You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cheevr.c 42 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__10 = 10;
  485. static integer c__1 = 1;
  486. static integer c__2 = 2;
  487. static integer c__3 = 3;
  488. static integer c__4 = 4;
  489. static integer c_n1 = -1;
  490. /* > \brief <b> CHEEVR computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE mat
  491. rices</b> */
  492. /* =========== DOCUMENTATION =========== */
  493. /* Online html documentation available at */
  494. /* http://www.netlib.org/lapack/explore-html/ */
  495. /* > \htmlonly */
  496. /* > Download CHEEVR + dependencies */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cheevr.
  498. f"> */
  499. /* > [TGZ]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cheevr.
  501. f"> */
  502. /* > [ZIP]</a> */
  503. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cheevr.
  504. f"> */
  505. /* > [TXT]</a> */
  506. /* > \endhtmlonly */
  507. /* Definition: */
  508. /* =========== */
  509. /* SUBROUTINE CHEEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, */
  510. /* ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, */
  511. /* RWORK, LRWORK, IWORK, LIWORK, INFO ) */
  512. /* CHARACTER JOBZ, RANGE, UPLO */
  513. /* INTEGER IL, INFO, IU, LDA, LDZ, LIWORK, LRWORK, LWORK, */
  514. /* $ M, N */
  515. /* REAL ABSTOL, VL, VU */
  516. /* INTEGER ISUPPZ( * ), IWORK( * ) */
  517. /* REAL RWORK( * ), W( * ) */
  518. /* COMPLEX A( LDA, * ), WORK( * ), Z( LDZ, * ) */
  519. /* > \par Purpose: */
  520. /* ============= */
  521. /* > */
  522. /* > \verbatim */
  523. /* > */
  524. /* > CHEEVR computes selected eigenvalues and, optionally, eigenvectors */
  525. /* > of a complex Hermitian matrix A. Eigenvalues and eigenvectors can */
  526. /* > be selected by specifying either a range of values or a range of */
  527. /* > indices for the desired eigenvalues. */
  528. /* > */
  529. /* > CHEEVR first reduces the matrix A to tridiagonal form T with a call */
  530. /* > to CHETRD. Then, whenever possible, CHEEVR calls CSTEMR to compute */
  531. /* > the eigenspectrum using Relatively Robust Representations. CSTEMR */
  532. /* > computes eigenvalues by the dqds algorithm, while orthogonal */
  533. /* > eigenvectors are computed from various "good" L D L^T representations */
  534. /* > (also known as Relatively Robust Representations). Gram-Schmidt */
  535. /* > orthogonalization is avoided as far as possible. More specifically, */
  536. /* > the various steps of the algorithm are as follows. */
  537. /* > */
  538. /* > For each unreduced block (submatrix) of T, */
  539. /* > (a) Compute T - sigma I = L D L^T, so that L and D */
  540. /* > define all the wanted eigenvalues to high relative accuracy. */
  541. /* > This means that small relative changes in the entries of D and L */
  542. /* > cause only small relative changes in the eigenvalues and */
  543. /* > eigenvectors. The standard (unfactored) representation of the */
  544. /* > tridiagonal matrix T does not have this property in general. */
  545. /* > (b) Compute the eigenvalues to suitable accuracy. */
  546. /* > If the eigenvectors are desired, the algorithm attains full */
  547. /* > accuracy of the computed eigenvalues only right before */
  548. /* > the corresponding vectors have to be computed, see steps c) and d). */
  549. /* > (c) For each cluster of close eigenvalues, select a new */
  550. /* > shift close to the cluster, find a new factorization, and refine */
  551. /* > the shifted eigenvalues to suitable accuracy. */
  552. /* > (d) For each eigenvalue with a large enough relative separation compute */
  553. /* > the corresponding eigenvector by forming a rank revealing twisted */
  554. /* > factorization. Go back to (c) for any clusters that remain. */
  555. /* > */
  556. /* > The desired accuracy of the output can be specified by the input */
  557. /* > parameter ABSTOL. */
  558. /* > */
  559. /* > For more details, see DSTEMR's documentation and: */
  560. /* > - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations */
  561. /* > to compute orthogonal eigenvectors of symmetric tridiagonal matrices," */
  562. /* > Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004. */
  563. /* > - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and */
  564. /* > Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25, */
  565. /* > 2004. Also LAPACK Working Note 154. */
  566. /* > - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric */
  567. /* > tridiagonal eigenvalue/eigenvector problem", */
  568. /* > Computer Science Division Technical Report No. UCB/CSD-97-971, */
  569. /* > UC Berkeley, May 1997. */
  570. /* > */
  571. /* > */
  572. /* > Note 1 : CHEEVR calls CSTEMR when the full spectrum is requested */
  573. /* > on machines which conform to the ieee-754 floating point standard. */
  574. /* > CHEEVR calls SSTEBZ and CSTEIN on non-ieee machines and */
  575. /* > when partial spectrum requests are made. */
  576. /* > */
  577. /* > Normal execution of CSTEMR may create NaNs and infinities and */
  578. /* > hence may abort due to a floating point exception in environments */
  579. /* > which do not handle NaNs and infinities in the ieee standard default */
  580. /* > manner. */
  581. /* > \endverbatim */
  582. /* Arguments: */
  583. /* ========== */
  584. /* > \param[in] JOBZ */
  585. /* > \verbatim */
  586. /* > JOBZ is CHARACTER*1 */
  587. /* > = 'N': Compute eigenvalues only; */
  588. /* > = 'V': Compute eigenvalues and eigenvectors. */
  589. /* > \endverbatim */
  590. /* > */
  591. /* > \param[in] RANGE */
  592. /* > \verbatim */
  593. /* > RANGE is CHARACTER*1 */
  594. /* > = 'A': all eigenvalues will be found. */
  595. /* > = 'V': all eigenvalues in the half-open interval (VL,VU] */
  596. /* > will be found. */
  597. /* > = 'I': the IL-th through IU-th eigenvalues will be found. */
  598. /* > For RANGE = 'V' or 'I' and IU - IL < N - 1, SSTEBZ and */
  599. /* > CSTEIN are called */
  600. /* > \endverbatim */
  601. /* > */
  602. /* > \param[in] UPLO */
  603. /* > \verbatim */
  604. /* > UPLO is CHARACTER*1 */
  605. /* > = 'U': Upper triangle of A is stored; */
  606. /* > = 'L': Lower triangle of A is stored. */
  607. /* > \endverbatim */
  608. /* > */
  609. /* > \param[in] N */
  610. /* > \verbatim */
  611. /* > N is INTEGER */
  612. /* > The order of the matrix A. N >= 0. */
  613. /* > \endverbatim */
  614. /* > */
  615. /* > \param[in,out] A */
  616. /* > \verbatim */
  617. /* > A is COMPLEX array, dimension (LDA, N) */
  618. /* > On entry, the Hermitian matrix A. If UPLO = 'U', the */
  619. /* > leading N-by-N upper triangular part of A contains the */
  620. /* > upper triangular part of the matrix A. If UPLO = 'L', */
  621. /* > the leading N-by-N lower triangular part of A contains */
  622. /* > the lower triangular part of the matrix A. */
  623. /* > On exit, the lower triangle (if UPLO='L') or the upper */
  624. /* > triangle (if UPLO='U') of A, including the diagonal, is */
  625. /* > destroyed. */
  626. /* > \endverbatim */
  627. /* > */
  628. /* > \param[in] LDA */
  629. /* > \verbatim */
  630. /* > LDA is INTEGER */
  631. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  632. /* > \endverbatim */
  633. /* > */
  634. /* > \param[in] VL */
  635. /* > \verbatim */
  636. /* > VL is REAL */
  637. /* > If RANGE='V', the lower bound of the interval to */
  638. /* > be searched for eigenvalues. VL < VU. */
  639. /* > Not referenced if RANGE = 'A' or 'I'. */
  640. /* > \endverbatim */
  641. /* > */
  642. /* > \param[in] VU */
  643. /* > \verbatim */
  644. /* > VU is REAL */
  645. /* > If RANGE='V', the upper bound of the interval to */
  646. /* > be searched for eigenvalues. VL < VU. */
  647. /* > Not referenced if RANGE = 'A' or 'I'. */
  648. /* > \endverbatim */
  649. /* > */
  650. /* > \param[in] IL */
  651. /* > \verbatim */
  652. /* > IL is INTEGER */
  653. /* > If RANGE='I', the index of the */
  654. /* > smallest eigenvalue to be returned. */
  655. /* > 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
  656. /* > Not referenced if RANGE = 'A' or 'V'. */
  657. /* > \endverbatim */
  658. /* > */
  659. /* > \param[in] IU */
  660. /* > \verbatim */
  661. /* > IU is INTEGER */
  662. /* > If RANGE='I', the index of the */
  663. /* > largest eigenvalue to be returned. */
  664. /* > 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
  665. /* > Not referenced if RANGE = 'A' or 'V'. */
  666. /* > \endverbatim */
  667. /* > */
  668. /* > \param[in] ABSTOL */
  669. /* > \verbatim */
  670. /* > ABSTOL is REAL */
  671. /* > The absolute error tolerance for the eigenvalues. */
  672. /* > An approximate eigenvalue is accepted as converged */
  673. /* > when it is determined to lie in an interval [a,b] */
  674. /* > of width less than or equal to */
  675. /* > */
  676. /* > ABSTOL + EPS * f2cmax( |a|,|b| ) , */
  677. /* > */
  678. /* > where EPS is the machine precision. If ABSTOL is less than */
  679. /* > or equal to zero, then EPS*|T| will be used in its place, */
  680. /* > where |T| is the 1-norm of the tridiagonal matrix obtained */
  681. /* > by reducing A to tridiagonal form. */
  682. /* > */
  683. /* > See "Computing Small Singular Values of Bidiagonal Matrices */
  684. /* > with Guaranteed High Relative Accuracy," by Demmel and */
  685. /* > Kahan, LAPACK Working Note #3. */
  686. /* > */
  687. /* > If high relative accuracy is important, set ABSTOL to */
  688. /* > SLAMCH( 'Safe minimum' ). Doing so will guarantee that */
  689. /* > eigenvalues are computed to high relative accuracy when */
  690. /* > possible in future releases. The current code does not */
  691. /* > make any guarantees about high relative accuracy, but */
  692. /* > future releases will. See J. Barlow and J. Demmel, */
  693. /* > "Computing Accurate Eigensystems of Scaled Diagonally */
  694. /* > Dominant Matrices", LAPACK Working Note #7, for a discussion */
  695. /* > of which matrices define their eigenvalues to high relative */
  696. /* > accuracy. */
  697. /* > \endverbatim */
  698. /* > */
  699. /* > \param[out] M */
  700. /* > \verbatim */
  701. /* > M is INTEGER */
  702. /* > The total number of eigenvalues found. 0 <= M <= N. */
  703. /* > If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
  704. /* > \endverbatim */
  705. /* > */
  706. /* > \param[out] W */
  707. /* > \verbatim */
  708. /* > W is REAL array, dimension (N) */
  709. /* > The first M elements contain the selected eigenvalues in */
  710. /* > ascending order. */
  711. /* > \endverbatim */
  712. /* > */
  713. /* > \param[out] Z */
  714. /* > \verbatim */
  715. /* > Z is COMPLEX array, dimension (LDZ, f2cmax(1,M)) */
  716. /* > If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
  717. /* > contain the orthonormal eigenvectors of the matrix A */
  718. /* > corresponding to the selected eigenvalues, with the i-th */
  719. /* > column of Z holding the eigenvector associated with W(i). */
  720. /* > If JOBZ = 'N', then Z is not referenced. */
  721. /* > Note: the user must ensure that at least f2cmax(1,M) columns are */
  722. /* > supplied in the array Z; if RANGE = 'V', the exact value of M */
  723. /* > is not known in advance and an upper bound must be used. */
  724. /* > \endverbatim */
  725. /* > */
  726. /* > \param[in] LDZ */
  727. /* > \verbatim */
  728. /* > LDZ is INTEGER */
  729. /* > The leading dimension of the array Z. LDZ >= 1, and if */
  730. /* > JOBZ = 'V', LDZ >= f2cmax(1,N). */
  731. /* > \endverbatim */
  732. /* > */
  733. /* > \param[out] ISUPPZ */
  734. /* > \verbatim */
  735. /* > ISUPPZ is INTEGER array, dimension ( 2*f2cmax(1,M) ) */
  736. /* > The support of the eigenvectors in Z, i.e., the indices */
  737. /* > indicating the nonzero elements in Z. The i-th eigenvector */
  738. /* > is nonzero only in elements ISUPPZ( 2*i-1 ) through */
  739. /* > ISUPPZ( 2*i ). This is an output of CSTEMR (tridiagonal */
  740. /* > matrix). The support of the eigenvectors of A is typically */
  741. /* > 1:N because of the unitary transformations applied by CUNMTR. */
  742. /* > Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1 */
  743. /* > \endverbatim */
  744. /* > */
  745. /* > \param[out] WORK */
  746. /* > \verbatim */
  747. /* > WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
  748. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  749. /* > \endverbatim */
  750. /* > */
  751. /* > \param[in] LWORK */
  752. /* > \verbatim */
  753. /* > LWORK is INTEGER */
  754. /* > The length of the array WORK. LWORK >= f2cmax(1,2*N). */
  755. /* > For optimal efficiency, LWORK >= (NB+1)*N, */
  756. /* > where NB is the f2cmax of the blocksize for CHETRD and for */
  757. /* > CUNMTR as returned by ILAENV. */
  758. /* > */
  759. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  760. /* > only calculates the optimal sizes of the WORK, RWORK and */
  761. /* > IWORK arrays, returns these values as the first entries of */
  762. /* > the WORK, RWORK and IWORK arrays, and no error message */
  763. /* > related to LWORK or LRWORK or LIWORK is issued by XERBLA. */
  764. /* > \endverbatim */
  765. /* > */
  766. /* > \param[out] RWORK */
  767. /* > \verbatim */
  768. /* > RWORK is REAL array, dimension (MAX(1,LRWORK)) */
  769. /* > On exit, if INFO = 0, RWORK(1) returns the optimal */
  770. /* > (and minimal) LRWORK. */
  771. /* > \endverbatim */
  772. /* > */
  773. /* > \param[in] LRWORK */
  774. /* > \verbatim */
  775. /* > LRWORK is INTEGER */
  776. /* > The length of the array RWORK. LRWORK >= f2cmax(1,24*N). */
  777. /* > */
  778. /* > If LRWORK = -1, then a workspace query is assumed; the */
  779. /* > routine only calculates the optimal sizes of the WORK, RWORK */
  780. /* > and IWORK arrays, returns these values as the first entries */
  781. /* > of the WORK, RWORK and IWORK arrays, and no error message */
  782. /* > related to LWORK or LRWORK or LIWORK is issued by XERBLA. */
  783. /* > \endverbatim */
  784. /* > */
  785. /* > \param[out] IWORK */
  786. /* > \verbatim */
  787. /* > IWORK is INTEGER array, dimension (MAX(1,LIWORK)) */
  788. /* > On exit, if INFO = 0, IWORK(1) returns the optimal */
  789. /* > (and minimal) LIWORK. */
  790. /* > \endverbatim */
  791. /* > */
  792. /* > \param[in] LIWORK */
  793. /* > \verbatim */
  794. /* > LIWORK is INTEGER */
  795. /* > The dimension of the array IWORK. LIWORK >= f2cmax(1,10*N). */
  796. /* > */
  797. /* > If LIWORK = -1, then a workspace query is assumed; the */
  798. /* > routine only calculates the optimal sizes of the WORK, RWORK */
  799. /* > and IWORK arrays, returns these values as the first entries */
  800. /* > of the WORK, RWORK and IWORK arrays, and no error message */
  801. /* > related to LWORK or LRWORK or LIWORK is issued by XERBLA. */
  802. /* > \endverbatim */
  803. /* > */
  804. /* > \param[out] INFO */
  805. /* > \verbatim */
  806. /* > INFO is INTEGER */
  807. /* > = 0: successful exit */
  808. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  809. /* > > 0: Internal error */
  810. /* > \endverbatim */
  811. /* Authors: */
  812. /* ======== */
  813. /* > \author Univ. of Tennessee */
  814. /* > \author Univ. of California Berkeley */
  815. /* > \author Univ. of Colorado Denver */
  816. /* > \author NAG Ltd. */
  817. /* > \date June 2016 */
  818. /* > \ingroup complexHEeigen */
  819. /* > \par Contributors: */
  820. /* ================== */
  821. /* > */
  822. /* > Inderjit Dhillon, IBM Almaden, USA \n */
  823. /* > Osni Marques, LBNL/NERSC, USA \n */
  824. /* > Ken Stanley, Computer Science Division, University of */
  825. /* > California at Berkeley, USA \n */
  826. /* > Jason Riedy, Computer Science Division, University of */
  827. /* > California at Berkeley, USA \n */
  828. /* > */
  829. /* ===================================================================== */
  830. /* Subroutine */ void cheevr_(char *jobz, char *range, char *uplo, integer *n,
  831. complex *a, integer *lda, real *vl, real *vu, integer *il, integer *
  832. iu, real *abstol, integer *m, real *w, complex *z__, integer *ldz,
  833. integer *isuppz, complex *work, integer *lwork, real *rwork, integer *
  834. lrwork, integer *iwork, integer *liwork, integer *info)
  835. {
  836. /* System generated locals */
  837. integer a_dim1, a_offset, z_dim1, z_offset, i__1, i__2;
  838. real r__1, r__2;
  839. /* Local variables */
  840. real anrm;
  841. integer imax;
  842. real rmin, rmax;
  843. logical test;
  844. integer itmp1, i__, j, indrd, indre;
  845. real sigma;
  846. extern logical lsame_(char *, char *);
  847. integer iinfo;
  848. extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *);
  849. char order[1];
  850. integer indwk;
  851. extern /* Subroutine */ void cswap_(integer *, complex *, integer *,
  852. complex *, integer *);
  853. integer lwmin;
  854. logical lower;
  855. extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *,
  856. integer *);
  857. logical wantz;
  858. integer nb, jj;
  859. logical alleig, indeig;
  860. integer iscale, ieeeok, indibl, indrdd, indifl, indree;
  861. logical valeig;
  862. extern real slamch_(char *);
  863. extern /* Subroutine */ void chetrd_(char *, integer *, complex *, integer
  864. *, real *, real *, complex *, complex *, integer *, integer *), csscal_(integer *, real *, complex *, integer *);
  865. real safmin;
  866. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  867. integer *, integer *, ftnlen, ftnlen);
  868. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  869. real abstll, bignum;
  870. integer indtau, indisp;
  871. extern /* Subroutine */ void cstein_(integer *, real *, real *, integer *,
  872. real *, integer *, integer *, complex *, integer *, real *,
  873. integer *, integer *, integer *);
  874. integer indiwo, indwkn;
  875. extern real clansy_(char *, char *, integer *, complex *, integer *, real
  876. *);
  877. extern /* Subroutine */ void cstemr_(char *, char *, integer *, real *,
  878. real *, real *, real *, integer *, integer *, integer *, real *,
  879. complex *, integer *, integer *, integer *, logical *, real *,
  880. integer *, integer *, integer *, integer *);
  881. integer indrwk, liwmin;
  882. logical tryrac;
  883. extern /* Subroutine */ void ssterf_(integer *, real *, real *, integer *);
  884. integer lrwmin, llwrkn, llwork, nsplit;
  885. real smlnum;
  886. extern /* Subroutine */ void cunmtr_(char *, char *, char *, integer *,
  887. integer *, complex *, integer *, complex *, complex *, integer *,
  888. complex *, integer *, integer *), sstebz_(
  889. char *, char *, integer *, real *, real *, integer *, integer *,
  890. real *, real *, real *, integer *, integer *, real *, integer *,
  891. integer *, real *, integer *, integer *);
  892. logical lquery;
  893. integer lwkopt;
  894. real eps, vll, vuu;
  895. integer llrwork;
  896. real tmp1;
  897. /* -- LAPACK driver routine (version 3.7.0) -- */
  898. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  899. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  900. /* June 2016 */
  901. /* ===================================================================== */
  902. /* Test the input parameters. */
  903. /* Parameter adjustments */
  904. a_dim1 = *lda;
  905. a_offset = 1 + a_dim1 * 1;
  906. a -= a_offset;
  907. --w;
  908. z_dim1 = *ldz;
  909. z_offset = 1 + z_dim1 * 1;
  910. z__ -= z_offset;
  911. --isuppz;
  912. --work;
  913. --rwork;
  914. --iwork;
  915. /* Function Body */
  916. ieeeok = ilaenv_(&c__10, "CHEEVR", "N", &c__1, &c__2, &c__3, &c__4, (
  917. ftnlen)6, (ftnlen)1);
  918. lower = lsame_(uplo, "L");
  919. wantz = lsame_(jobz, "V");
  920. alleig = lsame_(range, "A");
  921. valeig = lsame_(range, "V");
  922. indeig = lsame_(range, "I");
  923. lquery = *lwork == -1 || *lrwork == -1 || *liwork == -1;
  924. /* Computing MAX */
  925. i__1 = 1, i__2 = *n * 24;
  926. lrwmin = f2cmax(i__1,i__2);
  927. /* Computing MAX */
  928. i__1 = 1, i__2 = *n * 10;
  929. liwmin = f2cmax(i__1,i__2);
  930. /* Computing MAX */
  931. i__1 = 1, i__2 = *n << 1;
  932. lwmin = f2cmax(i__1,i__2);
  933. *info = 0;
  934. if (! (wantz || lsame_(jobz, "N"))) {
  935. *info = -1;
  936. } else if (! (alleig || valeig || indeig)) {
  937. *info = -2;
  938. } else if (! (lower || lsame_(uplo, "U"))) {
  939. *info = -3;
  940. } else if (*n < 0) {
  941. *info = -4;
  942. } else if (*lda < f2cmax(1,*n)) {
  943. *info = -6;
  944. } else {
  945. if (valeig) {
  946. if (*n > 0 && *vu <= *vl) {
  947. *info = -8;
  948. }
  949. } else if (indeig) {
  950. if (*il < 1 || *il > f2cmax(1,*n)) {
  951. *info = -9;
  952. } else if (*iu < f2cmin(*n,*il) || *iu > *n) {
  953. *info = -10;
  954. }
  955. }
  956. }
  957. if (*info == 0) {
  958. if (*ldz < 1 || wantz && *ldz < *n) {
  959. *info = -15;
  960. }
  961. }
  962. if (*info == 0) {
  963. nb = ilaenv_(&c__1, "CHETRD", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)6,
  964. (ftnlen)1);
  965. /* Computing MAX */
  966. i__1 = nb, i__2 = ilaenv_(&c__1, "CUNMTR", uplo, n, &c_n1, &c_n1, &
  967. c_n1, (ftnlen)6, (ftnlen)1);
  968. nb = f2cmax(i__1,i__2);
  969. /* Computing MAX */
  970. i__1 = (nb + 1) * *n;
  971. lwkopt = f2cmax(i__1,lwmin);
  972. work[1].r = (real) lwkopt, work[1].i = 0.f;
  973. rwork[1] = (real) lrwmin;
  974. iwork[1] = liwmin;
  975. if (*lwork < lwmin && ! lquery) {
  976. *info = -18;
  977. } else if (*lrwork < lrwmin && ! lquery) {
  978. *info = -20;
  979. } else if (*liwork < liwmin && ! lquery) {
  980. *info = -22;
  981. }
  982. }
  983. if (*info != 0) {
  984. i__1 = -(*info);
  985. xerbla_("CHEEVR", &i__1, (ftnlen)6);
  986. return;
  987. } else if (lquery) {
  988. return;
  989. }
  990. /* Quick return if possible */
  991. *m = 0;
  992. if (*n == 0) {
  993. work[1].r = 1.f, work[1].i = 0.f;
  994. return;
  995. }
  996. if (*n == 1) {
  997. work[1].r = 2.f, work[1].i = 0.f;
  998. if (alleig || indeig) {
  999. *m = 1;
  1000. i__1 = a_dim1 + 1;
  1001. w[1] = a[i__1].r;
  1002. } else {
  1003. i__1 = a_dim1 + 1;
  1004. i__2 = a_dim1 + 1;
  1005. if (*vl < a[i__1].r && *vu >= a[i__2].r) {
  1006. *m = 1;
  1007. i__1 = a_dim1 + 1;
  1008. w[1] = a[i__1].r;
  1009. }
  1010. }
  1011. if (wantz) {
  1012. i__1 = z_dim1 + 1;
  1013. z__[i__1].r = 1.f, z__[i__1].i = 0.f;
  1014. isuppz[1] = 1;
  1015. isuppz[2] = 1;
  1016. }
  1017. return;
  1018. }
  1019. /* Get machine constants. */
  1020. safmin = slamch_("Safe minimum");
  1021. eps = slamch_("Precision");
  1022. smlnum = safmin / eps;
  1023. bignum = 1.f / smlnum;
  1024. rmin = sqrt(smlnum);
  1025. /* Computing MIN */
  1026. r__1 = sqrt(bignum), r__2 = 1.f / sqrt(sqrt(safmin));
  1027. rmax = f2cmin(r__1,r__2);
  1028. /* Scale matrix to allowable range, if necessary. */
  1029. iscale = 0;
  1030. abstll = *abstol;
  1031. if (valeig) {
  1032. vll = *vl;
  1033. vuu = *vu;
  1034. }
  1035. anrm = clansy_("M", uplo, n, &a[a_offset], lda, &rwork[1]);
  1036. if (anrm > 0.f && anrm < rmin) {
  1037. iscale = 1;
  1038. sigma = rmin / anrm;
  1039. } else if (anrm > rmax) {
  1040. iscale = 1;
  1041. sigma = rmax / anrm;
  1042. }
  1043. if (iscale == 1) {
  1044. if (lower) {
  1045. i__1 = *n;
  1046. for (j = 1; j <= i__1; ++j) {
  1047. i__2 = *n - j + 1;
  1048. csscal_(&i__2, &sigma, &a[j + j * a_dim1], &c__1);
  1049. /* L10: */
  1050. }
  1051. } else {
  1052. i__1 = *n;
  1053. for (j = 1; j <= i__1; ++j) {
  1054. csscal_(&j, &sigma, &a[j * a_dim1 + 1], &c__1);
  1055. /* L20: */
  1056. }
  1057. }
  1058. if (*abstol > 0.f) {
  1059. abstll = *abstol * sigma;
  1060. }
  1061. if (valeig) {
  1062. vll = *vl * sigma;
  1063. vuu = *vu * sigma;
  1064. }
  1065. }
  1066. /* Initialize indices into workspaces. Note: The IWORK indices are */
  1067. /* used only if SSTERF or CSTEMR fail. */
  1068. /* WORK(INDTAU:INDTAU+N-1) stores the complex scalar factors of the */
  1069. /* elementary reflectors used in CHETRD. */
  1070. indtau = 1;
  1071. /* INDWK is the starting offset of the remaining complex workspace, */
  1072. /* and LLWORK is the remaining complex workspace size. */
  1073. indwk = indtau + *n;
  1074. llwork = *lwork - indwk + 1;
  1075. /* RWORK(INDRD:INDRD+N-1) stores the real tridiagonal's diagonal */
  1076. /* entries. */
  1077. indrd = 1;
  1078. /* RWORK(INDRE:INDRE+N-1) stores the off-diagonal entries of the */
  1079. /* tridiagonal matrix from CHETRD. */
  1080. indre = indrd + *n;
  1081. /* RWORK(INDRDD:INDRDD+N-1) is a copy of the diagonal entries over */
  1082. /* -written by CSTEMR (the SSTERF path copies the diagonal to W). */
  1083. indrdd = indre + *n;
  1084. /* RWORK(INDREE:INDREE+N-1) is a copy of the off-diagonal entries over */
  1085. /* -written while computing the eigenvalues in SSTERF and CSTEMR. */
  1086. indree = indrdd + *n;
  1087. /* INDRWK is the starting offset of the left-over real workspace, and */
  1088. /* LLRWORK is the remaining workspace size. */
  1089. indrwk = indree + *n;
  1090. llrwork = *lrwork - indrwk + 1;
  1091. /* IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in SSTEBZ and */
  1092. /* stores the block indices of each of the M<=N eigenvalues. */
  1093. indibl = 1;
  1094. /* IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in SSTEBZ and */
  1095. /* stores the starting and finishing indices of each block. */
  1096. indisp = indibl + *n;
  1097. /* IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors */
  1098. /* that corresponding to eigenvectors that fail to converge in */
  1099. /* SSTEIN. This information is discarded; if any fail, the driver */
  1100. /* returns INFO > 0. */
  1101. indifl = indisp + *n;
  1102. /* INDIWO is the offset of the remaining integer workspace. */
  1103. indiwo = indifl + *n;
  1104. /* Call CHETRD to reduce Hermitian matrix to tridiagonal form. */
  1105. chetrd_(uplo, n, &a[a_offset], lda, &rwork[indrd], &rwork[indre], &work[
  1106. indtau], &work[indwk], &llwork, &iinfo);
  1107. /* If all eigenvalues are desired */
  1108. /* then call SSTERF or CSTEMR and CUNMTR. */
  1109. test = FALSE_;
  1110. if (indeig) {
  1111. if (*il == 1 && *iu == *n) {
  1112. test = TRUE_;
  1113. }
  1114. }
  1115. if ((alleig || test) && ieeeok == 1) {
  1116. if (! wantz) {
  1117. scopy_(n, &rwork[indrd], &c__1, &w[1], &c__1);
  1118. i__1 = *n - 1;
  1119. scopy_(&i__1, &rwork[indre], &c__1, &rwork[indree], &c__1);
  1120. ssterf_(n, &w[1], &rwork[indree], info);
  1121. } else {
  1122. i__1 = *n - 1;
  1123. scopy_(&i__1, &rwork[indre], &c__1, &rwork[indree], &c__1);
  1124. scopy_(n, &rwork[indrd], &c__1, &rwork[indrdd], &c__1);
  1125. if (*abstol <= *n * 2.f * eps) {
  1126. tryrac = TRUE_;
  1127. } else {
  1128. tryrac = FALSE_;
  1129. }
  1130. cstemr_(jobz, "A", n, &rwork[indrdd], &rwork[indree], vl, vu, il,
  1131. iu, m, &w[1], &z__[z_offset], ldz, n, &isuppz[1], &tryrac,
  1132. &rwork[indrwk], &llrwork, &iwork[1], liwork, info);
  1133. /* Apply unitary matrix used in reduction to tridiagonal */
  1134. /* form to eigenvectors returned by CSTEMR. */
  1135. if (wantz && *info == 0) {
  1136. indwkn = indwk;
  1137. llwrkn = *lwork - indwkn + 1;
  1138. cunmtr_("L", uplo, "N", n, m, &a[a_offset], lda, &work[indtau]
  1139. , &z__[z_offset], ldz, &work[indwkn], &llwrkn, &iinfo);
  1140. }
  1141. }
  1142. if (*info == 0) {
  1143. *m = *n;
  1144. goto L30;
  1145. }
  1146. *info = 0;
  1147. }
  1148. /* Otherwise, call SSTEBZ and, if eigenvectors are desired, CSTEIN. */
  1149. /* Also call SSTEBZ and CSTEIN if CSTEMR fails. */
  1150. if (wantz) {
  1151. *(unsigned char *)order = 'B';
  1152. } else {
  1153. *(unsigned char *)order = 'E';
  1154. }
  1155. sstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &rwork[indrd], &
  1156. rwork[indre], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &
  1157. rwork[indrwk], &iwork[indiwo], info);
  1158. if (wantz) {
  1159. cstein_(n, &rwork[indrd], &rwork[indre], m, &w[1], &iwork[indibl], &
  1160. iwork[indisp], &z__[z_offset], ldz, &rwork[indrwk], &iwork[
  1161. indiwo], &iwork[indifl], info);
  1162. /* Apply unitary matrix used in reduction to tridiagonal */
  1163. /* form to eigenvectors returned by CSTEIN. */
  1164. indwkn = indwk;
  1165. llwrkn = *lwork - indwkn + 1;
  1166. cunmtr_("L", uplo, "N", n, m, &a[a_offset], lda, &work[indtau], &z__[
  1167. z_offset], ldz, &work[indwkn], &llwrkn, &iinfo);
  1168. }
  1169. /* If matrix was scaled, then rescale eigenvalues appropriately. */
  1170. L30:
  1171. if (iscale == 1) {
  1172. if (*info == 0) {
  1173. imax = *m;
  1174. } else {
  1175. imax = *info - 1;
  1176. }
  1177. r__1 = 1.f / sigma;
  1178. sscal_(&imax, &r__1, &w[1], &c__1);
  1179. }
  1180. /* If eigenvalues are not in order, then sort them, along with */
  1181. /* eigenvectors. */
  1182. if (wantz) {
  1183. i__1 = *m - 1;
  1184. for (j = 1; j <= i__1; ++j) {
  1185. i__ = 0;
  1186. tmp1 = w[j];
  1187. i__2 = *m;
  1188. for (jj = j + 1; jj <= i__2; ++jj) {
  1189. if (w[jj] < tmp1) {
  1190. i__ = jj;
  1191. tmp1 = w[jj];
  1192. }
  1193. /* L40: */
  1194. }
  1195. if (i__ != 0) {
  1196. itmp1 = iwork[indibl + i__ - 1];
  1197. w[i__] = w[j];
  1198. iwork[indibl + i__ - 1] = iwork[indibl + j - 1];
  1199. w[j] = tmp1;
  1200. iwork[indibl + j - 1] = itmp1;
  1201. cswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1],
  1202. &c__1);
  1203. }
  1204. /* L50: */
  1205. }
  1206. }
  1207. /* Set WORK(1) to optimal workspace size. */
  1208. work[1].r = (real) lwkopt, work[1].i = 0.f;
  1209. rwork[1] = (real) lrwmin;
  1210. iwork[1] = liwmin;
  1211. return;
  1212. /* End of CHEEVR */
  1213. } /* cheevr_ */