952. }
  953. dlarfg_(&nr, v, &v[1], &c__1, &t1);
  954. if (k > m) {
  955. h__[k + (k - 1) * h_dim1] = v[0];
  956. h__[k + 1 + (k - 1) * h_dim1] = 0.;
  957. if (k < i__ - 1) {
  958. h__[k + 2 + (k - 1) * h_dim1] = 0.;
  959. }
  960. } else if (m > l) {
  961. /* ==== Use the following instead of */
  962. /* . H( K, K-1 ) = -H( K, K-1 ) to */
  963. /* . avoid a bug when v(2) and v(3) */
  964. /* . underflow. ==== */
  965. h__[k + (k - 1) * h_dim1] *= 1. - t1;
  966. }
  967. v2 = v[1];
  968. t2 = t1 * v2;
  969. if (nr == 3) {
  970. v3 = v[2];
  971. t3 = t1 * v3;
  972. /* Apply G from the left to transform the rows of the matrix */
  973. /* in columns K to I2. */
  974. i__3 = i2;
  975. for (j = k; j <= i__3; ++j) {
  976. sum = h__[k + j * h_dim1] + v2 * h__[k + 1 + j * h_dim1]
  977. + v3 * h__[k + 2 + j * h_dim1];
  978. h__[k + j * h_dim1] -= sum * t1;
  979. h__[k + 1 + j * h_dim1] -= sum * t2;
  980. h__[k + 2 + j * h_dim1] -= sum * t3;
  981. /* L70: */
  982. }
  983. /* Apply G from the right to transform the columns of the */
  984. /* matrix in rows I1 to f2cmin(K+3,I). */
  985. /* Computing MIN */
  986. i__4 = k + 3;
  987. i__3 = f2cmin(i__4,i__);
  988. for (j = i1; j <= i__3; ++j) {
  989. sum = h__[j + k * h_dim1] + v2 * h__[j + (k + 1) * h_dim1]
  990. + v3 * h__[j + (k + 2) * h_dim1];
  991. h__[j + k * h_dim1] -= sum * t1;
  992. h__[j + (k + 1) * h_dim1] -= sum * t2;
  993. h__[j + (k + 2) * h_dim1] -= sum * t3;
  994. /* L80: */
  995. }
  996. if (*wantz) {
  997. /* Accumulate transformations in the matrix Z */
  998. i__3 = *ihiz;
  999. for (j = *iloz; j <= i__3; ++j) {
  1000. sum = z__[j + k * z_dim1] + v2 * z__[j + (k + 1) *
  1001. z_dim1] + v3 * z__[j + (k + 2) * z_dim1];
  1002. z__[j + k * z_dim1] -= sum * t1;
  1003. z__[j + (k + 1) * z_dim1] -= sum * t2;
  1004. z__[j + (k + 2) * z_dim1] -= sum * t3;
  1005. /* L90: */
  1006. }
  1007. }
  1008. } else if (nr == 2) {
  1009. /* Apply G from the left to transform the rows of the matrix */
  1010. /* in columns K to I2. */
  1011. i__3 = i2;
  1012. for (j = k; j <= i__3; ++j) {
  1013. sum = h__[k + j * h_dim1] + v2 * h__[k + 1 + j * h_dim1];
  1014. h__[k + j * h_dim1] -= sum * t1;
  1015. h__[k + 1 + j * h_dim1] -= sum * t2;
  1016. /* L100: */
  1017. }
  1018. /* Apply G from the right to transform the columns of the */
  1019. /* matrix in rows I1 to f2cmin(K+3,I). */
  1020. i__3 = i__;
  1021. for (j = i1; j <= i__3; ++j) {
  1022. sum = h__[j + k * h_dim1] + v2 * h__[j + (k + 1) * h_dim1]
  1023. ;
  1024. h__[j + k * h_dim1] -= sum * t1;
  1025. h__[j + (k + 1) * h_dim1] -= sum * t2;
  1026. /* L110: */
  1027. }
  1028. if (*wantz) {
  1029. /* Accumulate transformations in the matrix Z */
  1030. i__3 = *ihiz;
  1031. for (j = *iloz; j <= i__3; ++j) {
  1032. sum = z__[j + k * z_dim1] + v2 * z__[j + (k + 1) *
  1033. z_dim1];
  1034. z__[j + k * z_dim1] -= sum * t1;
  1035. z__[j + (k + 1) * z_dim1] -= sum * t2;
  1036. /* L120: */
  1037. }
  1038. }
  1039. }
  1040. /* L130: */
  1041. }
  1042. /* L140: */
  1043. }
  1044. /* Failure to converge in remaining number of iterations */
  1045. *info = i__;
  1046. return;
  1047. L150:
  1048. if (l == i__) {
  1049. /* H(I,I-1) is negligible: one eigenvalue has converged. */
  1050. wr[i__] = h__[i__ + i__ * h_dim1];
  1051. wi[i__] = 0.;
  1052. } else if (l == i__ - 1) {
  1053. /* H(I-1,I-2) is negligible: a pair of eigenvalues have converged. */
  1054. /* Transform the 2-by-2 submatrix to standard Schur form, */
  1055. /* and compute and store the eigenvalues. */
  1056. dlanv2_(&h__[i__ - 1 + (i__ - 1) * h_dim1], &h__[i__ - 1 + i__ *
  1057. h_dim1], &h__[i__ + (i__ - 1) * h_dim1], &h__[i__ + i__ *
  1058. h_dim1], &wr[i__ - 1], &wi[i__ - 1], &wr[i__], &wi[i__], &cs,
  1059. &sn);
  1060. if (*wantt) {
  1061. /* Apply the transformation to the rest of H. */
  1062. if (i2 > i__) {
  1063. i__1 = i2 - i__;
  1064. drot_(&i__1, &h__[i__ - 1 + (i__ + 1) * h_dim1], ldh, &h__[
  1065. i__ + (i__ + 1) * h_dim1], ldh, &cs, &sn);
  1066. }
  1067. i__1 = i__ - i1 - 1;
  1068. drot_(&i__1, &h__[i1 + (i__ - 1) * h_dim1], &c__1, &h__[i1 + i__ *
  1069. h_dim1], &c__1, &cs, &sn);
  1070. }
  1071. if (*wantz) {
  1072. /* Apply the transformation to Z. */
  1073. drot_(&nz, &z__[*iloz + (i__ - 1) * z_dim1], &c__1, &z__[*iloz +
  1074. i__ * z_dim1], &c__1, &cs, &sn);
  1075. }
  1076. }
  1077. /* return to start of the main loop with new value of I. */
  1078. i__ = l - 1;
  1079. goto L20;
  1080. L160:
  1081. return;
  1082. /* End of DLAHQR */
  1083. } /* dlahqr_ */