You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlasy2.c 30 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__4 = 4;
  487. static integer c__1 = 1;
  488. static integer c__16 = 16;
  489. static integer c__0 = 0;
  490. /* > \brief \b DLASY2 solves the Sylvester matrix equation where the matrices are of order 1 or 2. */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* > \htmlonly */
  495. /* > Download DLASY2 + dependencies */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasy2.
  497. f"> */
  498. /* > [TGZ]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasy2.
  500. f"> */
  501. /* > [ZIP]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasy2.
  503. f"> */
  504. /* > [TXT]</a> */
  505. /* > \endhtmlonly */
  506. /* Definition: */
  507. /* =========== */
  508. /* SUBROUTINE DLASY2( LTRANL, LTRANR, ISGN, N1, N2, TL, LDTL, TR, */
  509. /* LDTR, B, LDB, SCALE, X, LDX, XNORM, INFO ) */
  510. /* LOGICAL LTRANL, LTRANR */
  511. /* INTEGER INFO, ISGN, LDB, LDTL, LDTR, LDX, N1, N2 */
  512. /* DOUBLE PRECISION SCALE, XNORM */
  513. /* DOUBLE PRECISION B( LDB, * ), TL( LDTL, * ), TR( LDTR, * ), */
  514. /* $ X( LDX, * ) */
  515. /* > \par Purpose: */
  516. /* ============= */
  517. /* > */
  518. /* > \verbatim */
  519. /* > */
  520. /* > DLASY2 solves for the N1 by N2 matrix X, 1 <= N1,N2 <= 2, in */
  521. /* > */
  522. /* > op(TL)*X + ISGN*X*op(TR) = SCALE*B, */
  523. /* > */
  524. /* > where TL is N1 by N1, TR is N2 by N2, B is N1 by N2, and ISGN = 1 or */
  525. /* > -1. op(T) = T or T**T, where T**T denotes the transpose of T. */
  526. /* > \endverbatim */
  527. /* Arguments: */
  528. /* ========== */
  529. /* > \param[in] LTRANL */
  530. /* > \verbatim */
  531. /* > LTRANL is LOGICAL */
  532. /* > On entry, LTRANL specifies the op(TL): */
  533. /* > = .FALSE., op(TL) = TL, */
  534. /* > = .TRUE., op(TL) = TL**T. */
  535. /* > \endverbatim */
  536. /* > */
  537. /* > \param[in] LTRANR */
  538. /* > \verbatim */
  539. /* > LTRANR is LOGICAL */
  540. /* > On entry, LTRANR specifies the op(TR): */
  541. /* > = .FALSE., op(TR) = TR, */
  542. /* > = .TRUE., op(TR) = TR**T. */
  543. /* > \endverbatim */
  544. /* > */
  545. /* > \param[in] ISGN */
  546. /* > \verbatim */
  547. /* > ISGN is INTEGER */
  548. /* > On entry, ISGN specifies the sign of the equation */
  549. /* > as described before. ISGN may only be 1 or -1. */
  550. /* > \endverbatim */
  551. /* > */
  552. /* > \param[in] N1 */
  553. /* > \verbatim */
  554. /* > N1 is INTEGER */
  555. /* > On entry, N1 specifies the order of matrix TL. */
  556. /* > N1 may only be 0, 1 or 2. */
  557. /* > \endverbatim */
  558. /* > */
  559. /* > \param[in] N2 */
  560. /* > \verbatim */
  561. /* > N2 is INTEGER */
  562. /* > On entry, N2 specifies the order of matrix TR. */
  563. /* > N2 may only be 0, 1 or 2. */
  564. /* > \endverbatim */
  565. /* > */
  566. /* > \param[in] TL */
  567. /* > \verbatim */
  568. /* > TL is DOUBLE PRECISION array, dimension (LDTL,2) */
  569. /* > On entry, TL contains an N1 by N1 matrix. */
  570. /* > \endverbatim */
  571. /* > */
  572. /* > \param[in] LDTL */
  573. /* > \verbatim */
  574. /* > LDTL is INTEGER */
  575. /* > The leading dimension of the matrix TL. LDTL >= f2cmax(1,N1). */
  576. /* > \endverbatim */
  577. /* > */
  578. /* > \param[in] TR */
  579. /* > \verbatim */
  580. /* > TR is DOUBLE PRECISION array, dimension (LDTR,2) */
  581. /* > On entry, TR contains an N2 by N2 matrix. */
  582. /* > \endverbatim */
  583. /* > */
  584. /* > \param[in] LDTR */
  585. /* > \verbatim */
  586. /* > LDTR is INTEGER */
  587. /* > The leading dimension of the matrix TR. LDTR >= f2cmax(1,N2). */
  588. /* > \endverbatim */
  589. /* > */
  590. /* > \param[in] B */
  591. /* > \verbatim */
  592. /* > B is DOUBLE PRECISION array, dimension (LDB,2) */
  593. /* > On entry, the N1 by N2 matrix B contains the right-hand */
  594. /* > side of the equation. */
  595. /* > \endverbatim */
  596. /* > */
  597. /* > \param[in] LDB */
  598. /* > \verbatim */
  599. /* > LDB is INTEGER */
  600. /* > The leading dimension of the matrix B. LDB >= f2cmax(1,N1). */
  601. /* > \endverbatim */
  602. /* > */
  603. /* > \param[out] SCALE */
  604. /* > \verbatim */
  605. /* > SCALE is DOUBLE PRECISION */
  606. /* > On exit, SCALE contains the scale factor. SCALE is chosen */
  607. /* > less than or equal to 1 to prevent the solution overflowing. */
  608. /* > \endverbatim */
  609. /* > */
  610. /* > \param[out] X */
  611. /* > \verbatim */
  612. /* > X is DOUBLE PRECISION array, dimension (LDX,2) */
  613. /* > On exit, X contains the N1 by N2 solution. */
  614. /* > \endverbatim */
  615. /* > */
  616. /* > \param[in] LDX */
  617. /* > \verbatim */
  618. /* > LDX is INTEGER */
  619. /* > The leading dimension of the matrix X. LDX >= f2cmax(1,N1). */
  620. /* > \endverbatim */
  621. /* > */
  622. /* > \param[out] XNORM */
  623. /* > \verbatim */
  624. /* > XNORM is DOUBLE PRECISION */
  625. /* > On exit, XNORM is the infinity-norm of the solution. */
  626. /* > \endverbatim */
  627. /* > */
  628. /* > \param[out] INFO */
  629. /* > \verbatim */
  630. /* > INFO is INTEGER */
  631. /* > On exit, INFO is set to */
  632. /* > 0: successful exit. */
  633. /* > 1: TL and TR have too close eigenvalues, so TL or */
  634. /* > TR is perturbed to get a nonsingular equation. */
  635. /* > NOTE: In the interests of speed, this routine does not */
  636. /* > check the inputs for errors. */
  637. /* > \endverbatim */
  638. /* Authors: */
  639. /* ======== */
  640. /* > \author Univ. of Tennessee */
  641. /* > \author Univ. of California Berkeley */
  642. /* > \author Univ. of Colorado Denver */
  643. /* > \author NAG Ltd. */
  644. /* > \date June 2016 */
  645. /* > \ingroup doubleSYauxiliary */
  646. /* ===================================================================== */
  647. /* Subroutine */ void dlasy2_(logical *ltranl, logical *ltranr, integer *isgn,
  648. integer *n1, integer *n2, doublereal *tl, integer *ldtl, doublereal *
  649. tr, integer *ldtr, doublereal *b, integer *ldb, doublereal *scale,
  650. doublereal *x, integer *ldx, doublereal *xnorm, integer *info)
  651. {
  652. /* Initialized data */
  653. static integer locu12[4] = { 3,4,1,2 };
  654. static integer locl21[4] = { 2,1,4,3 };
  655. static integer locu22[4] = { 4,3,2,1 };
  656. static logical xswpiv[4] = { FALSE_,FALSE_,TRUE_,TRUE_ };
  657. static logical bswpiv[4] = { FALSE_,TRUE_,FALSE_,TRUE_ };
  658. /* System generated locals */
  659. integer b_dim1, b_offset, tl_dim1, tl_offset, tr_dim1, tr_offset, x_dim1,
  660. x_offset;
  661. doublereal d__1, d__2, d__3, d__4, d__5, d__6, d__7, d__8;
  662. /* Local variables */
  663. doublereal btmp[4], smin;
  664. integer ipiv;
  665. doublereal temp;
  666. integer jpiv[4];
  667. doublereal xmax;
  668. integer ipsv, jpsv, i__, j, k;
  669. logical bswap;
  670. extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *,
  671. doublereal *, integer *), dswap_(integer *, doublereal *, integer
  672. *, doublereal *, integer *);
  673. logical xswap;
  674. doublereal x2[2], l21, u11, u12;
  675. integer ip, jp;
  676. doublereal u22, t16[16] /* was [4][4] */;
  677. extern doublereal dlamch_(char *);
  678. extern integer idamax_(integer *, doublereal *, integer *);
  679. doublereal smlnum, gam, bet, eps, sgn, tmp[4], tau1;
  680. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  681. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  682. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  683. /* June 2016 */
  684. /* ===================================================================== */
  685. /* Parameter adjustments */
  686. tl_dim1 = *ldtl;
  687. tl_offset = 1 + tl_dim1 * 1;
  688. tl -= tl_offset;
  689. tr_dim1 = *ldtr;
  690. tr_offset = 1 + tr_dim1 * 1;
  691. tr -= tr_offset;
  692. b_dim1 = *ldb;
  693. b_offset = 1 + b_dim1 * 1;
  694. b -= b_offset;
  695. x_dim1 = *ldx;
  696. x_offset = 1 + x_dim1 * 1;
  697. x -= x_offset;
  698. /* Function Body */
  699. /* Do not check the input parameters for errors */
  700. *info = 0;
  701. /* Quick return if possible */
  702. if (*n1 == 0 || *n2 == 0) {
  703. return;
  704. }
  705. /* Set constants to control overflow */
  706. eps = dlamch_("P");
  707. smlnum = dlamch_("S") / eps;
  708. sgn = (doublereal) (*isgn);
  709. k = *n1 + *n1 + *n2 - 2;
  710. switch (k) {
  711. case 1: goto L10;
  712. case 2: goto L20;
  713. case 3: goto L30;
  714. case 4: goto L50;
  715. }
  716. /* 1 by 1: TL11*X + SGN*X*TR11 = B11 */
  717. L10:
  718. tau1 = tl[tl_dim1 + 1] + sgn * tr[tr_dim1 + 1];
  719. bet = abs(tau1);
  720. if (bet <= smlnum) {
  721. tau1 = smlnum;
  722. bet = smlnum;
  723. *info = 1;
  724. }
  725. *scale = 1.;
  726. gam = (d__1 = b[b_dim1 + 1], abs(d__1));
  727. if (smlnum * gam > bet) {
  728. *scale = 1. / gam;
  729. }
  730. x[x_dim1 + 1] = b[b_dim1 + 1] * *scale / tau1;
  731. *xnorm = (d__1 = x[x_dim1 + 1], abs(d__1));
  732. return;
  733. /* 1 by 2: */
  734. /* TL11*[X11 X12] + ISGN*[X11 X12]*op[TR11 TR12] = [B11 B12] */
  735. /* [TR21 TR22] */
  736. L20:
  737. /* Computing MAX */
  738. /* Computing MAX */
  739. d__7 = (d__1 = tl[tl_dim1 + 1], abs(d__1)), d__8 = (d__2 = tr[tr_dim1 + 1]
  740. , abs(d__2)), d__7 = f2cmax(d__7,d__8), d__8 = (d__3 = tr[(tr_dim1 <<
  741. 1) + 1], abs(d__3)), d__7 = f2cmax(d__7,d__8), d__8 = (d__4 = tr[
  742. tr_dim1 + 2], abs(d__4)), d__7 = f2cmax(d__7,d__8), d__8 = (d__5 =
  743. tr[(tr_dim1 << 1) + 2], abs(d__5));
  744. d__6 = eps * f2cmax(d__7,d__8);
  745. smin = f2cmax(d__6,smlnum);
  746. tmp[0] = tl[tl_dim1 + 1] + sgn * tr[tr_dim1 + 1];
  747. tmp[3] = tl[tl_dim1 + 1] + sgn * tr[(tr_dim1 << 1) + 2];
  748. if (*ltranr) {
  749. tmp[1] = sgn * tr[tr_dim1 + 2];
  750. tmp[2] = sgn * tr[(tr_dim1 << 1) + 1];
  751. } else {
  752. tmp[1] = sgn * tr[(tr_dim1 << 1) + 1];
  753. tmp[2] = sgn * tr[tr_dim1 + 2];
  754. }
  755. btmp[0] = b[b_dim1 + 1];
  756. btmp[1] = b[(b_dim1 << 1) + 1];
  757. goto L40;
  758. /* 2 by 1: */
  759. /* op[TL11 TL12]*[X11] + ISGN* [X11]*TR11 = [B11] */
  760. /* [TL21 TL22] [X21] [X21] [B21] */
  761. L30:
  762. /* Computing MAX */
  763. /* Computing MAX */
  764. d__7 = (d__1 = tr[tr_dim1 + 1], abs(d__1)), d__8 = (d__2 = tl[tl_dim1 + 1]
  765. , abs(d__2)), d__7 = f2cmax(d__7,d__8), d__8 = (d__3 = tl[(tl_dim1 <<
  766. 1) + 1], abs(d__3)), d__7 = f2cmax(d__7,d__8), d__8 = (d__4 = tl[
  767. tl_dim1 + 2], abs(d__4)), d__7 = f2cmax(d__7,d__8), d__8 = (d__5 =
  768. tl[(tl_dim1 << 1) + 2], abs(d__5));
  769. d__6 = eps * f2cmax(d__7,d__8);
  770. smin = f2cmax(d__6,smlnum);
  771. tmp[0] = tl[tl_dim1 + 1] + sgn * tr[tr_dim1 + 1];
  772. tmp[3] = tl[(tl_dim1 << 1) + 2] + sgn * tr[tr_dim1 + 1];
  773. if (*ltranl) {
  774. tmp[1] = tl[(tl_dim1 << 1) + 1];
  775. tmp[2] = tl[tl_dim1 + 2];
  776. } else {
  777. tmp[1] = tl[tl_dim1 + 2];
  778. tmp[2] = tl[(tl_dim1 << 1) + 1];
  779. }
  780. btmp[0] = b[b_dim1 + 1];
  781. btmp[1] = b[b_dim1 + 2];
  782. L40:
  783. /* Solve 2 by 2 system using complete pivoting. */
  784. /* Set pivots less than SMIN to SMIN. */
  785. ipiv = idamax_(&c__4, tmp, &c__1);
  786. u11 = tmp[ipiv - 1];
  787. if (abs(u11) <= smin) {
  788. *info = 1;
  789. u11 = smin;
  790. }
  791. u12 = tmp[locu12[ipiv - 1] - 1];
  792. l21 = tmp[locl21[ipiv - 1] - 1] / u11;
  793. u22 = tmp[locu22[ipiv - 1] - 1] - u12 * l21;
  794. xswap = xswpiv[ipiv - 1];
  795. bswap = bswpiv[ipiv - 1];
  796. if (abs(u22) <= smin) {
  797. *info = 1;
  798. u22 = smin;
  799. }
  800. if (bswap) {
  801. temp = btmp[1];
  802. btmp[1] = btmp[0] - l21 * temp;
  803. btmp[0] = temp;
  804. } else {
  805. btmp[1] -= l21 * btmp[0];
  806. }
  807. *scale = 1.;
  808. if (smlnum * 2. * abs(btmp[1]) > abs(u22) || smlnum * 2. * abs(btmp[0]) >
  809. abs(u11)) {
  810. /* Computing MAX */
  811. d__1 = abs(btmp[0]), d__2 = abs(btmp[1]);
  812. *scale = .5 / f2cmax(d__1,d__2);
  813. btmp[0] *= *scale;
  814. btmp[1] *= *scale;
  815. }
  816. x2[1] = btmp[1] / u22;
  817. x2[0] = btmp[0] / u11 - u12 / u11 * x2[1];
  818. if (xswap) {
  819. temp = x2[1];
  820. x2[1] = x2[0];
  821. x2[0] = temp;
  822. }
  823. x[x_dim1 + 1] = x2[0];
  824. if (*n1 == 1) {
  825. x[(x_dim1 << 1) + 1] = x2[1];
  826. *xnorm = (d__1 = x[x_dim1 + 1], abs(d__1)) + (d__2 = x[(x_dim1 << 1)
  827. + 1], abs(d__2));
  828. } else {
  829. x[x_dim1 + 2] = x2[1];
  830. /* Computing MAX */
  831. d__3 = (d__1 = x[x_dim1 + 1], abs(d__1)), d__4 = (d__2 = x[x_dim1 + 2]
  832. , abs(d__2));
  833. *xnorm = f2cmax(d__3,d__4);
  834. }
  835. return;
  836. /* 2 by 2: */
  837. /* op[TL11 TL12]*[X11 X12] +ISGN* [X11 X12]*op[TR11 TR12] = [B11 B12] */
  838. /* [TL21 TL22] [X21 X22] [X21 X22] [TR21 TR22] [B21 B22] */
  839. /* Solve equivalent 4 by 4 system using complete pivoting. */
  840. /* Set pivots less than SMIN to SMIN. */
  841. L50:
  842. /* Computing MAX */
  843. d__5 = (d__1 = tr[tr_dim1 + 1], abs(d__1)), d__6 = (d__2 = tr[(tr_dim1 <<
  844. 1) + 1], abs(d__2)), d__5 = f2cmax(d__5,d__6), d__6 = (d__3 = tr[
  845. tr_dim1 + 2], abs(d__3)), d__5 = f2cmax(d__5,d__6), d__6 = (d__4 =
  846. tr[(tr_dim1 << 1) + 2], abs(d__4));
  847. smin = f2cmax(d__5,d__6);
  848. /* Computing MAX */
  849. d__5 = smin, d__6 = (d__1 = tl[tl_dim1 + 1], abs(d__1)), d__5 = f2cmax(d__5,
  850. d__6), d__6 = (d__2 = tl[(tl_dim1 << 1) + 1], abs(d__2)), d__5 =
  851. f2cmax(d__5,d__6), d__6 = (d__3 = tl[tl_dim1 + 2], abs(d__3)), d__5 =
  852. f2cmax(d__5,d__6), d__6 = (d__4 = tl[(tl_dim1 << 1) + 2], abs(d__4))
  853. ;
  854. smin = f2cmax(d__5,d__6);
  855. /* Computing MAX */
  856. d__1 = eps * smin;
  857. smin = f2cmax(d__1,smlnum);
  858. btmp[0] = 0.;
  859. dcopy_(&c__16, btmp, &c__0, t16, &c__1);
  860. t16[0] = tl[tl_dim1 + 1] + sgn * tr[tr_dim1 + 1];
  861. t16[5] = tl[(tl_dim1 << 1) + 2] + sgn * tr[tr_dim1 + 1];
  862. t16[10] = tl[tl_dim1 + 1] + sgn * tr[(tr_dim1 << 1) + 2];
  863. t16[15] = tl[(tl_dim1 << 1) + 2] + sgn * tr[(tr_dim1 << 1) + 2];
  864. if (*ltranl) {
  865. t16[4] = tl[tl_dim1 + 2];
  866. t16[1] = tl[(tl_dim1 << 1) + 1];
  867. t16[14] = tl[tl_dim1 + 2];
  868. t16[11] = tl[(tl_dim1 << 1) + 1];
  869. } else {
  870. t16[4] = tl[(tl_dim1 << 1) + 1];
  871. t16[1] = tl[tl_dim1 + 2];
  872. t16[14] = tl[(tl_dim1 << 1) + 1];
  873. t16[11] = tl[tl_dim1 + 2];
  874. }
  875. if (*ltranr) {
  876. t16[8] = sgn * tr[(tr_dim1 << 1) + 1];
  877. t16[13] = sgn * tr[(tr_dim1 << 1) + 1];
  878. t16[2] = sgn * tr[tr_dim1 + 2];
  879. t16[7] = sgn * tr[tr_dim1 + 2];
  880. } else {
  881. t16[8] = sgn * tr[tr_dim1 + 2];
  882. t16[13] = sgn * tr[tr_dim1 + 2];
  883. t16[2] = sgn * tr[(tr_dim1 << 1) + 1];
  884. t16[7] = sgn * tr[(tr_dim1 << 1) + 1];
  885. }
  886. btmp[0] = b[b_dim1 + 1];
  887. btmp[1] = b[b_dim1 + 2];
  888. btmp[2] = b[(b_dim1 << 1) + 1];
  889. btmp[3] = b[(b_dim1 << 1) + 2];
  890. /* Perform elimination */
  891. for (i__ = 1; i__ <= 3; ++i__) {
  892. xmax = 0.;
  893. for (ip = i__; ip <= 4; ++ip) {
  894. for (jp = i__; jp <= 4; ++jp) {
  895. if ((d__1 = t16[ip + (jp << 2) - 5], abs(d__1)) >= xmax) {
  896. xmax = (d__1 = t16[ip + (jp << 2) - 5], abs(d__1));
  897. ipsv = ip;
  898. jpsv = jp;
  899. }
  900. /* L60: */
  901. }
  902. /* L70: */
  903. }
  904. if (ipsv != i__) {
  905. dswap_(&c__4, &t16[ipsv - 1], &c__4, &t16[i__ - 1], &c__4);
  906. temp = btmp[i__ - 1];
  907. btmp[i__ - 1] = btmp[ipsv - 1];
  908. btmp[ipsv - 1] = temp;
  909. }
  910. if (jpsv != i__) {
  911. dswap_(&c__4, &t16[(jpsv << 2) - 4], &c__1, &t16[(i__ << 2) - 4],
  912. &c__1);
  913. }
  914. jpiv[i__ - 1] = jpsv;
  915. if ((d__1 = t16[i__ + (i__ << 2) - 5], abs(d__1)) < smin) {
  916. *info = 1;
  917. t16[i__ + (i__ << 2) - 5] = smin;
  918. }
  919. for (j = i__ + 1; j <= 4; ++j) {
  920. t16[j + (i__ << 2) - 5] /= t16[i__ + (i__ << 2) - 5];
  921. btmp[j - 1] -= t16[j + (i__ << 2) - 5] * btmp[i__ - 1];
  922. for (k = i__ + 1; k <= 4; ++k) {
  923. t16[j + (k << 2) - 5] -= t16[j + (i__ << 2) - 5] * t16[i__ + (
  924. k << 2) - 5];
  925. /* L80: */
  926. }
  927. /* L90: */
  928. }
  929. /* L100: */
  930. }
  931. if (abs(t16[15]) < smin) {
  932. *info = 1;
  933. t16[15] = smin;
  934. }
  935. *scale = 1.;
  936. if (smlnum * 8. * abs(btmp[0]) > abs(t16[0]) || smlnum * 8. * abs(btmp[1])
  937. > abs(t16[5]) || smlnum * 8. * abs(btmp[2]) > abs(t16[10]) ||
  938. smlnum * 8. * abs(btmp[3]) > abs(t16[15])) {
  939. /* Computing MAX */
  940. d__1 = abs(btmp[0]), d__2 = abs(btmp[1]), d__1 = f2cmax(d__1,d__2), d__2
  941. = abs(btmp[2]), d__1 = f2cmax(d__1,d__2), d__2 = abs(btmp[3]);
  942. *scale = .125 / f2cmax(d__1,d__2);
  943. btmp[0] *= *scale;
  944. btmp[1] *= *scale;
  945. btmp[2] *= *scale;
  946. btmp[3] *= *scale;
  947. }
  948. for (i__ = 1; i__ <= 4; ++i__) {
  949. k = 5 - i__;
  950. temp = 1. / t16[k + (k << 2) - 5];
  951. tmp[k - 1] = btmp[k - 1] * temp;
  952. for (j = k + 1; j <= 4; ++j) {
  953. tmp[k - 1] -= temp * t16[k + (j << 2) - 5] * tmp[j - 1];
  954. /* L110: */
  955. }
  956. /* L120: */
  957. }
  958. for (i__ = 1; i__ <= 3; ++i__) {
  959. if (jpiv[4 - i__ - 1] != 4 - i__) {
  960. temp = tmp[4 - i__ - 1];
  961. tmp[4 - i__ - 1] = tmp[jpiv[4 - i__ - 1] - 1];
  962. tmp[jpiv[4 - i__ - 1] - 1] = temp;
  963. }
  964. /* L130: */
  965. }
  966. x[x_dim1 + 1] = tmp[0];
  967. x[x_dim1 + 2] = tmp[1];
  968. x[(x_dim1 << 1) + 1] = tmp[2];
  969. x[(x_dim1 << 1) + 2] = tmp[3];
  970. /* Computing MAX */
  971. d__1 = abs(tmp[0]) + abs(tmp[2]), d__2 = abs(tmp[1]) + abs(tmp[3]);
  972. *xnorm = f2cmax(d__1,d__2);
  973. return;
  974. /* End of DLASY2 */
  975. } /* dlasy2_ */