You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlatme.c 38 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static doublereal c_b23 = 0.;
  488. static integer c__0 = 0;
  489. static doublereal c_b39 = 1.;
  490. /* > \brief \b DLATME */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* Definition: */
  495. /* =========== */
  496. /* SUBROUTINE DLATME( N, DIST, ISEED, D, MODE, COND, DMAX, EI, */
  497. /* RSIGN, */
  498. /* UPPER, SIM, DS, MODES, CONDS, KL, KU, ANORM, */
  499. /* A, */
  500. /* LDA, WORK, INFO ) */
  501. /* CHARACTER DIST, RSIGN, SIM, UPPER */
  502. /* INTEGER INFO, KL, KU, LDA, MODE, MODES, N */
  503. /* DOUBLE PRECISION ANORM, COND, CONDS, DMAX */
  504. /* CHARACTER EI( * ) */
  505. /* INTEGER ISEED( 4 ) */
  506. /* DOUBLE PRECISION A( LDA, * ), D( * ), DS( * ), WORK( * ) */
  507. /* > \par Purpose: */
  508. /* ============= */
  509. /* > */
  510. /* > \verbatim */
  511. /* > */
  512. /* > DLATME generates random non-symmetric square matrices with */
  513. /* > specified eigenvalues for testing LAPACK programs. */
  514. /* > */
  515. /* > DLATME operates by applying the following sequence of */
  516. /* > operations: */
  517. /* > */
  518. /* > 1. Set the diagonal to D, where D may be input or */
  519. /* > computed according to MODE, COND, DMAX, and RSIGN */
  520. /* > as described below. */
  521. /* > */
  522. /* > 2. If complex conjugate pairs are desired (MODE=0 and EI(1)='R', */
  523. /* > or MODE=5), certain pairs of adjacent elements of D are */
  524. /* > interpreted as the real and complex parts of a complex */
  525. /* > conjugate pair; A thus becomes block diagonal, with 1x1 */
  526. /* > and 2x2 blocks. */
  527. /* > */
  528. /* > 3. If UPPER='T', the upper triangle of A is set to random values */
  529. /* > out of distribution DIST. */
  530. /* > */
  531. /* > 4. If SIM='T', A is multiplied on the left by a random matrix */
  532. /* > X, whose singular values are specified by DS, MODES, and */
  533. /* > CONDS, and on the right by X inverse. */
  534. /* > */
  535. /* > 5. If KL < N-1, the lower bandwidth is reduced to KL using */
  536. /* > Householder transformations. If KU < N-1, the upper */
  537. /* > bandwidth is reduced to KU. */
  538. /* > */
  539. /* > 6. If ANORM is not negative, the matrix is scaled to have */
  540. /* > maximum-element-norm ANORM. */
  541. /* > */
  542. /* > (Note: since the matrix cannot be reduced beyond Hessenberg form, */
  543. /* > no packing options are available.) */
  544. /* > \endverbatim */
  545. /* Arguments: */
  546. /* ========== */
  547. /* > \param[in] N */
  548. /* > \verbatim */
  549. /* > N is INTEGER */
  550. /* > The number of columns (or rows) of A. Not modified. */
  551. /* > \endverbatim */
  552. /* > */
  553. /* > \param[in] DIST */
  554. /* > \verbatim */
  555. /* > DIST is CHARACTER*1 */
  556. /* > On entry, DIST specifies the type of distribution to be used */
  557. /* > to generate the random eigen-/singular values, and for the */
  558. /* > upper triangle (see UPPER). */
  559. /* > 'U' => UNIFORM( 0, 1 ) ( 'U' for uniform ) */
  560. /* > 'S' => UNIFORM( -1, 1 ) ( 'S' for symmetric ) */
  561. /* > 'N' => NORMAL( 0, 1 ) ( 'N' for normal ) */
  562. /* > Not modified. */
  563. /* > \endverbatim */
  564. /* > */
  565. /* > \param[in,out] ISEED */
  566. /* > \verbatim */
  567. /* > ISEED is INTEGER array, dimension ( 4 ) */
  568. /* > On entry ISEED specifies the seed of the random number */
  569. /* > generator. They should lie between 0 and 4095 inclusive, */
  570. /* > and ISEED(4) should be odd. The random number generator */
  571. /* > uses a linear congruential sequence limited to small */
  572. /* > integers, and so should produce machine independent */
  573. /* > random numbers. The values of ISEED are changed on */
  574. /* > exit, and can be used in the next call to DLATME */
  575. /* > to continue the same random number sequence. */
  576. /* > Changed on exit. */
  577. /* > \endverbatim */
  578. /* > */
  579. /* > \param[in,out] D */
  580. /* > \verbatim */
  581. /* > D is DOUBLE PRECISION array, dimension ( N ) */
  582. /* > This array is used to specify the eigenvalues of A. If */
  583. /* > MODE=0, then D is assumed to contain the eigenvalues (but */
  584. /* > see the description of EI), otherwise they will be */
  585. /* > computed according to MODE, COND, DMAX, and RSIGN and */
  586. /* > placed in D. */
  587. /* > Modified if MODE is nonzero. */
  588. /* > \endverbatim */
  589. /* > */
  590. /* > \param[in] MODE */
  591. /* > \verbatim */
  592. /* > MODE is INTEGER */
  593. /* > On entry this describes how the eigenvalues are to */
  594. /* > be specified: */
  595. /* > MODE = 0 means use D (with EI) as input */
  596. /* > MODE = 1 sets D(1)=1 and D(2:N)=1.0/COND */
  597. /* > MODE = 2 sets D(1:N-1)=1 and D(N)=1.0/COND */
  598. /* > MODE = 3 sets D(I)=COND**(-(I-1)/(N-1)) */
  599. /* > MODE = 4 sets D(i)=1 - (i-1)/(N-1)*(1 - 1/COND) */
  600. /* > MODE = 5 sets D to random numbers in the range */
  601. /* > ( 1/COND , 1 ) such that their logarithms */
  602. /* > are uniformly distributed. Each odd-even pair */
  603. /* > of elements will be either used as two real */
  604. /* > eigenvalues or as the real and imaginary part */
  605. /* > of a complex conjugate pair of eigenvalues; */
  606. /* > the choice of which is done is random, with */
  607. /* > 50-50 probability, for each pair. */
  608. /* > MODE = 6 set D to random numbers from same distribution */
  609. /* > as the rest of the matrix. */
  610. /* > MODE < 0 has the same meaning as ABS(MODE), except that */
  611. /* > the order of the elements of D is reversed. */
  612. /* > Thus if MODE is between 1 and 4, D has entries ranging */
  613. /* > from 1 to 1/COND, if between -1 and -4, D has entries */
  614. /* > ranging from 1/COND to 1, */
  615. /* > Not modified. */
  616. /* > \endverbatim */
  617. /* > */
  618. /* > \param[in] COND */
  619. /* > \verbatim */
  620. /* > COND is DOUBLE PRECISION */
  621. /* > On entry, this is used as described under MODE above. */
  622. /* > If used, it must be >= 1. Not modified. */
  623. /* > \endverbatim */
  624. /* > */
  625. /* > \param[in] DMAX */
  626. /* > \verbatim */
  627. /* > DMAX is DOUBLE PRECISION */
  628. /* > If MODE is neither -6, 0 nor 6, the contents of D, as */
  629. /* > computed according to MODE and COND, will be scaled by */
  630. /* > DMAX / f2cmax(abs(D(i))). Note that DMAX need not be */
  631. /* > positive: if DMAX is negative (or zero), D will be */
  632. /* > scaled by a negative number (or zero). */
  633. /* > Not modified. */
  634. /* > \endverbatim */
  635. /* > */
  636. /* > \param[in] EI */
  637. /* > \verbatim */
  638. /* > EI is CHARACTER*1 array, dimension ( N ) */
  639. /* > If MODE is 0, and EI(1) is not ' ' (space character), */
  640. /* > this array specifies which elements of D (on input) are */
  641. /* > real eigenvalues and which are the real and imaginary parts */
  642. /* > of a complex conjugate pair of eigenvalues. The elements */
  643. /* > of EI may then only have the values 'R' and 'I'. If */
  644. /* > EI(j)='R' and EI(j+1)='I', then the j-th eigenvalue is */
  645. /* > CMPLX( D(j) , D(j+1) ), and the (j+1)-th is the complex */
  646. /* > conjugate thereof. If EI(j)=EI(j+1)='R', then the j-th */
  647. /* > eigenvalue is D(j) (i.e., real). EI(1) may not be 'I', */
  648. /* > nor may two adjacent elements of EI both have the value 'I'. */
  649. /* > If MODE is not 0, then EI is ignored. If MODE is 0 and */
  650. /* > EI(1)=' ', then the eigenvalues will all be real. */
  651. /* > Not modified. */
  652. /* > \endverbatim */
  653. /* > */
  654. /* > \param[in] RSIGN */
  655. /* > \verbatim */
  656. /* > RSIGN is CHARACTER*1 */
  657. /* > If MODE is not 0, 6, or -6, and RSIGN='T', then the */
  658. /* > elements of D, as computed according to MODE and COND, will */
  659. /* > be multiplied by a random sign (+1 or -1). If RSIGN='F', */
  660. /* > they will not be. RSIGN may only have the values 'T' or */
  661. /* > 'F'. */
  662. /* > Not modified. */
  663. /* > \endverbatim */
  664. /* > */
  665. /* > \param[in] UPPER */
  666. /* > \verbatim */
  667. /* > UPPER is CHARACTER*1 */
  668. /* > If UPPER='T', then the elements of A above the diagonal */
  669. /* > (and above the 2x2 diagonal blocks, if A has complex */
  670. /* > eigenvalues) will be set to random numbers out of DIST. */
  671. /* > If UPPER='F', they will not. UPPER may only have the */
  672. /* > values 'T' or 'F'. */
  673. /* > Not modified. */
  674. /* > \endverbatim */
  675. /* > */
  676. /* > \param[in] SIM */
  677. /* > \verbatim */
  678. /* > SIM is CHARACTER*1 */
  679. /* > If SIM='T', then A will be operated on by a "similarity */
  680. /* > transform", i.e., multiplied on the left by a matrix X and */
  681. /* > on the right by X inverse. X = U S V, where U and V are */
  682. /* > random unitary matrices and S is a (diagonal) matrix of */
  683. /* > singular values specified by DS, MODES, and CONDS. If */
  684. /* > SIM='F', then A will not be transformed. */
  685. /* > Not modified. */
  686. /* > \endverbatim */
  687. /* > */
  688. /* > \param[in,out] DS */
  689. /* > \verbatim */
  690. /* > DS is DOUBLE PRECISION array, dimension ( N ) */
  691. /* > This array is used to specify the singular values of X, */
  692. /* > in the same way that D specifies the eigenvalues of A. */
  693. /* > If MODE=0, the DS contains the singular values, which */
  694. /* > may not be zero. */
  695. /* > Modified if MODE is nonzero. */
  696. /* > \endverbatim */
  697. /* > */
  698. /* > \param[in] MODES */
  699. /* > \verbatim */
  700. /* > MODES is INTEGER */
  701. /* > \endverbatim */
  702. /* > */
  703. /* > \param[in] CONDS */
  704. /* > \verbatim */
  705. /* > CONDS is DOUBLE PRECISION */
  706. /* > Same as MODE and COND, but for specifying the diagonal */
  707. /* > of S. MODES=-6 and +6 are not allowed (since they would */
  708. /* > result in randomly ill-conditioned eigenvalues.) */
  709. /* > \endverbatim */
  710. /* > */
  711. /* > \param[in] KL */
  712. /* > \verbatim */
  713. /* > KL is INTEGER */
  714. /* > This specifies the lower bandwidth of the matrix. KL=1 */
  715. /* > specifies upper Hessenberg form. If KL is at least N-1, */
  716. /* > then A will have full lower bandwidth. KL must be at */
  717. /* > least 1. */
  718. /* > Not modified. */
  719. /* > \endverbatim */
  720. /* > */
  721. /* > \param[in] KU */
  722. /* > \verbatim */
  723. /* > KU is INTEGER */
  724. /* > This specifies the upper bandwidth of the matrix. KU=1 */
  725. /* > specifies lower Hessenberg form. If KU is at least N-1, */
  726. /* > then A will have full upper bandwidth; if KU and KL */
  727. /* > are both at least N-1, then A will be dense. Only one of */
  728. /* > KU and KL may be less than N-1. KU must be at least 1. */
  729. /* > Not modified. */
  730. /* > \endverbatim */
  731. /* > */
  732. /* > \param[in] ANORM */
  733. /* > \verbatim */
  734. /* > ANORM is DOUBLE PRECISION */
  735. /* > If ANORM is not negative, then A will be scaled by a non- */
  736. /* > negative real number to make the maximum-element-norm of A */
  737. /* > to be ANORM. */
  738. /* > Not modified. */
  739. /* > \endverbatim */
  740. /* > */
  741. /* > \param[out] A */
  742. /* > \verbatim */
  743. /* > A is DOUBLE PRECISION array, dimension ( LDA, N ) */
  744. /* > On exit A is the desired test matrix. */
  745. /* > Modified. */
  746. /* > \endverbatim */
  747. /* > */
  748. /* > \param[in] LDA */
  749. /* > \verbatim */
  750. /* > LDA is INTEGER */
  751. /* > LDA specifies the first dimension of A as declared in the */
  752. /* > calling program. LDA must be at least N. */
  753. /* > Not modified. */
  754. /* > \endverbatim */
  755. /* > */
  756. /* > \param[out] WORK */
  757. /* > \verbatim */
  758. /* > WORK is DOUBLE PRECISION array, dimension ( 3*N ) */
  759. /* > Workspace. */
  760. /* > Modified. */
  761. /* > \endverbatim */
  762. /* > */
  763. /* > \param[out] INFO */
  764. /* > \verbatim */
  765. /* > INFO is INTEGER */
  766. /* > Error code. On exit, INFO will be set to one of the */
  767. /* > following values: */
  768. /* > 0 => normal return */
  769. /* > -1 => N negative */
  770. /* > -2 => DIST illegal string */
  771. /* > -5 => MODE not in range -6 to 6 */
  772. /* > -6 => COND less than 1.0, and MODE neither -6, 0 nor 6 */
  773. /* > -8 => EI(1) is not ' ' or 'R', EI(j) is not 'R' or 'I', or */
  774. /* > two adjacent elements of EI are 'I'. */
  775. /* > -9 => RSIGN is not 'T' or 'F' */
  776. /* > -10 => UPPER is not 'T' or 'F' */
  777. /* > -11 => SIM is not 'T' or 'F' */
  778. /* > -12 => MODES=0 and DS has a zero singular value. */
  779. /* > -13 => MODES is not in the range -5 to 5. */
  780. /* > -14 => MODES is nonzero and CONDS is less than 1. */
  781. /* > -15 => KL is less than 1. */
  782. /* > -16 => KU is less than 1, or KL and KU are both less than */
  783. /* > N-1. */
  784. /* > -19 => LDA is less than N. */
  785. /* > 1 => Error return from DLATM1 (computing D) */
  786. /* > 2 => Cannot scale to DMAX (f2cmax. eigenvalue is 0) */
  787. /* > 3 => Error return from DLATM1 (computing DS) */
  788. /* > 4 => Error return from DLARGE */
  789. /* > 5 => Zero singular value from DLATM1. */
  790. /* > \endverbatim */
  791. /* Authors: */
  792. /* ======== */
  793. /* > \author Univ. of Tennessee */
  794. /* > \author Univ. of California Berkeley */
  795. /* > \author Univ. of Colorado Denver */
  796. /* > \author NAG Ltd. */
  797. /* > \date December 2016 */
  798. /* > \ingroup double_matgen */
  799. /* ===================================================================== */
  800. /* Subroutine */ void dlatme_(integer *n, char *dist, integer *iseed,
  801. doublereal *d__, integer *mode, doublereal *cond, doublereal *dmax__,
  802. char *ei, char *rsign, char *upper, char *sim, doublereal *ds,
  803. integer *modes, doublereal *conds, integer *kl, integer *ku,
  804. doublereal *anorm, doublereal *a, integer *lda, doublereal *work,
  805. integer *info)
  806. {
  807. /* System generated locals */
  808. integer a_dim1, a_offset, i__1, i__2;
  809. doublereal d__1, d__2, d__3;
  810. /* Local variables */
  811. logical bads;
  812. extern /* Subroutine */ void dger_(integer *, integer *, doublereal *,
  813. doublereal *, integer *, doublereal *, integer *, doublereal *,
  814. integer *);
  815. integer isim;
  816. doublereal temp;
  817. logical badei;
  818. integer i__, j;
  819. doublereal alpha;
  820. extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *,
  821. integer *);
  822. extern logical lsame_(char *, char *);
  823. extern /* Subroutine */ void dgemv_(char *, integer *, integer *,
  824. doublereal *, doublereal *, integer *, doublereal *, integer *,
  825. doublereal *, doublereal *, integer *);
  826. integer iinfo;
  827. doublereal tempa[1];
  828. integer icols;
  829. logical useei;
  830. integer idist;
  831. extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *,
  832. doublereal *, integer *);
  833. integer irows;
  834. extern /* Subroutine */ void dlatm1_(integer *, doublereal *, integer *,
  835. integer *, integer *, doublereal *, integer *, integer *);
  836. integer ic, jc;
  837. extern doublereal dlange_(char *, integer *, integer *, doublereal *,
  838. integer *, doublereal *);
  839. integer ir, jr;
  840. extern /* Subroutine */ void dlarge_(integer *, doublereal *, integer *,
  841. integer *, doublereal *, integer *), dlarfg_(integer *,
  842. doublereal *, doublereal *, integer *, doublereal *);
  843. extern doublereal dlaran_(integer *);
  844. extern /* Subroutine */ void dlaset_(char *, integer *, integer *,
  845. doublereal *, doublereal *, doublereal *, integer *);
  846. extern int xerbla_(char *, integer *, ftnlen);
  847. extern void dlarnv_(integer *, integer *,
  848. integer *, doublereal *);
  849. integer irsign, iupper;
  850. doublereal xnorms;
  851. integer jcr;
  852. doublereal tau;
  853. /* -- LAPACK computational routine (version 3.7.0) -- */
  854. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  855. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  856. /* December 2016 */
  857. /* ===================================================================== */
  858. /* 1) Decode and Test the input parameters. */
  859. /* Initialize flags & seed. */
  860. /* Parameter adjustments */
  861. --iseed;
  862. --d__;
  863. --ei;
  864. --ds;
  865. a_dim1 = *lda;
  866. a_offset = 1 + a_dim1 * 1;
  867. a -= a_offset;
  868. --work;
  869. /* Function Body */
  870. *info = 0;
  871. /* Quick return if possible */
  872. if (*n == 0) {
  873. return;
  874. }
  875. /* Decode DIST */
  876. if (lsame_(dist, "U")) {
  877. idist = 1;
  878. } else if (lsame_(dist, "S")) {
  879. idist = 2;
  880. } else if (lsame_(dist, "N")) {
  881. idist = 3;
  882. } else {
  883. idist = -1;
  884. }
  885. /* Check EI */
  886. useei = TRUE_;
  887. badei = FALSE_;
  888. if (lsame_(ei + 1, " ") || *mode != 0) {
  889. useei = FALSE_;
  890. } else {
  891. if (lsame_(ei + 1, "R")) {
  892. i__1 = *n;
  893. for (j = 2; j <= i__1; ++j) {
  894. if (lsame_(ei + j, "I")) {
  895. if (lsame_(ei + (j - 1), "I")) {
  896. badei = TRUE_;
  897. }
  898. } else {
  899. if (! lsame_(ei + j, "R")) {
  900. badei = TRUE_;
  901. }
  902. }
  903. /* L10: */
  904. }
  905. } else {
  906. badei = TRUE_;
  907. }
  908. }
  909. /* Decode RSIGN */
  910. if (lsame_(rsign, "T")) {
  911. irsign = 1;
  912. } else if (lsame_(rsign, "F")) {
  913. irsign = 0;
  914. } else {
  915. irsign = -1;
  916. }
  917. /* Decode UPPER */
  918. if (lsame_(upper, "T")) {
  919. iupper = 1;
  920. } else if (lsame_(upper, "F")) {
  921. iupper = 0;
  922. } else {
  923. iupper = -1;
  924. }
  925. /* Decode SIM */
  926. if (lsame_(sim, "T")) {
  927. isim = 1;
  928. } else if (lsame_(sim, "F")) {
  929. isim = 0;
  930. } else {
  931. isim = -1;
  932. }
  933. /* Check DS, if MODES=0 and ISIM=1 */
  934. bads = FALSE_;
  935. if (*modes == 0 && isim == 1) {
  936. i__1 = *n;
  937. for (j = 1; j <= i__1; ++j) {
  938. if (ds[j] == 0.) {
  939. bads = TRUE_;
  940. }
  941. /* L20: */
  942. }
  943. }
  944. /* Set INFO if an error */
  945. if (*n < 0) {
  946. *info = -1;
  947. } else if (idist == -1) {
  948. *info = -2;
  949. } else if (abs(*mode) > 6) {
  950. *info = -5;
  951. } else if (*mode != 0 && abs(*mode) != 6 && *cond < 1.) {
  952. *info = -6;
  953. } else if (badei) {
  954. *info = -8;
  955. } else if (irsign == -1) {
  956. *info = -9;
  957. } else if (iupper == -1) {
  958. *info = -10;
  959. } else if (isim == -1) {
  960. *info = -11;
  961. } else if (bads) {
  962. *info = -12;
  963. } else if (isim == 1 && abs(*modes) > 5) {
  964. *info = -13;
  965. } else if (isim == 1 && *modes != 0 && *conds < 1.) {
  966. *info = -14;
  967. } else if (*kl < 1) {
  968. *info = -15;
  969. } else if (*ku < 1 || *ku < *n - 1 && *kl < *n - 1) {
  970. *info = -16;
  971. } else if (*lda < f2cmax(1,*n)) {
  972. *info = -19;
  973. }
  974. if (*info != 0) {
  975. i__1 = -(*info);
  976. xerbla_("DLATME", &i__1, 6);
  977. return;
  978. }
  979. /* Initialize random number generator */
  980. for (i__ = 1; i__ <= 4; ++i__) {
  981. iseed[i__] = (i__1 = iseed[i__], abs(i__1)) % 4096;
  982. /* L30: */
  983. }
  984. if (iseed[4] % 2 != 1) {
  985. ++iseed[4];
  986. }
  987. /* 2) Set up diagonal of A */
  988. /* Compute D according to COND and MODE */
  989. dlatm1_(mode, cond, &irsign, &idist, &iseed[1], &d__[1], n, &iinfo);
  990. if (iinfo != 0) {
  991. *info = 1;
  992. return;
  993. }
  994. if (*mode != 0 && abs(*mode) != 6) {
  995. /* Scale by DMAX */
  996. temp = abs(d__[1]);
  997. i__1 = *n;
  998. for (i__ = 2; i__ <= i__1; ++i__) {
  999. /* Computing MAX */
  1000. d__2 = temp, d__3 = (d__1 = d__[i__], abs(d__1));
  1001. temp = f2cmax(d__2,d__3);
  1002. /* L40: */
  1003. }
  1004. if (temp > 0.) {
  1005. alpha = *dmax__ / temp;
  1006. } else if (*dmax__ != 0.) {
  1007. *info = 2;
  1008. return;
  1009. } else {
  1010. alpha = 0.;
  1011. }
  1012. dscal_(n, &alpha, &d__[1], &c__1);
  1013. }
  1014. dlaset_("Full", n, n, &c_b23, &c_b23, &a[a_offset], lda);
  1015. i__1 = *lda + 1;
  1016. dcopy_(n, &d__[1], &c__1, &a[a_offset], &i__1);
  1017. /* Set up complex conjugate pairs */
  1018. if (*mode == 0) {
  1019. if (useei) {
  1020. i__1 = *n;
  1021. for (j = 2; j <= i__1; ++j) {
  1022. if (lsame_(ei + j, "I")) {
  1023. a[j - 1 + j * a_dim1] = a[j + j * a_dim1];
  1024. a[j + (j - 1) * a_dim1] = -a[j + j * a_dim1];
  1025. a[j + j * a_dim1] = a[j - 1 + (j - 1) * a_dim1];
  1026. }
  1027. /* L50: */
  1028. }
  1029. }
  1030. } else if (abs(*mode) == 5) {
  1031. i__1 = *n;
  1032. for (j = 2; j <= i__1; j += 2) {
  1033. if (dlaran_(&iseed[1]) > .5) {
  1034. a[j - 1 + j * a_dim1] = a[j + j * a_dim1];
  1035. a[j + (j - 1) * a_dim1] = -a[j + j * a_dim1];
  1036. a[j + j * a_dim1] = a[j - 1 + (j - 1) * a_dim1];
  1037. }
  1038. /* L60: */
  1039. }
  1040. }
  1041. /* 3) If UPPER='T', set upper triangle of A to random numbers. */
  1042. /* (but don't modify the corners of 2x2 blocks.) */
  1043. if (iupper != 0) {
  1044. i__1 = *n;
  1045. for (jc = 2; jc <= i__1; ++jc) {
  1046. if (a[jc - 1 + jc * a_dim1] != 0.) {
  1047. jr = jc - 2;
  1048. } else {
  1049. jr = jc - 1;
  1050. }
  1051. dlarnv_(&idist, &iseed[1], &jr, &a[jc * a_dim1 + 1]);
  1052. /* L70: */
  1053. }
  1054. }
  1055. /* 4) If SIM='T', apply similarity transformation. */
  1056. /* -1 */
  1057. /* Transform is X A X , where X = U S V, thus */
  1058. /* it is U S V A V' (1/S) U' */
  1059. if (isim != 0) {
  1060. /* Compute S (singular values of the eigenvector matrix) */
  1061. /* according to CONDS and MODES */
  1062. dlatm1_(modes, conds, &c__0, &c__0, &iseed[1], &ds[1], n, &iinfo);
  1063. if (iinfo != 0) {
  1064. *info = 3;
  1065. return;
  1066. }
  1067. /* Multiply by V and V' */
  1068. dlarge_(n, &a[a_offset], lda, &iseed[1], &work[1], &iinfo);
  1069. if (iinfo != 0) {
  1070. *info = 4;
  1071. return;
  1072. }
  1073. /* Multiply by S and (1/S) */
  1074. i__1 = *n;
  1075. for (j = 1; j <= i__1; ++j) {
  1076. dscal_(n, &ds[j], &a[j + a_dim1], lda);
  1077. if (ds[j] != 0.) {
  1078. d__1 = 1. / ds[j];
  1079. dscal_(n, &d__1, &a[j * a_dim1 + 1], &c__1);
  1080. } else {
  1081. *info = 5;
  1082. return;
  1083. }
  1084. /* L80: */
  1085. }
  1086. /* Multiply by U and U' */
  1087. dlarge_(n, &a[a_offset], lda, &iseed[1], &work[1], &iinfo);
  1088. if (iinfo != 0) {
  1089. *info = 4;
  1090. return;
  1091. }
  1092. }
  1093. /* 5) Reduce the bandwidth. */
  1094. if (*kl < *n - 1) {
  1095. /* Reduce bandwidth -- kill column */
  1096. i__1 = *n - 1;
  1097. for (jcr = *kl + 1; jcr <= i__1; ++jcr) {
  1098. ic = jcr - *kl;
  1099. irows = *n + 1 - jcr;
  1100. icols = *n + *kl - jcr;
  1101. dcopy_(&irows, &a[jcr + ic * a_dim1], &c__1, &work[1], &c__1);
  1102. xnorms = work[1];
  1103. dlarfg_(&irows, &xnorms, &work[2], &c__1, &tau);
  1104. work[1] = 1.;
  1105. dgemv_("T", &irows, &icols, &c_b39, &a[jcr + (ic + 1) * a_dim1],
  1106. lda, &work[1], &c__1, &c_b23, &work[irows + 1], &c__1);
  1107. d__1 = -tau;
  1108. dger_(&irows, &icols, &d__1, &work[1], &c__1, &work[irows + 1], &
  1109. c__1, &a[jcr + (ic + 1) * a_dim1], lda);
  1110. dgemv_("N", n, &irows, &c_b39, &a[jcr * a_dim1 + 1], lda, &work[1]
  1111. , &c__1, &c_b23, &work[irows + 1], &c__1);
  1112. d__1 = -tau;
  1113. dger_(n, &irows, &d__1, &work[irows + 1], &c__1, &work[1], &c__1,
  1114. &a[jcr * a_dim1 + 1], lda);
  1115. a[jcr + ic * a_dim1] = xnorms;
  1116. i__2 = irows - 1;
  1117. dlaset_("Full", &i__2, &c__1, &c_b23, &c_b23, &a[jcr + 1 + ic *
  1118. a_dim1], lda);
  1119. /* L90: */
  1120. }
  1121. } else if (*ku < *n - 1) {
  1122. /* Reduce upper bandwidth -- kill a row at a time. */
  1123. i__1 = *n - 1;
  1124. for (jcr = *ku + 1; jcr <= i__1; ++jcr) {
  1125. ir = jcr - *ku;
  1126. irows = *n + *ku - jcr;
  1127. icols = *n + 1 - jcr;
  1128. dcopy_(&icols, &a[ir + jcr * a_dim1], lda, &work[1], &c__1);
  1129. xnorms = work[1];
  1130. dlarfg_(&icols, &xnorms, &work[2], &c__1, &tau);
  1131. work[1] = 1.;
  1132. dgemv_("N", &irows, &icols, &c_b39, &a[ir + 1 + jcr * a_dim1],
  1133. lda, &work[1], &c__1, &c_b23, &work[icols + 1], &c__1);
  1134. d__1 = -tau;
  1135. dger_(&irows, &icols, &d__1, &work[icols + 1], &c__1, &work[1], &
  1136. c__1, &a[ir + 1 + jcr * a_dim1], lda);
  1137. dgemv_("C", &icols, n, &c_b39, &a[jcr + a_dim1], lda, &work[1], &
  1138. c__1, &c_b23, &work[icols + 1], &c__1);
  1139. d__1 = -tau;
  1140. dger_(&icols, n, &d__1, &work[1], &c__1, &work[icols + 1], &c__1,
  1141. &a[jcr + a_dim1], lda);
  1142. a[ir + jcr * a_dim1] = xnorms;
  1143. i__2 = icols - 1;
  1144. dlaset_("Full", &c__1, &i__2, &c_b23, &c_b23, &a[ir + (jcr + 1) *
  1145. a_dim1], lda);
  1146. /* L100: */
  1147. }
  1148. }
  1149. /* Scale the matrix to have norm ANORM */
  1150. if (*anorm >= 0.) {
  1151. temp = dlange_("M", n, n, &a[a_offset], lda, tempa);
  1152. if (temp > 0.) {
  1153. alpha = *anorm / temp;
  1154. i__1 = *n;
  1155. for (j = 1; j <= i__1; ++j) {
  1156. dscal_(n, &alpha, &a[j * a_dim1 + 1], &c__1);
  1157. /* L110: */
  1158. }
  1159. }
  1160. }
  1161. return;
  1162. /* End of DLATME */
  1163. } /* dlatme_ */