You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlagge.c 29 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle_() continue;
  235. #define myceiling_(w) {ceil(w)}
  236. #define myhuge_(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static doublecomplex c_b1 = {0.,0.};
  487. static doublecomplex c_b2 = {1.,0.};
  488. static integer c__3 = 3;
  489. static integer c__1 = 1;
  490. /* > \brief \b ZLAGGE */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* Definition: */
  495. /* =========== */
  496. /* SUBROUTINE ZLAGGE( M, N, KL, KU, D, A, LDA, ISEED, WORK, INFO ) */
  497. /* INTEGER INFO, KL, KU, LDA, M, N */
  498. /* INTEGER ISEED( 4 ) */
  499. /* DOUBLE PRECISION D( * ) */
  500. /* COMPLEX*16 A( LDA, * ), WORK( * ) */
  501. /* > \par Purpose: */
  502. /* ============= */
  503. /* > */
  504. /* > \verbatim */
  505. /* > */
  506. /* > ZLAGGE generates a complex general m by n matrix A, by pre- and post- */
  507. /* > multiplying a real diagonal matrix D with random unitary matrices: */
  508. /* > A = U*D*V. The lower and upper bandwidths may then be reduced to */
  509. /* > kl and ku by additional unitary transformations. */
  510. /* > \endverbatim */
  511. /* Arguments: */
  512. /* ========== */
  513. /* > \param[in] M */
  514. /* > \verbatim */
  515. /* > M is INTEGER */
  516. /* > The number of rows of the matrix A. M >= 0. */
  517. /* > \endverbatim */
  518. /* > */
  519. /* > \param[in] N */
  520. /* > \verbatim */
  521. /* > N is INTEGER */
  522. /* > The number of columns of the matrix A. N >= 0. */
  523. /* > \endverbatim */
  524. /* > */
  525. /* > \param[in] KL */
  526. /* > \verbatim */
  527. /* > KL is INTEGER */
  528. /* > The number of nonzero subdiagonals within the band of A. */
  529. /* > 0 <= KL <= M-1. */
  530. /* > \endverbatim */
  531. /* > */
  532. /* > \param[in] KU */
  533. /* > \verbatim */
  534. /* > KU is INTEGER */
  535. /* > The number of nonzero superdiagonals within the band of A. */
  536. /* > 0 <= KU <= N-1. */
  537. /* > \endverbatim */
  538. /* > */
  539. /* > \param[in] D */
  540. /* > \verbatim */
  541. /* > D is DOUBLE PRECISION array, dimension (f2cmin(M,N)) */
  542. /* > The diagonal elements of the diagonal matrix D. */
  543. /* > \endverbatim */
  544. /* > */
  545. /* > \param[out] A */
  546. /* > \verbatim */
  547. /* > A is COMPLEX*16 array, dimension (LDA,N) */
  548. /* > The generated m by n matrix A. */
  549. /* > \endverbatim */
  550. /* > */
  551. /* > \param[in] LDA */
  552. /* > \verbatim */
  553. /* > LDA is INTEGER */
  554. /* > The leading dimension of the array A. LDA >= M. */
  555. /* > \endverbatim */
  556. /* > */
  557. /* > \param[in,out] ISEED */
  558. /* > \verbatim */
  559. /* > ISEED is INTEGER array, dimension (4) */
  560. /* > On entry, the seed of the random number generator; the array */
  561. /* > elements must be between 0 and 4095, and ISEED(4) must be */
  562. /* > odd. */
  563. /* > On exit, the seed is updated. */
  564. /* > \endverbatim */
  565. /* > */
  566. /* > \param[out] WORK */
  567. /* > \verbatim */
  568. /* > WORK is COMPLEX*16 array, dimension (M+N) */
  569. /* > \endverbatim */
  570. /* > */
  571. /* > \param[out] INFO */
  572. /* > \verbatim */
  573. /* > INFO is INTEGER */
  574. /* > = 0: successful exit */
  575. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  576. /* > \endverbatim */
  577. /* Authors: */
  578. /* ======== */
  579. /* > \author Univ. of Tennessee */
  580. /* > \author Univ. of California Berkeley */
  581. /* > \author Univ. of Colorado Denver */
  582. /* > \author NAG Ltd. */
  583. /* > \date December 2016 */
  584. /* > \ingroup complex16_matgen */
  585. /* ===================================================================== */
  586. /* Subroutine */ void zlagge_(integer *m, integer *n, integer *kl, integer *ku,
  587. doublereal *d__, doublecomplex *a, integer *lda, integer *iseed,
  588. doublecomplex *work, integer *info)
  589. {
  590. /* System generated locals */
  591. integer a_dim1, a_offset, i__1, i__2, i__3;
  592. doublereal d__1;
  593. doublecomplex z__1;
  594. /* Local variables */
  595. integer i__, j;
  596. extern /* Subroutine */ void zgerc_(integer *, integer *, doublecomplex *,
  597. doublecomplex *, integer *, doublecomplex *, integer *,
  598. doublecomplex *, integer *), zscal_(integer *, doublecomplex *,
  599. doublecomplex *, integer *), zgemv_(char *, integer *, integer *,
  600. doublecomplex *, doublecomplex *, integer *, doublecomplex *,
  601. integer *, doublecomplex *, doublecomplex *, integer *);
  602. extern doublereal dznrm2_(integer *, doublecomplex *, integer *);
  603. doublecomplex wa, wb;
  604. doublereal wn;
  605. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  606. extern void zlacgv_(
  607. integer *, doublecomplex *, integer *), zlarnv_(integer *,
  608. integer *, integer *, doublecomplex *);
  609. doublecomplex tau;
  610. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  611. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  612. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  613. /* December 2016 */
  614. /* ===================================================================== */
  615. /* Test the input arguments */
  616. /* Parameter adjustments */
  617. --d__;
  618. a_dim1 = *lda;
  619. a_offset = 1 + a_dim1 * 1;
  620. a -= a_offset;
  621. --iseed;
  622. --work;
  623. /* Function Body */
  624. *info = 0;
  625. if (*m < 0) {
  626. *info = -1;
  627. } else if (*n < 0) {
  628. *info = -2;
  629. } else if (*kl < 0 || *kl > *m - 1) {
  630. *info = -3;
  631. } else if (*ku < 0 || *ku > *n - 1) {
  632. *info = -4;
  633. } else if (*lda < f2cmax(1,*m)) {
  634. *info = -7;
  635. }
  636. if (*info < 0) {
  637. i__1 = -(*info);
  638. xerbla_("ZLAGGE", &i__1, 6);
  639. return;
  640. }
  641. /* initialize A to diagonal matrix */
  642. i__1 = *n;
  643. for (j = 1; j <= i__1; ++j) {
  644. i__2 = *m;
  645. for (i__ = 1; i__ <= i__2; ++i__) {
  646. i__3 = i__ + j * a_dim1;
  647. a[i__3].r = 0., a[i__3].i = 0.;
  648. /* L10: */
  649. }
  650. /* L20: */
  651. }
  652. i__1 = f2cmin(*m,*n);
  653. for (i__ = 1; i__ <= i__1; ++i__) {
  654. i__2 = i__ + i__ * a_dim1;
  655. i__3 = i__;
  656. a[i__2].r = d__[i__3], a[i__2].i = 0.;
  657. /* L30: */
  658. }
  659. /* Quick exit if the user wants a diagonal matrix */
  660. if (*kl == 0 && *ku == 0) {
  661. return;
  662. }
  663. /* pre- and post-multiply A by random unitary matrices */
  664. for (i__ = f2cmin(*m,*n); i__ >= 1; --i__) {
  665. if (i__ < *m) {
  666. /* generate random reflection */
  667. i__1 = *m - i__ + 1;
  668. zlarnv_(&c__3, &iseed[1], &i__1, &work[1]);
  669. i__1 = *m - i__ + 1;
  670. wn = dznrm2_(&i__1, &work[1], &c__1);
  671. d__1 = wn / z_abs(&work[1]);
  672. z__1.r = d__1 * work[1].r, z__1.i = d__1 * work[1].i;
  673. wa.r = z__1.r, wa.i = z__1.i;
  674. if (wn == 0.) {
  675. tau.r = 0., tau.i = 0.;
  676. } else {
  677. z__1.r = work[1].r + wa.r, z__1.i = work[1].i + wa.i;
  678. wb.r = z__1.r, wb.i = z__1.i;
  679. i__1 = *m - i__;
  680. z_div(&z__1, &c_b2, &wb);
  681. zscal_(&i__1, &z__1, &work[2], &c__1);
  682. work[1].r = 1., work[1].i = 0.;
  683. z_div(&z__1, &wb, &wa);
  684. d__1 = z__1.r;
  685. tau.r = d__1, tau.i = 0.;
  686. }
  687. /* multiply A(i:m,i:n) by random reflection from the left */
  688. i__1 = *m - i__ + 1;
  689. i__2 = *n - i__ + 1;
  690. zgemv_("Conjugate transpose", &i__1, &i__2, &c_b2, &a[i__ + i__ *
  691. a_dim1], lda, &work[1], &c__1, &c_b1, &work[*m + 1], &
  692. c__1);
  693. i__1 = *m - i__ + 1;
  694. i__2 = *n - i__ + 1;
  695. z__1.r = -tau.r, z__1.i = -tau.i;
  696. zgerc_(&i__1, &i__2, &z__1, &work[1], &c__1, &work[*m + 1], &c__1,
  697. &a[i__ + i__ * a_dim1], lda);
  698. }
  699. if (i__ < *n) {
  700. /* generate random reflection */
  701. i__1 = *n - i__ + 1;
  702. zlarnv_(&c__3, &iseed[1], &i__1, &work[1]);
  703. i__1 = *n - i__ + 1;
  704. wn = dznrm2_(&i__1, &work[1], &c__1);
  705. d__1 = wn / z_abs(&work[1]);
  706. z__1.r = d__1 * work[1].r, z__1.i = d__1 * work[1].i;
  707. wa.r = z__1.r, wa.i = z__1.i;
  708. if (wn == 0.) {
  709. tau.r = 0., tau.i = 0.;
  710. } else {
  711. z__1.r = work[1].r + wa.r, z__1.i = work[1].i + wa.i;
  712. wb.r = z__1.r, wb.i = z__1.i;
  713. i__1 = *n - i__;
  714. z_div(&z__1, &c_b2, &wb);
  715. zscal_(&i__1, &z__1, &work[2], &c__1);
  716. work[1].r = 1., work[1].i = 0.;
  717. z_div(&z__1, &wb, &wa);
  718. d__1 = z__1.r;
  719. tau.r = d__1, tau.i = 0.;
  720. }
  721. /* multiply A(i:m,i:n) by random reflection from the right */
  722. i__1 = *m - i__ + 1;
  723. i__2 = *n - i__ + 1;
  724. zgemv_("No transpose", &i__1, &i__2, &c_b2, &a[i__ + i__ * a_dim1]
  725. , lda, &work[1], &c__1, &c_b1, &work[*n + 1], &c__1);
  726. i__1 = *m - i__ + 1;
  727. i__2 = *n - i__ + 1;
  728. z__1.r = -tau.r, z__1.i = -tau.i;
  729. zgerc_(&i__1, &i__2, &z__1, &work[*n + 1], &c__1, &work[1], &c__1,
  730. &a[i__ + i__ * a_dim1], lda);
  731. }
  732. /* L40: */
  733. }
  734. /* Reduce number of subdiagonals to KL and number of superdiagonals */
  735. /* to KU */
  736. /* Computing MAX */
  737. i__2 = *m - 1 - *kl, i__3 = *n - 1 - *ku;
  738. i__1 = f2cmax(i__2,i__3);
  739. for (i__ = 1; i__ <= i__1; ++i__) {
  740. if (*kl <= *ku) {
  741. /* annihilate subdiagonal elements first (necessary if KL = 0) */
  742. /* Computing MIN */
  743. i__2 = *m - 1 - *kl;
  744. if (i__ <= f2cmin(i__2,*n)) {
  745. /* generate reflection to annihilate A(kl+i+1:m,i) */
  746. i__2 = *m - *kl - i__ + 1;
  747. wn = dznrm2_(&i__2, &a[*kl + i__ + i__ * a_dim1], &c__1);
  748. d__1 = wn / z_abs(&a[*kl + i__ + i__ * a_dim1]);
  749. i__2 = *kl + i__ + i__ * a_dim1;
  750. z__1.r = d__1 * a[i__2].r, z__1.i = d__1 * a[i__2].i;
  751. wa.r = z__1.r, wa.i = z__1.i;
  752. if (wn == 0.) {
  753. tau.r = 0., tau.i = 0.;
  754. } else {
  755. i__2 = *kl + i__ + i__ * a_dim1;
  756. z__1.r = a[i__2].r + wa.r, z__1.i = a[i__2].i + wa.i;
  757. wb.r = z__1.r, wb.i = z__1.i;
  758. i__2 = *m - *kl - i__;
  759. z_div(&z__1, &c_b2, &wb);
  760. zscal_(&i__2, &z__1, &a[*kl + i__ + 1 + i__ * a_dim1], &
  761. c__1);
  762. i__2 = *kl + i__ + i__ * a_dim1;
  763. a[i__2].r = 1., a[i__2].i = 0.;
  764. z_div(&z__1, &wb, &wa);
  765. d__1 = z__1.r;
  766. tau.r = d__1, tau.i = 0.;
  767. }
  768. /* apply reflection to A(kl+i:m,i+1:n) from the left */
  769. i__2 = *m - *kl - i__ + 1;
  770. i__3 = *n - i__;
  771. zgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[*kl +
  772. i__ + (i__ + 1) * a_dim1], lda, &a[*kl + i__ + i__ *
  773. a_dim1], &c__1, &c_b1, &work[1], &c__1);
  774. i__2 = *m - *kl - i__ + 1;
  775. i__3 = *n - i__;
  776. z__1.r = -tau.r, z__1.i = -tau.i;
  777. zgerc_(&i__2, &i__3, &z__1, &a[*kl + i__ + i__ * a_dim1], &
  778. c__1, &work[1], &c__1, &a[*kl + i__ + (i__ + 1) *
  779. a_dim1], lda);
  780. i__2 = *kl + i__ + i__ * a_dim1;
  781. z__1.r = -wa.r, z__1.i = -wa.i;
  782. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  783. }
  784. /* Computing MIN */
  785. i__2 = *n - 1 - *ku;
  786. if (i__ <= f2cmin(i__2,*m)) {
  787. /* generate reflection to annihilate A(i,ku+i+1:n) */
  788. i__2 = *n - *ku - i__ + 1;
  789. wn = dznrm2_(&i__2, &a[i__ + (*ku + i__) * a_dim1], lda);
  790. d__1 = wn / z_abs(&a[i__ + (*ku + i__) * a_dim1]);
  791. i__2 = i__ + (*ku + i__) * a_dim1;
  792. z__1.r = d__1 * a[i__2].r, z__1.i = d__1 * a[i__2].i;
  793. wa.r = z__1.r, wa.i = z__1.i;
  794. if (wn == 0.) {
  795. tau.r = 0., tau.i = 0.;
  796. } else {
  797. i__2 = i__ + (*ku + i__) * a_dim1;
  798. z__1.r = a[i__2].r + wa.r, z__1.i = a[i__2].i + wa.i;
  799. wb.r = z__1.r, wb.i = z__1.i;
  800. i__2 = *n - *ku - i__;
  801. z_div(&z__1, &c_b2, &wb);
  802. zscal_(&i__2, &z__1, &a[i__ + (*ku + i__ + 1) * a_dim1],
  803. lda);
  804. i__2 = i__ + (*ku + i__) * a_dim1;
  805. a[i__2].r = 1., a[i__2].i = 0.;
  806. z_div(&z__1, &wb, &wa);
  807. d__1 = z__1.r;
  808. tau.r = d__1, tau.i = 0.;
  809. }
  810. /* apply reflection to A(i+1:m,ku+i:n) from the right */
  811. i__2 = *n - *ku - i__ + 1;
  812. zlacgv_(&i__2, &a[i__ + (*ku + i__) * a_dim1], lda);
  813. i__2 = *m - i__;
  814. i__3 = *n - *ku - i__ + 1;
  815. zgemv_("No transpose", &i__2, &i__3, &c_b2, &a[i__ + 1 + (*ku
  816. + i__) * a_dim1], lda, &a[i__ + (*ku + i__) * a_dim1],
  817. lda, &c_b1, &work[1], &c__1);
  818. i__2 = *m - i__;
  819. i__3 = *n - *ku - i__ + 1;
  820. z__1.r = -tau.r, z__1.i = -tau.i;
  821. zgerc_(&i__2, &i__3, &z__1, &work[1], &c__1, &a[i__ + (*ku +
  822. i__) * a_dim1], lda, &a[i__ + 1 + (*ku + i__) *
  823. a_dim1], lda);
  824. i__2 = i__ + (*ku + i__) * a_dim1;
  825. z__1.r = -wa.r, z__1.i = -wa.i;
  826. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  827. }
  828. } else {
  829. /* annihilate superdiagonal elements first (necessary if */
  830. /* KU = 0) */
  831. /* Computing MIN */
  832. i__2 = *n - 1 - *ku;
  833. if (i__ <= f2cmin(i__2,*m)) {
  834. /* generate reflection to annihilate A(i,ku+i+1:n) */
  835. i__2 = *n - *ku - i__ + 1;
  836. wn = dznrm2_(&i__2, &a[i__ + (*ku + i__) * a_dim1], lda);
  837. d__1 = wn / z_abs(&a[i__ + (*ku + i__) * a_dim1]);
  838. i__2 = i__ + (*ku + i__) * a_dim1;
  839. z__1.r = d__1 * a[i__2].r, z__1.i = d__1 * a[i__2].i;
  840. wa.r = z__1.r, wa.i = z__1.i;
  841. if (wn == 0.) {
  842. tau.r = 0., tau.i = 0.;
  843. } else {
  844. i__2 = i__ + (*ku + i__) * a_dim1;
  845. z__1.r = a[i__2].r + wa.r, z__1.i = a[i__2].i + wa.i;
  846. wb.r = z__1.r, wb.i = z__1.i;
  847. i__2 = *n - *ku - i__;
  848. z_div(&z__1, &c_b2, &wb);
  849. zscal_(&i__2, &z__1, &a[i__ + (*ku + i__ + 1) * a_dim1],
  850. lda);
  851. i__2 = i__ + (*ku + i__) * a_dim1;
  852. a[i__2].r = 1., a[i__2].i = 0.;
  853. z_div(&z__1, &wb, &wa);
  854. d__1 = z__1.r;
  855. tau.r = d__1, tau.i = 0.;
  856. }
  857. /* apply reflection to A(i+1:m,ku+i:n) from the right */
  858. i__2 = *n - *ku - i__ + 1;
  859. zlacgv_(&i__2, &a[i__ + (*ku + i__) * a_dim1], lda);
  860. i__2 = *m - i__;
  861. i__3 = *n - *ku - i__ + 1;
  862. zgemv_("No transpose", &i__2, &i__3, &c_b2, &a[i__ + 1 + (*ku
  863. + i__) * a_dim1], lda, &a[i__ + (*ku + i__) * a_dim1],
  864. lda, &c_b1, &work[1], &c__1);
  865. i__2 = *m - i__;
  866. i__3 = *n - *ku - i__ + 1;
  867. z__1.r = -tau.r, z__1.i = -tau.i;
  868. zgerc_(&i__2, &i__3, &z__1, &work[1], &c__1, &a[i__ + (*ku +
  869. i__) * a_dim1], lda, &a[i__ + 1 + (*ku + i__) *
  870. a_dim1], lda);
  871. i__2 = i__ + (*ku + i__) * a_dim1;
  872. z__1.r = -wa.r, z__1.i = -wa.i;
  873. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  874. }
  875. /* Computing MIN */
  876. i__2 = *m - 1 - *kl;
  877. if (i__ <= f2cmin(i__2,*n)) {
  878. /* generate reflection to annihilate A(kl+i+1:m,i) */
  879. i__2 = *m - *kl - i__ + 1;
  880. wn = dznrm2_(&i__2, &a[*kl + i__ + i__ * a_dim1], &c__1);
  881. d__1 = wn / z_abs(&a[*kl + i__ + i__ * a_dim1]);
  882. i__2 = *kl + i__ + i__ * a_dim1;
  883. z__1.r = d__1 * a[i__2].r, z__1.i = d__1 * a[i__2].i;
  884. wa.r = z__1.r, wa.i = z__1.i;
  885. if (wn == 0.) {
  886. tau.r = 0., tau.i = 0.;
  887. } else {
  888. i__2 = *kl + i__ + i__ * a_dim1;
  889. z__1.r = a[i__2].r + wa.r, z__1.i = a[i__2].i + wa.i;
  890. wb.r = z__1.r, wb.i = z__1.i;
  891. i__2 = *m - *kl - i__;
  892. z_div(&z__1, &c_b2, &wb);
  893. zscal_(&i__2, &z__1, &a[*kl + i__ + 1 + i__ * a_dim1], &
  894. c__1);
  895. i__2 = *kl + i__ + i__ * a_dim1;
  896. a[i__2].r = 1., a[i__2].i = 0.;
  897. z_div(&z__1, &wb, &wa);
  898. d__1 = z__1.r;
  899. tau.r = d__1, tau.i = 0.;
  900. }
  901. /* apply reflection to A(kl+i:m,i+1:n) from the left */
  902. i__2 = *m - *kl - i__ + 1;
  903. i__3 = *n - i__;
  904. zgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[*kl +
  905. i__ + (i__ + 1) * a_dim1], lda, &a[*kl + i__ + i__ *
  906. a_dim1], &c__1, &c_b1, &work[1], &c__1);
  907. i__2 = *m - *kl - i__ + 1;
  908. i__3 = *n - i__;
  909. z__1.r = -tau.r, z__1.i = -tau.i;
  910. zgerc_(&i__2, &i__3, &z__1, &a[*kl + i__ + i__ * a_dim1], &
  911. c__1, &work[1], &c__1, &a[*kl + i__ + (i__ + 1) *
  912. a_dim1], lda);
  913. i__2 = *kl + i__ + i__ * a_dim1;
  914. z__1.r = -wa.r, z__1.i = -wa.i;
  915. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  916. }
  917. }
  918. if (i__ <= *n) {
  919. i__2 = *m;
  920. for (j = *kl + i__ + 1; j <= i__2; ++j) {
  921. i__3 = j + i__ * a_dim1;
  922. a[i__3].r = 0., a[i__3].i = 0.;
  923. /* L50: */
  924. }
  925. }
  926. if (i__ <= *m) {
  927. i__2 = *n;
  928. for (j = *ku + i__ + 1; j <= i__2; ++j) {
  929. i__3 = i__ + j * a_dim1;
  930. a[i__3].r = 0., a[i__3].i = 0.;
  931. /* L60: */
  932. }
  933. }
  934. /* L70: */
  935. }
  936. return;
  937. /* End of ZLAGGE */
  938. } /* zlagge_ */