You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlaed0.c 26 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow = _Cmulcc(pow, x);
  305. if(u >>= 1) x = _Cmulcc(x, x);
  306. else break;
  307. }
  308. }
  309. return pow;
  310. }
  311. #else
  312. static _Complex double zpow_ui(_Complex double x, integer n) {
  313. _Complex double pow=1.0; unsigned long int u;
  314. if(n != 0) {
  315. if(n < 0) n = -n, x = 1/x;
  316. for(u = n; ; ) {
  317. if(u & 01) pow *= x;
  318. if(u >>= 1) x *= x;
  319. else break;
  320. }
  321. }
  322. return pow;
  323. }
  324. #endif
  325. static integer pow_ii(integer x, integer n) {
  326. integer pow; unsigned long int u;
  327. if (n <= 0) {
  328. if (n == 0 || x == 1) pow = 1;
  329. else if (x != -1) pow = x == 0 ? 1/x : 0;
  330. else n = -n;
  331. }
  332. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  333. u = n;
  334. for(pow = 1; ; ) {
  335. if(u & 01) pow *= x;
  336. if(u >>= 1) x *= x;
  337. else break;
  338. }
  339. }
  340. return pow;
  341. }
  342. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  343. {
  344. double m; integer i, mi;
  345. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  346. if (w[i-1]>m) mi=i ,m=w[i-1];
  347. return mi-s+1;
  348. }
  349. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  350. {
  351. float m; integer i, mi;
  352. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  353. if (w[i-1]>m) mi=i ,m=w[i-1];
  354. return mi-s+1;
  355. }
  356. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  357. integer n = *n_, incx = *incx_, incy = *incy_, i;
  358. #ifdef _MSC_VER
  359. _Fcomplex zdotc = {0.0, 0.0};
  360. if (incx == 1 && incy == 1) {
  361. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  362. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  363. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  364. }
  365. } else {
  366. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  367. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  368. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  369. }
  370. }
  371. pCf(z) = zdotc;
  372. }
  373. #else
  374. _Complex float zdotc = 0.0;
  375. if (incx == 1 && incy == 1) {
  376. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  377. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  378. }
  379. } else {
  380. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  381. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  382. }
  383. }
  384. pCf(z) = zdotc;
  385. }
  386. #endif
  387. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  388. integer n = *n_, incx = *incx_, incy = *incy_, i;
  389. #ifdef _MSC_VER
  390. _Dcomplex zdotc = {0.0, 0.0};
  391. if (incx == 1 && incy == 1) {
  392. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  393. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  394. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  395. }
  396. } else {
  397. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  398. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  399. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  400. }
  401. }
  402. pCd(z) = zdotc;
  403. }
  404. #else
  405. _Complex double zdotc = 0.0;
  406. if (incx == 1 && incy == 1) {
  407. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  408. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  409. }
  410. } else {
  411. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  412. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  413. }
  414. }
  415. pCd(z) = zdotc;
  416. }
  417. #endif
  418. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  419. integer n = *n_, incx = *incx_, incy = *incy_, i;
  420. #ifdef _MSC_VER
  421. _Fcomplex zdotc = {0.0, 0.0};
  422. if (incx == 1 && incy == 1) {
  423. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  424. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  425. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  426. }
  427. } else {
  428. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  429. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  430. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  431. }
  432. }
  433. pCf(z) = zdotc;
  434. }
  435. #else
  436. _Complex float zdotc = 0.0;
  437. if (incx == 1 && incy == 1) {
  438. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  439. zdotc += Cf(&x[i]) * Cf(&y[i]);
  440. }
  441. } else {
  442. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  443. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  444. }
  445. }
  446. pCf(z) = zdotc;
  447. }
  448. #endif
  449. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  450. integer n = *n_, incx = *incx_, incy = *incy_, i;
  451. #ifdef _MSC_VER
  452. _Dcomplex zdotc = {0.0, 0.0};
  453. if (incx == 1 && incy == 1) {
  454. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  455. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  456. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  457. }
  458. } else {
  459. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  460. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  461. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  462. }
  463. }
  464. pCd(z) = zdotc;
  465. }
  466. #else
  467. _Complex double zdotc = 0.0;
  468. if (incx == 1 && incy == 1) {
  469. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  470. zdotc += Cd(&x[i]) * Cd(&y[i]);
  471. }
  472. } else {
  473. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  474. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  475. }
  476. }
  477. pCd(z) = zdotc;
  478. }
  479. #endif
  480. /* -- translated by f2c (version 20000121).
  481. You must link the resulting object file with the libraries:
  482. -lf2c -lm (in that order)
  483. */
  484. /* Table of constant values */
  485. static integer c__9 = 9;
  486. static integer c__0 = 0;
  487. static integer c__2 = 2;
  488. static integer c__1 = 1;
  489. /* > \brief \b ZLAED0 used by sstedc. Computes all eigenvalues and corresponding eigenvectors of an unreduced
  490. symmetric tridiagonal matrix using the divide and conquer method. */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* > \htmlonly */
  495. /* > Download ZLAED0 + dependencies */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaed0.
  497. f"> */
  498. /* > [TGZ]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaed0.
  500. f"> */
  501. /* > [ZIP]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaed0.
  503. f"> */
  504. /* > [TXT]</a> */
  505. /* > \endhtmlonly */
  506. /* Definition: */
  507. /* =========== */
  508. /* SUBROUTINE ZLAED0( QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS, RWORK, */
  509. /* IWORK, INFO ) */
  510. /* INTEGER INFO, LDQ, LDQS, N, QSIZ */
  511. /* INTEGER IWORK( * ) */
  512. /* DOUBLE PRECISION D( * ), E( * ), RWORK( * ) */
  513. /* COMPLEX*16 Q( LDQ, * ), QSTORE( LDQS, * ) */
  514. /* > \par Purpose: */
  515. /* ============= */
  516. /* > */
  517. /* > \verbatim */
  518. /* > */
  519. /* > Using the divide and conquer method, ZLAED0 computes all eigenvalues */
  520. /* > of a symmetric tridiagonal matrix which is one diagonal block of */
  521. /* > those from reducing a dense or band Hermitian matrix and */
  522. /* > corresponding eigenvectors of the dense or band matrix. */
  523. /* > \endverbatim */
  524. /* Arguments: */
  525. /* ========== */
  526. /* > \param[in] QSIZ */
  527. /* > \verbatim */
  528. /* > QSIZ is INTEGER */
  529. /* > The dimension of the unitary matrix used to reduce */
  530. /* > the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1. */
  531. /* > \endverbatim */
  532. /* > */
  533. /* > \param[in] N */
  534. /* > \verbatim */
  535. /* > N is INTEGER */
  536. /* > The dimension of the symmetric tridiagonal matrix. N >= 0. */
  537. /* > \endverbatim */
  538. /* > */
  539. /* > \param[in,out] D */
  540. /* > \verbatim */
  541. /* > D is DOUBLE PRECISION array, dimension (N) */
  542. /* > On entry, the diagonal elements of the tridiagonal matrix. */
  543. /* > On exit, the eigenvalues in ascending order. */
  544. /* > \endverbatim */
  545. /* > */
  546. /* > \param[in,out] E */
  547. /* > \verbatim */
  548. /* > E is DOUBLE PRECISION array, dimension (N-1) */
  549. /* > On entry, the off-diagonal elements of the tridiagonal matrix. */
  550. /* > On exit, E has been destroyed. */
  551. /* > \endverbatim */
  552. /* > */
  553. /* > \param[in,out] Q */
  554. /* > \verbatim */
  555. /* > Q is COMPLEX*16 array, dimension (LDQ,N) */
  556. /* > On entry, Q must contain an QSIZ x N matrix whose columns */
  557. /* > unitarily orthonormal. It is a part of the unitary matrix */
  558. /* > that reduces the full dense Hermitian matrix to a */
  559. /* > (reducible) symmetric tridiagonal matrix. */
  560. /* > \endverbatim */
  561. /* > */
  562. /* > \param[in] LDQ */
  563. /* > \verbatim */
  564. /* > LDQ is INTEGER */
  565. /* > The leading dimension of the array Q. LDQ >= f2cmax(1,N). */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[out] IWORK */
  569. /* > \verbatim */
  570. /* > IWORK is INTEGER array, */
  571. /* > the dimension of IWORK must be at least */
  572. /* > 6 + 6*N + 5*N*lg N */
  573. /* > ( lg( N ) = smallest integer k */
  574. /* > such that 2^k >= N ) */
  575. /* > \endverbatim */
  576. /* > */
  577. /* > \param[out] RWORK */
  578. /* > \verbatim */
  579. /* > RWORK is DOUBLE PRECISION array, */
  580. /* > dimension (1 + 3*N + 2*N*lg N + 3*N**2) */
  581. /* > ( lg( N ) = smallest integer k */
  582. /* > such that 2^k >= N ) */
  583. /* > \endverbatim */
  584. /* > */
  585. /* > \param[out] QSTORE */
  586. /* > \verbatim */
  587. /* > QSTORE is COMPLEX*16 array, dimension (LDQS, N) */
  588. /* > Used to store parts of */
  589. /* > the eigenvector matrix when the updating matrix multiplies */
  590. /* > take place. */
  591. /* > \endverbatim */
  592. /* > */
  593. /* > \param[in] LDQS */
  594. /* > \verbatim */
  595. /* > LDQS is INTEGER */
  596. /* > The leading dimension of the array QSTORE. */
  597. /* > LDQS >= f2cmax(1,N). */
  598. /* > \endverbatim */
  599. /* > */
  600. /* > \param[out] INFO */
  601. /* > \verbatim */
  602. /* > INFO is INTEGER */
  603. /* > = 0: successful exit. */
  604. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  605. /* > > 0: The algorithm failed to compute an eigenvalue while */
  606. /* > working on the submatrix lying in rows and columns */
  607. /* > INFO/(N+1) through mod(INFO,N+1). */
  608. /* > \endverbatim */
  609. /* Authors: */
  610. /* ======== */
  611. /* > \author Univ. of Tennessee */
  612. /* > \author Univ. of California Berkeley */
  613. /* > \author Univ. of Colorado Denver */
  614. /* > \author NAG Ltd. */
  615. /* > \date December 2016 */
  616. /* > \ingroup complex16OTHERcomputational */
  617. /* ===================================================================== */
  618. /* Subroutine */ void zlaed0_(integer *qsiz, integer *n, doublereal *d__,
  619. doublereal *e, doublecomplex *q, integer *ldq, doublecomplex *qstore,
  620. integer *ldqs, doublereal *rwork, integer *iwork, integer *info)
  621. {
  622. /* System generated locals */
  623. integer q_dim1, q_offset, qstore_dim1, qstore_offset, i__1, i__2;
  624. doublereal d__1;
  625. /* Local variables */
  626. doublereal temp;
  627. integer curr, i__, j, k, iperm;
  628. extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *,
  629. doublereal *, integer *);
  630. integer indxq, iwrem, iqptr, tlvls;
  631. extern /* Subroutine */ void zcopy_(integer *, doublecomplex *, integer *,
  632. doublecomplex *, integer *), zlaed7_(integer *, integer *,
  633. integer *, integer *, integer *, integer *, doublereal *,
  634. doublecomplex *, integer *, doublereal *, integer *, doublereal *,
  635. integer *, integer *, integer *, integer *, integer *,
  636. doublereal *, doublecomplex *, doublereal *, integer *, integer *)
  637. ;
  638. integer ll, iq, igivcl;
  639. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  640. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  641. integer *, integer *, ftnlen, ftnlen);
  642. extern /* Subroutine */ void zlacrm_(integer *, integer *, doublecomplex *,
  643. integer *, doublereal *, integer *, doublecomplex *, integer *,
  644. doublereal *);
  645. integer igivnm, submat, curprb, subpbs, igivpt;
  646. extern /* Subroutine */ void dsteqr_(char *, integer *, doublereal *,
  647. doublereal *, doublereal *, integer *, doublereal *, integer *);
  648. integer curlvl, matsiz, iprmpt, smlsiz, lgn, msd2, smm1, spm1, spm2;
  649. /* -- LAPACK computational routine (version 3.7.0) -- */
  650. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  651. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  652. /* December 2016 */
  653. /* ===================================================================== */
  654. /* Warning: N could be as big as QSIZ! */
  655. /* Test the input parameters. */
  656. /* Parameter adjustments */
  657. --d__;
  658. --e;
  659. q_dim1 = *ldq;
  660. q_offset = 1 + q_dim1 * 1;
  661. q -= q_offset;
  662. qstore_dim1 = *ldqs;
  663. qstore_offset = 1 + qstore_dim1 * 1;
  664. qstore -= qstore_offset;
  665. --rwork;
  666. --iwork;
  667. /* Function Body */
  668. *info = 0;
  669. /* IF( ICOMPQ .LT. 0 .OR. ICOMPQ .GT. 2 ) THEN */
  670. /* INFO = -1 */
  671. /* ELSE IF( ( ICOMPQ .EQ. 1 ) .AND. ( QSIZ .LT. MAX( 0, N ) ) ) */
  672. /* $ THEN */
  673. if (*qsiz < f2cmax(0,*n)) {
  674. *info = -1;
  675. } else if (*n < 0) {
  676. *info = -2;
  677. } else if (*ldq < f2cmax(1,*n)) {
  678. *info = -6;
  679. } else if (*ldqs < f2cmax(1,*n)) {
  680. *info = -8;
  681. }
  682. if (*info != 0) {
  683. i__1 = -(*info);
  684. xerbla_("ZLAED0", &i__1, (ftnlen)6);
  685. return;
  686. }
  687. /* Quick return if possible */
  688. if (*n == 0) {
  689. return;
  690. }
  691. smlsiz = ilaenv_(&c__9, "ZLAED0", " ", &c__0, &c__0, &c__0, &c__0, (
  692. ftnlen)6, (ftnlen)1);
  693. /* Determine the size and placement of the submatrices, and save in */
  694. /* the leading elements of IWORK. */
  695. iwork[1] = *n;
  696. subpbs = 1;
  697. tlvls = 0;
  698. L10:
  699. if (iwork[subpbs] > smlsiz) {
  700. for (j = subpbs; j >= 1; --j) {
  701. iwork[j * 2] = (iwork[j] + 1) / 2;
  702. iwork[(j << 1) - 1] = iwork[j] / 2;
  703. /* L20: */
  704. }
  705. ++tlvls;
  706. subpbs <<= 1;
  707. goto L10;
  708. }
  709. i__1 = subpbs;
  710. for (j = 2; j <= i__1; ++j) {
  711. iwork[j] += iwork[j - 1];
  712. /* L30: */
  713. }
  714. /* Divide the matrix into SUBPBS submatrices of size at most SMLSIZ+1 */
  715. /* using rank-1 modifications (cuts). */
  716. spm1 = subpbs - 1;
  717. i__1 = spm1;
  718. for (i__ = 1; i__ <= i__1; ++i__) {
  719. submat = iwork[i__] + 1;
  720. smm1 = submat - 1;
  721. d__[smm1] -= (d__1 = e[smm1], abs(d__1));
  722. d__[submat] -= (d__1 = e[smm1], abs(d__1));
  723. /* L40: */
  724. }
  725. indxq = (*n << 2) + 3;
  726. /* Set up workspaces for eigenvalues only/accumulate new vectors */
  727. /* routine */
  728. temp = log((doublereal) (*n)) / log(2.);
  729. lgn = (integer) temp;
  730. if (pow_ii(c__2, lgn) < *n) {
  731. ++lgn;
  732. }
  733. if (pow_ii(c__2, lgn) < *n) {
  734. ++lgn;
  735. }
  736. iprmpt = indxq + *n + 1;
  737. iperm = iprmpt + *n * lgn;
  738. iqptr = iperm + *n * lgn;
  739. igivpt = iqptr + *n + 2;
  740. igivcl = igivpt + *n * lgn;
  741. igivnm = 1;
  742. iq = igivnm + (*n << 1) * lgn;
  743. /* Computing 2nd power */
  744. i__1 = *n;
  745. iwrem = iq + i__1 * i__1 + 1;
  746. /* Initialize pointers */
  747. i__1 = subpbs;
  748. for (i__ = 0; i__ <= i__1; ++i__) {
  749. iwork[iprmpt + i__] = 1;
  750. iwork[igivpt + i__] = 1;
  751. /* L50: */
  752. }
  753. iwork[iqptr] = 1;
  754. /* Solve each submatrix eigenproblem at the bottom of the divide and */
  755. /* conquer tree. */
  756. curr = 0;
  757. i__1 = spm1;
  758. for (i__ = 0; i__ <= i__1; ++i__) {
  759. if (i__ == 0) {
  760. submat = 1;
  761. matsiz = iwork[1];
  762. } else {
  763. submat = iwork[i__] + 1;
  764. matsiz = iwork[i__ + 1] - iwork[i__];
  765. }
  766. ll = iq - 1 + iwork[iqptr + curr];
  767. dsteqr_("I", &matsiz, &d__[submat], &e[submat], &rwork[ll], &matsiz, &
  768. rwork[1], info);
  769. zlacrm_(qsiz, &matsiz, &q[submat * q_dim1 + 1], ldq, &rwork[ll], &
  770. matsiz, &qstore[submat * qstore_dim1 + 1], ldqs, &rwork[iwrem]
  771. );
  772. /* Computing 2nd power */
  773. i__2 = matsiz;
  774. iwork[iqptr + curr + 1] = iwork[iqptr + curr] + i__2 * i__2;
  775. ++curr;
  776. if (*info > 0) {
  777. *info = submat * (*n + 1) + submat + matsiz - 1;
  778. return;
  779. }
  780. k = 1;
  781. i__2 = iwork[i__ + 1];
  782. for (j = submat; j <= i__2; ++j) {
  783. iwork[indxq + j] = k;
  784. ++k;
  785. /* L60: */
  786. }
  787. /* L70: */
  788. }
  789. /* Successively merge eigensystems of adjacent submatrices */
  790. /* into eigensystem for the corresponding larger matrix. */
  791. /* while ( SUBPBS > 1 ) */
  792. curlvl = 1;
  793. L80:
  794. if (subpbs > 1) {
  795. spm2 = subpbs - 2;
  796. i__1 = spm2;
  797. for (i__ = 0; i__ <= i__1; i__ += 2) {
  798. if (i__ == 0) {
  799. submat = 1;
  800. matsiz = iwork[2];
  801. msd2 = iwork[1];
  802. curprb = 0;
  803. } else {
  804. submat = iwork[i__] + 1;
  805. matsiz = iwork[i__ + 2] - iwork[i__];
  806. msd2 = matsiz / 2;
  807. ++curprb;
  808. }
  809. /* Merge lower order eigensystems (of size MSD2 and MATSIZ - MSD2) */
  810. /* into an eigensystem of size MATSIZ. ZLAED7 handles the case */
  811. /* when the eigenvectors of a full or band Hermitian matrix (which */
  812. /* was reduced to tridiagonal form) are desired. */
  813. /* I am free to use Q as a valuable working space until Loop 150. */
  814. zlaed7_(&matsiz, &msd2, qsiz, &tlvls, &curlvl, &curprb, &d__[
  815. submat], &qstore[submat * qstore_dim1 + 1], ldqs, &e[
  816. submat + msd2 - 1], &iwork[indxq + submat], &rwork[iq], &
  817. iwork[iqptr], &iwork[iprmpt], &iwork[iperm], &iwork[
  818. igivpt], &iwork[igivcl], &rwork[igivnm], &q[submat *
  819. q_dim1 + 1], &rwork[iwrem], &iwork[subpbs + 1], info);
  820. if (*info > 0) {
  821. *info = submat * (*n + 1) + submat + matsiz - 1;
  822. return;
  823. }
  824. iwork[i__ / 2 + 1] = iwork[i__ + 2];
  825. /* L90: */
  826. }
  827. subpbs /= 2;
  828. ++curlvl;
  829. goto L80;
  830. }
  831. /* end while */
  832. /* Re-merge the eigenvalues/vectors which were deflated at the final */
  833. /* merge step. */
  834. i__1 = *n;
  835. for (i__ = 1; i__ <= i__1; ++i__) {
  836. j = iwork[indxq + i__];
  837. rwork[i__] = d__[j];
  838. zcopy_(qsiz, &qstore[j * qstore_dim1 + 1], &c__1, &q[i__ * q_dim1 + 1]
  839. , &c__1);
  840. /* L100: */
  841. }
  842. dcopy_(n, &rwork[1], &c__1, &d__[1], &c__1);
  843. return;
  844. /* End of ZLAED0 */
  845. } /* zlaed0_ */