You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

claqr0.c 43 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__13 = 13;
  485. static integer c__15 = 15;
  486. static integer c_n1 = -1;
  487. static integer c__12 = 12;
  488. static integer c__14 = 14;
  489. static integer c__16 = 16;
  490. static logical c_false = FALSE_;
  491. static integer c__1 = 1;
  492. static integer c__3 = 3;
  493. /* > \brief \b CLAQR0 computes the eigenvalues of a Hessenberg matrix, and optionally the matrices from the Sc
  494. hur decomposition. */
  495. /* =========== DOCUMENTATION =========== */
  496. /* Online html documentation available at */
  497. /* http://www.netlib.org/lapack/explore-html/ */
  498. /* > \htmlonly */
  499. /* > Download CLAQR0 + dependencies */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claqr0.
  501. f"> */
  502. /* > [TGZ]</a> */
  503. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claqr0.
  504. f"> */
  505. /* > [ZIP]</a> */
  506. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claqr0.
  507. f"> */
  508. /* > [TXT]</a> */
  509. /* > \endhtmlonly */
  510. /* Definition: */
  511. /* =========== */
  512. /* SUBROUTINE CLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ, */
  513. /* IHIZ, Z, LDZ, WORK, LWORK, INFO ) */
  514. /* INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N */
  515. /* LOGICAL WANTT, WANTZ */
  516. /* COMPLEX H( LDH, * ), W( * ), WORK( * ), Z( LDZ, * ) */
  517. /* > \par Purpose: */
  518. /* ============= */
  519. /* > */
  520. /* > \verbatim */
  521. /* > */
  522. /* > CLAQR0 computes the eigenvalues of a Hessenberg matrix H */
  523. /* > and, optionally, the matrices T and Z from the Schur decomposition */
  524. /* > H = Z T Z**H, where T is an upper triangular matrix (the */
  525. /* > Schur form), and Z is the unitary matrix of Schur vectors. */
  526. /* > */
  527. /* > Optionally Z may be postmultiplied into an input unitary */
  528. /* > matrix Q so that this routine can give the Schur factorization */
  529. /* > of a matrix A which has been reduced to the Hessenberg form H */
  530. /* > by the unitary matrix Q: A = Q*H*Q**H = (QZ)*H*(QZ)**H. */
  531. /* > \endverbatim */
  532. /* Arguments: */
  533. /* ========== */
  534. /* > \param[in] WANTT */
  535. /* > \verbatim */
  536. /* > WANTT is LOGICAL */
  537. /* > = .TRUE. : the full Schur form T is required; */
  538. /* > = .FALSE.: only eigenvalues are required. */
  539. /* > \endverbatim */
  540. /* > */
  541. /* > \param[in] WANTZ */
  542. /* > \verbatim */
  543. /* > WANTZ is LOGICAL */
  544. /* > = .TRUE. : the matrix of Schur vectors Z is required; */
  545. /* > = .FALSE.: Schur vectors are not required. */
  546. /* > \endverbatim */
  547. /* > */
  548. /* > \param[in] N */
  549. /* > \verbatim */
  550. /* > N is INTEGER */
  551. /* > The order of the matrix H. N >= 0. */
  552. /* > \endverbatim */
  553. /* > */
  554. /* > \param[in] ILO */
  555. /* > \verbatim */
  556. /* > ILO is INTEGER */
  557. /* > \endverbatim */
  558. /* > */
  559. /* > \param[in] IHI */
  560. /* > \verbatim */
  561. /* > IHI is INTEGER */
  562. /* > It is assumed that H is already upper triangular in rows */
  563. /* > and columns 1:ILO-1 and IHI+1:N and, if ILO > 1, */
  564. /* > H(ILO,ILO-1) is zero. ILO and IHI are normally set by a */
  565. /* > previous call to CGEBAL, and then passed to CGEHRD when the */
  566. /* > matrix output by CGEBAL is reduced to Hessenberg form. */
  567. /* > Otherwise, ILO and IHI should be set to 1 and N, */
  568. /* > respectively. If N > 0, then 1 <= ILO <= IHI <= N. */
  569. /* > If N = 0, then ILO = 1 and IHI = 0. */
  570. /* > \endverbatim */
  571. /* > */
  572. /* > \param[in,out] H */
  573. /* > \verbatim */
  574. /* > H is COMPLEX array, dimension (LDH,N) */
  575. /* > On entry, the upper Hessenberg matrix H. */
  576. /* > On exit, if INFO = 0 and WANTT is .TRUE., then H */
  577. /* > contains the upper triangular matrix T from the Schur */
  578. /* > decomposition (the Schur form). If INFO = 0 and WANT is */
  579. /* > .FALSE., then the contents of H are unspecified on exit. */
  580. /* > (The output value of H when INFO > 0 is given under the */
  581. /* > description of INFO below.) */
  582. /* > */
  583. /* > This subroutine may explicitly set H(i,j) = 0 for i > j and */
  584. /* > j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N. */
  585. /* > \endverbatim */
  586. /* > */
  587. /* > \param[in] LDH */
  588. /* > \verbatim */
  589. /* > LDH is INTEGER */
  590. /* > The leading dimension of the array H. LDH >= f2cmax(1,N). */
  591. /* > \endverbatim */
  592. /* > */
  593. /* > \param[out] W */
  594. /* > \verbatim */
  595. /* > W is COMPLEX array, dimension (N) */
  596. /* > The computed eigenvalues of H(ILO:IHI,ILO:IHI) are stored */
  597. /* > in W(ILO:IHI). If WANTT is .TRUE., then the eigenvalues are */
  598. /* > stored in the same order as on the diagonal of the Schur */
  599. /* > form returned in H, with W(i) = H(i,i). */
  600. /* > \endverbatim */
  601. /* > */
  602. /* > \param[in] ILOZ */
  603. /* > \verbatim */
  604. /* > ILOZ is INTEGER */
  605. /* > \endverbatim */
  606. /* > */
  607. /* > \param[in] IHIZ */
  608. /* > \verbatim */
  609. /* > IHIZ is INTEGER */
  610. /* > Specify the rows of Z to which transformations must be */
  611. /* > applied if WANTZ is .TRUE.. */
  612. /* > 1 <= ILOZ <= ILO; IHI <= IHIZ <= N. */
  613. /* > \endverbatim */
  614. /* > */
  615. /* > \param[in,out] Z */
  616. /* > \verbatim */
  617. /* > Z is COMPLEX array, dimension (LDZ,IHI) */
  618. /* > If WANTZ is .FALSE., then Z is not referenced. */
  619. /* > If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is */
  620. /* > replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the */
  621. /* > orthogonal Schur factor of H(ILO:IHI,ILO:IHI). */
  622. /* > (The output value of Z when INFO > 0 is given under */
  623. /* > the description of INFO below.) */
  624. /* > \endverbatim */
  625. /* > */
  626. /* > \param[in] LDZ */
  627. /* > \verbatim */
  628. /* > LDZ is INTEGER */
  629. /* > The leading dimension of the array Z. if WANTZ is .TRUE. */
  630. /* > then LDZ >= MAX(1,IHIZ). Otherwise, LDZ >= 1. */
  631. /* > \endverbatim */
  632. /* > */
  633. /* > \param[out] WORK */
  634. /* > \verbatim */
  635. /* > WORK is COMPLEX array, dimension LWORK */
  636. /* > On exit, if LWORK = -1, WORK(1) returns an estimate of */
  637. /* > the optimal value for LWORK. */
  638. /* > \endverbatim */
  639. /* > */
  640. /* > \param[in] LWORK */
  641. /* > \verbatim */
  642. /* > LWORK is INTEGER */
  643. /* > The dimension of the array WORK. LWORK >= f2cmax(1,N) */
  644. /* > is sufficient, but LWORK typically as large as 6*N may */
  645. /* > be required for optimal performance. A workspace query */
  646. /* > to determine the optimal workspace size is recommended. */
  647. /* > */
  648. /* > If LWORK = -1, then CLAQR0 does a workspace query. */
  649. /* > In this case, CLAQR0 checks the input parameters and */
  650. /* > estimates the optimal workspace size for the given */
  651. /* > values of N, ILO and IHI. The estimate is returned */
  652. /* > in WORK(1). No error message related to LWORK is */
  653. /* > issued by XERBLA. Neither H nor Z are accessed. */
  654. /* > \endverbatim */
  655. /* > */
  656. /* > \param[out] INFO */
  657. /* > \verbatim */
  658. /* > INFO is INTEGER */
  659. /* > = 0: successful exit */
  660. /* > > 0: if INFO = i, CLAQR0 failed to compute all of */
  661. /* > the eigenvalues. Elements 1:ilo-1 and i+1:n of WR */
  662. /* > and WI contain those eigenvalues which have been */
  663. /* > successfully computed. (Failures are rare.) */
  664. /* > */
  665. /* > If INFO > 0 and WANT is .FALSE., then on exit, */
  666. /* > the remaining unconverged eigenvalues are the eigen- */
  667. /* > values of the upper Hessenberg matrix rows and */
  668. /* > columns ILO through INFO of the final, output */
  669. /* > value of H. */
  670. /* > */
  671. /* > If INFO > 0 and WANTT is .TRUE., then on exit */
  672. /* > */
  673. /* > (*) (initial value of H)*U = U*(final value of H) */
  674. /* > */
  675. /* > where U is a unitary matrix. The final */
  676. /* > value of H is upper Hessenberg and triangular in */
  677. /* > rows and columns INFO+1 through IHI. */
  678. /* > */
  679. /* > If INFO > 0 and WANTZ is .TRUE., then on exit */
  680. /* > */
  681. /* > (final value of Z(ILO:IHI,ILOZ:IHIZ) */
  682. /* > = (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U */
  683. /* > */
  684. /* > where U is the unitary matrix in (*) (regard- */
  685. /* > less of the value of WANTT.) */
  686. /* > */
  687. /* > If INFO > 0 and WANTZ is .FALSE., then Z is not */
  688. /* > accessed. */
  689. /* > \endverbatim */
  690. /* Authors: */
  691. /* ======== */
  692. /* > \author Univ. of Tennessee */
  693. /* > \author Univ. of California Berkeley */
  694. /* > \author Univ. of Colorado Denver */
  695. /* > \author NAG Ltd. */
  696. /* > \date December 2016 */
  697. /* > \ingroup complexOTHERauxiliary */
  698. /* > \par Contributors: */
  699. /* ================== */
  700. /* > */
  701. /* > Karen Braman and Ralph Byers, Department of Mathematics, */
  702. /* > University of Kansas, USA */
  703. /* > \par References: */
  704. /* ================ */
  705. /* > */
  706. /* > K. Braman, R. Byers and R. Mathias, The Multi-Shift QR */
  707. /* > Algorithm Part I: Maintaining Well Focused Shifts, and Level 3 */
  708. /* > Performance, SIAM Journal of Matrix Analysis, volume 23, pages */
  709. /* > 929--947, 2002. */
  710. /* > \n */
  711. /* > K. Braman, R. Byers and R. Mathias, The Multi-Shift QR */
  712. /* > Algorithm Part II: Aggressive Early Deflation, SIAM Journal */
  713. /* > of Matrix Analysis, volume 23, pages 948--973, 2002. */
  714. /* > */
  715. /* ===================================================================== */
  716. /* Subroutine */ void claqr0_(logical *wantt, logical *wantz, integer *n,
  717. integer *ilo, integer *ihi, complex *h__, integer *ldh, complex *w,
  718. integer *iloz, integer *ihiz, complex *z__, integer *ldz, complex *
  719. work, integer *lwork, integer *info)
  720. {
  721. /* System generated locals */
  722. integer h_dim1, h_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5;
  723. real r__1, r__2, r__3, r__4, r__5, r__6, r__7, r__8;
  724. complex q__1, q__2, q__3, q__4, q__5;
  725. /* Local variables */
  726. integer ndec, ndfl, kbot, nmin;
  727. complex swap;
  728. integer ktop;
  729. complex zdum[1] /* was [1][1] */;
  730. integer kacc22, i__, k;
  731. real s;
  732. integer itmax, nsmax, nwmax, kwtop;
  733. extern /* Subroutine */ void claqr3_(logical *, logical *, integer *,
  734. integer *, integer *, integer *, complex *, integer *, integer *,
  735. integer *, complex *, integer *, integer *, integer *, complex *,
  736. complex *, integer *, integer *, complex *, integer *, integer *,
  737. complex *, integer *, complex *, integer *), claqr4_(logical *,
  738. logical *, integer *, integer *, integer *, complex *, integer *,
  739. complex *, integer *, integer *, complex *, integer *, complex *,
  740. integer *, integer *), claqr5_(logical *, logical *, integer *,
  741. integer *, integer *, integer *, integer *, complex *, complex *,
  742. integer *, integer *, integer *, complex *, integer *, complex *,
  743. integer *, complex *, integer *, integer *, complex *, integer *,
  744. integer *, complex *, integer *);
  745. complex aa, bb, cc, dd;
  746. integer ld, nh, nibble, it, ks, kt, ku, kv, ls, ns, nw;
  747. extern /* Subroutine */ void clahqr_(logical *, logical *, integer *,
  748. integer *, integer *, complex *, integer *, complex *, integer *,
  749. integer *, complex *, integer *, integer *), clacpy_(char *,
  750. integer *, integer *, complex *, integer *, complex *, integer *);
  751. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  752. integer *, integer *, ftnlen, ftnlen);
  753. char jbcmpz[2];
  754. complex rtdisc;
  755. integer nwupbd;
  756. logical sorted;
  757. integer lwkopt;
  758. complex tr2, det;
  759. integer inf, kdu, nho, nve, kwh, nsr, nwr, kwv;
  760. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  761. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  762. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  763. /* December 2016 */
  764. /* ================================================================ */
  765. /* ==== Matrices of order NTINY or smaller must be processed by */
  766. /* . CLAHQR because of insufficient subdiagonal scratch space. */
  767. /* . (This is a hard limit.) ==== */
  768. /* ==== Exceptional deflation windows: try to cure rare */
  769. /* . slow convergence by varying the size of the */
  770. /* . deflation window after KEXNW iterations. ==== */
  771. /* ==== Exceptional shifts: try to cure rare slow convergence */
  772. /* . with ad-hoc exceptional shifts every KEXSH iterations. */
  773. /* . ==== */
  774. /* ==== The constant WILK1 is used to form the exceptional */
  775. /* . shifts. ==== */
  776. /* Parameter adjustments */
  777. h_dim1 = *ldh;
  778. h_offset = 1 + h_dim1 * 1;
  779. h__ -= h_offset;
  780. --w;
  781. z_dim1 = *ldz;
  782. z_offset = 1 + z_dim1 * 1;
  783. z__ -= z_offset;
  784. --work;
  785. /* Function Body */
  786. *info = 0;
  787. /* ==== Quick return for N = 0: nothing to do. ==== */
  788. if (*n == 0) {
  789. work[1].r = 1.f, work[1].i = 0.f;
  790. return;
  791. }
  792. if (*n <= 15) {
  793. /* ==== Tiny matrices must use CLAHQR. ==== */
  794. lwkopt = 1;
  795. if (*lwork != -1) {
  796. clahqr_(wantt, wantz, n, ilo, ihi, &h__[h_offset], ldh, &w[1],
  797. iloz, ihiz, &z__[z_offset], ldz, info);
  798. }
  799. } else {
  800. /* ==== Use small bulge multi-shift QR with aggressive early */
  801. /* . deflation on larger-than-tiny matrices. ==== */
  802. /* ==== Hope for the best. ==== */
  803. *info = 0;
  804. /* ==== Set up job flags for ILAENV. ==== */
  805. if (*wantt) {
  806. *(unsigned char *)jbcmpz = 'S';
  807. } else {
  808. *(unsigned char *)jbcmpz = 'E';
  809. }
  810. if (*wantz) {
  811. *(unsigned char *)&jbcmpz[1] = 'V';
  812. } else {
  813. *(unsigned char *)&jbcmpz[1] = 'N';
  814. }
  815. /* ==== NWR = recommended deflation window size. At this */
  816. /* . point, N .GT. NTINY = 15, so there is enough */
  817. /* . subdiagonal workspace for NWR.GE.2 as required. */
  818. /* . (In fact, there is enough subdiagonal space for */
  819. /* . NWR.GE.4.) ==== */
  820. nwr = ilaenv_(&c__13, "CLAQR0", jbcmpz, n, ilo, ihi, lwork, (ftnlen)6,
  821. (ftnlen)2);
  822. nwr = f2cmax(2,nwr);
  823. /* Computing MIN */
  824. i__1 = *ihi - *ilo + 1, i__2 = (*n - 1) / 3, i__1 = f2cmin(i__1,i__2);
  825. nwr = f2cmin(i__1,nwr);
  826. /* ==== NSR = recommended number of simultaneous shifts. */
  827. /* . At this point N .GT. NTINY = 15, so there is at */
  828. /* . enough subdiagonal workspace for NSR to be even */
  829. /* . and greater than or equal to two as required. ==== */
  830. nsr = ilaenv_(&c__15, "CLAQR0", jbcmpz, n, ilo, ihi, lwork, (ftnlen)6,
  831. (ftnlen)2);
  832. /* Computing MIN */
  833. i__1 = nsr, i__2 = (*n - 3) / 6, i__1 = f2cmin(i__1,i__2), i__2 = *ihi -
  834. *ilo;
  835. nsr = f2cmin(i__1,i__2);
  836. /* Computing MAX */
  837. i__1 = 2, i__2 = nsr - nsr % 2;
  838. nsr = f2cmax(i__1,i__2);
  839. /* ==== Estimate optimal workspace ==== */
  840. /* ==== Workspace query call to CLAQR3 ==== */
  841. i__1 = nwr + 1;
  842. claqr3_(wantt, wantz, n, ilo, ihi, &i__1, &h__[h_offset], ldh, iloz,
  843. ihiz, &z__[z_offset], ldz, &ls, &ld, &w[1], &h__[h_offset],
  844. ldh, n, &h__[h_offset], ldh, n, &h__[h_offset], ldh, &work[1],
  845. &c_n1);
  846. /* ==== Optimal workspace = MAX(CLAQR5, CLAQR3) ==== */
  847. /* Computing MAX */
  848. i__1 = nsr * 3 / 2, i__2 = (integer) work[1].r;
  849. lwkopt = f2cmax(i__1,i__2);
  850. /* ==== Quick return in case of workspace query. ==== */
  851. if (*lwork == -1) {
  852. r__1 = (real) lwkopt;
  853. q__1.r = r__1, q__1.i = 0.f;
  854. work[1].r = q__1.r, work[1].i = q__1.i;
  855. return;
  856. }
  857. /* ==== CLAHQR/CLAQR0 crossover point ==== */
  858. nmin = ilaenv_(&c__12, "CLAQR0", jbcmpz, n, ilo, ihi, lwork, (ftnlen)
  859. 6, (ftnlen)2);
  860. nmin = f2cmax(15,nmin);
  861. /* ==== Nibble crossover point ==== */
  862. nibble = ilaenv_(&c__14, "CLAQR0", jbcmpz, n, ilo, ihi, lwork, (
  863. ftnlen)6, (ftnlen)2);
  864. nibble = f2cmax(0,nibble);
  865. /* ==== Accumulate reflections during ttswp? Use block */
  866. /* . 2-by-2 structure during matrix-matrix multiply? ==== */
  867. kacc22 = ilaenv_(&c__16, "CLAQR0", jbcmpz, n, ilo, ihi, lwork, (
  868. ftnlen)6, (ftnlen)2);
  869. kacc22 = f2cmax(0,kacc22);
  870. kacc22 = f2cmin(2,kacc22);
  871. /* ==== NWMAX = the largest possible deflation window for */
  872. /* . which there is sufficient workspace. ==== */
  873. /* Computing MIN */
  874. i__1 = (*n - 1) / 3, i__2 = *lwork / 2;
  875. nwmax = f2cmin(i__1,i__2);
  876. nw = nwmax;
  877. /* ==== NSMAX = the Largest number of simultaneous shifts */
  878. /* . for which there is sufficient workspace. ==== */
  879. /* Computing MIN */
  880. i__1 = (*n - 3) / 6, i__2 = (*lwork << 1) / 3;
  881. nsmax = f2cmin(i__1,i__2);
  882. nsmax -= nsmax % 2;
  883. /* ==== NDFL: an iteration count restarted at deflation. ==== */
  884. ndfl = 1;
  885. /* ==== ITMAX = iteration limit ==== */
  886. /* Computing MAX */
  887. i__1 = 10, i__2 = *ihi - *ilo + 1;
  888. itmax = 30 * f2cmax(i__1,i__2);
  889. /* ==== Last row and column in the active block ==== */
  890. kbot = *ihi;
  891. /* ==== Main Loop ==== */
  892. i__1 = itmax;
  893. for (it = 1; it <= i__1; ++it) {
  894. /* ==== Done when KBOT falls below ILO ==== */
  895. if (kbot < *ilo) {
  896. goto L80;
  897. }
  898. /* ==== Locate active block ==== */
  899. i__2 = *ilo + 1;
  900. for (k = kbot; k >= i__2; --k) {
  901. i__3 = k + (k - 1) * h_dim1;
  902. if (h__[i__3].r == 0.f && h__[i__3].i == 0.f) {
  903. goto L20;
  904. }
  905. /* L10: */
  906. }
  907. k = *ilo;
  908. L20:
  909. ktop = k;
  910. /* ==== Select deflation window size: */
  911. /* . Typical Case: */
  912. /* . If possible and advisable, nibble the entire */
  913. /* . active block. If not, use size MIN(NWR,NWMAX) */
  914. /* . or MIN(NWR+1,NWMAX) depending upon which has */
  915. /* . the smaller corresponding subdiagonal entry */
  916. /* . (a heuristic). */
  917. /* . */
  918. /* . Exceptional Case: */
  919. /* . If there have been no deflations in KEXNW or */
  920. /* . more iterations, then vary the deflation window */
  921. /* . size. At first, because, larger windows are, */
  922. /* . in general, more powerful than smaller ones, */
  923. /* . rapidly increase the window to the maximum possible. */
  924. /* . Then, gradually reduce the window size. ==== */
  925. nh = kbot - ktop + 1;
  926. nwupbd = f2cmin(nh,nwmax);
  927. if (ndfl < 5) {
  928. nw = f2cmin(nwupbd,nwr);
  929. } else {
  930. /* Computing MIN */
  931. i__2 = nwupbd, i__3 = nw << 1;
  932. nw = f2cmin(i__2,i__3);
  933. }
  934. if (nw < nwmax) {
  935. if (nw >= nh - 1) {
  936. nw = nh;
  937. } else {
  938. kwtop = kbot - nw + 1;
  939. i__2 = kwtop + (kwtop - 1) * h_dim1;
  940. i__3 = kwtop - 1 + (kwtop - 2) * h_dim1;
  941. if ((r__1 = h__[i__2].r, abs(r__1)) + (r__2 = r_imag(&h__[
  942. kwtop + (kwtop - 1) * h_dim1]), abs(r__2)) > (
  943. r__3 = h__[i__3].r, abs(r__3)) + (r__4 = r_imag(&
  944. h__[kwtop - 1 + (kwtop - 2) * h_dim1]), abs(r__4))
  945. ) {
  946. ++nw;
  947. }
  948. }
  949. }
  950. if (ndfl < 5) {
  951. ndec = -1;
  952. } else if (ndec >= 0 || nw >= nwupbd) {
  953. ++ndec;
  954. if (nw - ndec < 2) {
  955. ndec = 0;
  956. }
  957. nw -= ndec;
  958. }
  959. /* ==== Aggressive early deflation: */
  960. /* . split workspace under the subdiagonal into */
  961. /* . - an nw-by-nw work array V in the lower */
  962. /* . left-hand-corner, */
  963. /* . - an NW-by-at-least-NW-but-more-is-better */
  964. /* . (NW-by-NHO) horizontal work array along */
  965. /* . the bottom edge, */
  966. /* . - an at-least-NW-but-more-is-better (NHV-by-NW) */
  967. /* . vertical work array along the left-hand-edge. */
  968. /* . ==== */
  969. kv = *n - nw + 1;
  970. kt = nw + 1;
  971. nho = *n - nw - 1 - kt + 1;
  972. kwv = nw + 2;
  973. nve = *n - nw - kwv + 1;
  974. /* ==== Aggressive early deflation ==== */
  975. claqr3_(wantt, wantz, n, &ktop, &kbot, &nw, &h__[h_offset], ldh,
  976. iloz, ihiz, &z__[z_offset], ldz, &ls, &ld, &w[1], &h__[kv
  977. + h_dim1], ldh, &nho, &h__[kv + kt * h_dim1], ldh, &nve, &
  978. h__[kwv + h_dim1], ldh, &work[1], lwork);
  979. /* ==== Adjust KBOT accounting for new deflations. ==== */
  980. kbot -= ld;
  981. /* ==== KS points to the shifts. ==== */
  982. ks = kbot - ls + 1;
  983. /* ==== Skip an expensive QR sweep if there is a (partly */
  984. /* . heuristic) reason to expect that many eigenvalues */
  985. /* . will deflate without it. Here, the QR sweep is */
  986. /* . skipped if many eigenvalues have just been deflated */
  987. /* . or if the remaining active block is small. */
  988. if (ld == 0 || ld * 100 <= nw * nibble && kbot - ktop + 1 > f2cmin(
  989. nmin,nwmax)) {
  990. /* ==== NS = nominal number of simultaneous shifts. */
  991. /* . This may be lowered (slightly) if CLAQR3 */
  992. /* . did not provide that many shifts. ==== */
  993. /* Computing MIN */
  994. /* Computing MAX */
  995. i__4 = 2, i__5 = kbot - ktop;
  996. i__2 = f2cmin(nsmax,nsr), i__3 = f2cmax(i__4,i__5);
  997. ns = f2cmin(i__2,i__3);
  998. ns -= ns % 2;
  999. /* ==== If there have been no deflations */
  1000. /* . in a multiple of KEXSH iterations, */
  1001. /* . then try exceptional shifts. */
  1002. /* . Otherwise use shifts provided by */
  1003. /* . CLAQR3 above or from the eigenvalues */
  1004. /* . of a trailing principal submatrix. ==== */
  1005. if (ndfl % 6 == 0) {
  1006. ks = kbot - ns + 1;
  1007. i__2 = ks + 1;
  1008. for (i__ = kbot; i__ >= i__2; i__ += -2) {
  1009. i__3 = i__;
  1010. i__4 = i__ + i__ * h_dim1;
  1011. i__5 = i__ + (i__ - 1) * h_dim1;
  1012. r__3 = ((r__1 = h__[i__5].r, abs(r__1)) + (r__2 =
  1013. r_imag(&h__[i__ + (i__ - 1) * h_dim1]), abs(
  1014. r__2))) * .75f;
  1015. q__1.r = h__[i__4].r + r__3, q__1.i = h__[i__4].i;
  1016. w[i__3].r = q__1.r, w[i__3].i = q__1.i;
  1017. i__3 = i__ - 1;
  1018. i__4 = i__;
  1019. w[i__3].r = w[i__4].r, w[i__3].i = w[i__4].i;
  1020. /* L30: */
  1021. }
  1022. } else {
  1023. /* ==== Got NS/2 or fewer shifts? Use CLAQR4 or */
  1024. /* . CLAHQR on a trailing principal submatrix to */
  1025. /* . get more. (Since NS.LE.NSMAX.LE.(N-3)/6, */
  1026. /* . there is enough space below the subdiagonal */
  1027. /* . to fit an NS-by-NS scratch array.) ==== */
  1028. if (kbot - ks + 1 <= ns / 2) {
  1029. ks = kbot - ns + 1;
  1030. kt = *n - ns + 1;
  1031. clacpy_("A", &ns, &ns, &h__[ks + ks * h_dim1], ldh, &
  1032. h__[kt + h_dim1], ldh);
  1033. if (ns > nmin) {
  1034. claqr4_(&c_false, &c_false, &ns, &c__1, &ns, &h__[
  1035. kt + h_dim1], ldh, &w[ks], &c__1, &c__1,
  1036. zdum, &c__1, &work[1], lwork, &inf);
  1037. } else {
  1038. clahqr_(&c_false, &c_false, &ns, &c__1, &ns, &h__[
  1039. kt + h_dim1], ldh, &w[ks], &c__1, &c__1,
  1040. zdum, &c__1, &inf);
  1041. }
  1042. ks += inf;
  1043. /* ==== In case of a rare QR failure use */
  1044. /* . eigenvalues of the trailing 2-by-2 */
  1045. /* . principal submatrix. Scale to avoid */
  1046. /* . overflows, underflows and subnormals. */
  1047. /* . (The scale factor S can not be zero, */
  1048. /* . because H(KBOT,KBOT-1) is nonzero.) ==== */
  1049. if (ks >= kbot) {
  1050. i__2 = kbot - 1 + (kbot - 1) * h_dim1;
  1051. i__3 = kbot + (kbot - 1) * h_dim1;
  1052. i__4 = kbot - 1 + kbot * h_dim1;
  1053. i__5 = kbot + kbot * h_dim1;
  1054. s = (r__1 = h__[i__2].r, abs(r__1)) + (r__2 =
  1055. r_imag(&h__[kbot - 1 + (kbot - 1) *
  1056. h_dim1]), abs(r__2)) + ((r__3 = h__[i__3]
  1057. .r, abs(r__3)) + (r__4 = r_imag(&h__[kbot
  1058. + (kbot - 1) * h_dim1]), abs(r__4))) + ((
  1059. r__5 = h__[i__4].r, abs(r__5)) + (r__6 =
  1060. r_imag(&h__[kbot - 1 + kbot * h_dim1]),
  1061. abs(r__6))) + ((r__7 = h__[i__5].r, abs(
  1062. r__7)) + (r__8 = r_imag(&h__[kbot + kbot *
  1063. h_dim1]), abs(r__8)));
  1064. i__2 = kbot - 1 + (kbot - 1) * h_dim1;
  1065. q__1.r = h__[i__2].r / s, q__1.i = h__[i__2].i /
  1066. s;
  1067. aa.r = q__1.r, aa.i = q__1.i;
  1068. i__2 = kbot + (kbot - 1) * h_dim1;
  1069. q__1.r = h__[i__2].r / s, q__1.i = h__[i__2].i /
  1070. s;
  1071. cc.r = q__1.r, cc.i = q__1.i;
  1072. i__2 = kbot - 1 + kbot * h_dim1;
  1073. q__1.r = h__[i__2].r / s, q__1.i = h__[i__2].i /
  1074. s;
  1075. bb.r = q__1.r, bb.i = q__1.i;
  1076. i__2 = kbot + kbot * h_dim1;
  1077. q__1.r = h__[i__2].r / s, q__1.i = h__[i__2].i /
  1078. s;
  1079. dd.r = q__1.r, dd.i = q__1.i;
  1080. q__2.r = aa.r + dd.r, q__2.i = aa.i + dd.i;
  1081. q__1.r = q__2.r / 2.f, q__1.i = q__2.i / 2.f;
  1082. tr2.r = q__1.r, tr2.i = q__1.i;
  1083. q__3.r = aa.r - tr2.r, q__3.i = aa.i - tr2.i;
  1084. q__4.r = dd.r - tr2.r, q__4.i = dd.i - tr2.i;
  1085. q__2.r = q__3.r * q__4.r - q__3.i * q__4.i,
  1086. q__2.i = q__3.r * q__4.i + q__3.i *
  1087. q__4.r;
  1088. q__5.r = bb.r * cc.r - bb.i * cc.i, q__5.i = bb.r
  1089. * cc.i + bb.i * cc.r;
  1090. q__1.r = q__2.r - q__5.r, q__1.i = q__2.i -
  1091. q__5.i;
  1092. det.r = q__1.r, det.i = q__1.i;
  1093. q__2.r = -det.r, q__2.i = -det.i;
  1094. c_sqrt(&q__1, &q__2);
  1095. rtdisc.r = q__1.r, rtdisc.i = q__1.i;
  1096. i__2 = kbot - 1;
  1097. q__2.r = tr2.r + rtdisc.r, q__2.i = tr2.i +
  1098. rtdisc.i;
  1099. q__1.r = s * q__2.r, q__1.i = s * q__2.i;
  1100. w[i__2].r = q__1.r, w[i__2].i = q__1.i;
  1101. i__2 = kbot;
  1102. q__2.r = tr2.r - rtdisc.r, q__2.i = tr2.i -
  1103. rtdisc.i;
  1104. q__1.r = s * q__2.r, q__1.i = s * q__2.i;
  1105. w[i__2].r = q__1.r, w[i__2].i = q__1.i;
  1106. ks = kbot - 1;
  1107. }
  1108. }
  1109. if (kbot - ks + 1 > ns) {
  1110. /* ==== Sort the shifts (Helps a little) ==== */
  1111. sorted = FALSE_;
  1112. i__2 = ks + 1;
  1113. for (k = kbot; k >= i__2; --k) {
  1114. if (sorted) {
  1115. goto L60;
  1116. }
  1117. sorted = TRUE_;
  1118. i__3 = k - 1;
  1119. for (i__ = ks; i__ <= i__3; ++i__) {
  1120. i__4 = i__;
  1121. i__5 = i__ + 1;
  1122. if ((r__1 = w[i__4].r, abs(r__1)) + (r__2 =
  1123. r_imag(&w[i__]), abs(r__2)) < (r__3 =
  1124. w[i__5].r, abs(r__3)) + (r__4 =
  1125. r_imag(&w[i__ + 1]), abs(r__4))) {
  1126. sorted = FALSE_;
  1127. i__4 = i__;
  1128. swap.r = w[i__4].r, swap.i = w[i__4].i;
  1129. i__4 = i__;
  1130. i__5 = i__ + 1;
  1131. w[i__4].r = w[i__5].r, w[i__4].i = w[i__5]
  1132. .i;
  1133. i__4 = i__ + 1;
  1134. w[i__4].r = swap.r, w[i__4].i = swap.i;
  1135. }
  1136. /* L40: */
  1137. }
  1138. /* L50: */
  1139. }
  1140. L60:
  1141. ;
  1142. }
  1143. }
  1144. /* ==== If there are only two shifts, then use */
  1145. /* . only one. ==== */
  1146. if (kbot - ks + 1 == 2) {
  1147. i__2 = kbot;
  1148. i__3 = kbot + kbot * h_dim1;
  1149. q__2.r = w[i__2].r - h__[i__3].r, q__2.i = w[i__2].i -
  1150. h__[i__3].i;
  1151. q__1.r = q__2.r, q__1.i = q__2.i;
  1152. i__4 = kbot - 1;
  1153. i__5 = kbot + kbot * h_dim1;
  1154. q__4.r = w[i__4].r - h__[i__5].r, q__4.i = w[i__4].i -
  1155. h__[i__5].i;
  1156. q__3.r = q__4.r, q__3.i = q__4.i;
  1157. if ((r__1 = q__1.r, abs(r__1)) + (r__2 = r_imag(&q__1),
  1158. abs(r__2)) < (r__3 = q__3.r, abs(r__3)) + (r__4 =
  1159. r_imag(&q__3), abs(r__4))) {
  1160. i__2 = kbot - 1;
  1161. i__3 = kbot;
  1162. w[i__2].r = w[i__3].r, w[i__2].i = w[i__3].i;
  1163. } else {
  1164. i__2 = kbot;
  1165. i__3 = kbot - 1;
  1166. w[i__2].r = w[i__3].r, w[i__2].i = w[i__3].i;
  1167. }
  1168. }
  1169. /* ==== Use up to NS of the the smallest magnitude */
  1170. /* . shifts. If there aren't NS shifts available, */
  1171. /* . then use them all, possibly dropping one to */
  1172. /* . make the number of shifts even. ==== */
  1173. /* Computing MIN */
  1174. i__2 = ns, i__3 = kbot - ks + 1;
  1175. ns = f2cmin(i__2,i__3);
  1176. ns -= ns % 2;
  1177. ks = kbot - ns + 1;
  1178. /* ==== Small-bulge multi-shift QR sweep: */
  1179. /* . split workspace under the subdiagonal into */
  1180. /* . - a KDU-by-KDU work array U in the lower */
  1181. /* . left-hand-corner, */
  1182. /* . - a KDU-by-at-least-KDU-but-more-is-better */
  1183. /* . (KDU-by-NHo) horizontal work array WH along */
  1184. /* . the bottom edge, */
  1185. /* . - and an at-least-KDU-but-more-is-better-by-KDU */
  1186. /* . (NVE-by-KDU) vertical work WV arrow along */
  1187. /* . the left-hand-edge. ==== */
  1188. kdu = ns << 1;
  1189. ku = *n - kdu + 1;
  1190. kwh = kdu + 1;
  1191. nho = *n - kdu - 3 - (kdu + 1) + 1;
  1192. kwv = kdu + 4;
  1193. nve = *n - kdu - kwv + 1;
  1194. /* ==== Small-bulge multi-shift QR sweep ==== */
  1195. claqr5_(wantt, wantz, &kacc22, n, &ktop, &kbot, &ns, &w[ks], &
  1196. h__[h_offset], ldh, iloz, ihiz, &z__[z_offset], ldz, &
  1197. work[1], &c__3, &h__[ku + h_dim1], ldh, &nve, &h__[
  1198. kwv + h_dim1], ldh, &nho, &h__[ku + kwh * h_dim1],
  1199. ldh);
  1200. }
  1201. /* ==== Note progress (or the lack of it). ==== */
  1202. if (ld > 0) {
  1203. ndfl = 1;
  1204. } else {
  1205. ++ndfl;
  1206. }
  1207. /* ==== End of main loop ==== */
  1208. /* L70: */
  1209. }
  1210. /* ==== Iteration limit exceeded. Set INFO to show where */
  1211. /* . the problem occurred and exit. ==== */
  1212. *info = kbot;
  1213. L80:
  1214. ;
  1215. }
  1216. /* ==== Return the optimal value of LWORK. ==== */
  1217. r__1 = (real) lwkopt;
  1218. q__1.r = r__1, q__1.i = 0.f;
  1219. work[1].r = q__1.r, work[1].i = q__1.i;
  1220. /* ==== End of CLAQR0 ==== */
  1221. return;
  1222. } /* claqr0_ */