You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zpftrf.c 29 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static doublecomplex c_b1 = {1.,0.};
  487. static doublereal c_b15 = -1.;
  488. static doublereal c_b16 = 1.;
  489. /* > \brief \b ZPFTRF */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download ZPFTRF + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpftrf.
  496. f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpftrf.
  499. f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpftrf.
  502. f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE ZPFTRF( TRANSR, UPLO, N, A, INFO ) */
  508. /* CHARACTER TRANSR, UPLO */
  509. /* INTEGER N, INFO */
  510. /* COMPLEX*16 A( 0: * ) */
  511. /* > \par Purpose: */
  512. /* ============= */
  513. /* > */
  514. /* > \verbatim */
  515. /* > */
  516. /* > ZPFTRF computes the Cholesky factorization of a complex Hermitian */
  517. /* > positive definite matrix A. */
  518. /* > */
  519. /* > The factorization has the form */
  520. /* > A = U**H * U, if UPLO = 'U', or */
  521. /* > A = L * L**H, if UPLO = 'L', */
  522. /* > where U is an upper triangular matrix and L is lower triangular. */
  523. /* > */
  524. /* > This is the block version of the algorithm, calling Level 3 BLAS. */
  525. /* > \endverbatim */
  526. /* Arguments: */
  527. /* ========== */
  528. /* > \param[in] TRANSR */
  529. /* > \verbatim */
  530. /* > TRANSR is CHARACTER*1 */
  531. /* > = 'N': The Normal TRANSR of RFP A is stored; */
  532. /* > = 'C': The Conjugate-transpose TRANSR of RFP A is stored. */
  533. /* > \endverbatim */
  534. /* > */
  535. /* > \param[in] UPLO */
  536. /* > \verbatim */
  537. /* > UPLO is CHARACTER*1 */
  538. /* > = 'U': Upper triangle of RFP A is stored; */
  539. /* > = 'L': Lower triangle of RFP A is stored. */
  540. /* > \endverbatim */
  541. /* > */
  542. /* > \param[in] N */
  543. /* > \verbatim */
  544. /* > N is INTEGER */
  545. /* > The order of the matrix A. N >= 0. */
  546. /* > \endverbatim */
  547. /* > */
  548. /* > \param[in,out] A */
  549. /* > \verbatim */
  550. /* > A is COMPLEX*16 array, dimension ( N*(N+1)/2 ); */
  551. /* > On entry, the Hermitian matrix A in RFP format. RFP format is */
  552. /* > described by TRANSR, UPLO, and N as follows: If TRANSR = 'N' */
  553. /* > then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is */
  554. /* > (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'C' then RFP is */
  555. /* > the Conjugate-transpose of RFP A as defined when */
  556. /* > TRANSR = 'N'. The contents of RFP A are defined by UPLO as */
  557. /* > follows: If UPLO = 'U' the RFP A contains the nt elements of */
  558. /* > upper packed A. If UPLO = 'L' the RFP A contains the elements */
  559. /* > of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR = */
  560. /* > 'C'. When TRANSR is 'N' the LDA is N+1 when N is even and N */
  561. /* > is odd. See the Note below for more details. */
  562. /* > */
  563. /* > On exit, if INFO = 0, the factor U or L from the Cholesky */
  564. /* > factorization RFP A = U**H*U or RFP A = L*L**H. */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[out] INFO */
  568. /* > \verbatim */
  569. /* > INFO is INTEGER */
  570. /* > = 0: successful exit */
  571. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  572. /* > > 0: if INFO = i, the leading minor of order i is not */
  573. /* > positive definite, and the factorization could not be */
  574. /* > completed. */
  575. /* > */
  576. /* > Further Notes on RFP Format: */
  577. /* > ============================ */
  578. /* > */
  579. /* > We first consider Standard Packed Format when N is even. */
  580. /* > We give an example where N = 6. */
  581. /* > */
  582. /* > AP is Upper AP is Lower */
  583. /* > */
  584. /* > 00 01 02 03 04 05 00 */
  585. /* > 11 12 13 14 15 10 11 */
  586. /* > 22 23 24 25 20 21 22 */
  587. /* > 33 34 35 30 31 32 33 */
  588. /* > 44 45 40 41 42 43 44 */
  589. /* > 55 50 51 52 53 54 55 */
  590. /* > */
  591. /* > Let TRANSR = 'N'. RFP holds AP as follows: */
  592. /* > For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last */
  593. /* > three columns of AP upper. The lower triangle A(4:6,0:2) consists of */
  594. /* > conjugate-transpose of the first three columns of AP upper. */
  595. /* > For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first */
  596. /* > three columns of AP lower. The upper triangle A(0:2,0:2) consists of */
  597. /* > conjugate-transpose of the last three columns of AP lower. */
  598. /* > To denote conjugate we place -- above the element. This covers the */
  599. /* > case N even and TRANSR = 'N'. */
  600. /* > */
  601. /* > RFP A RFP A */
  602. /* > */
  603. /* > -- -- -- */
  604. /* > 03 04 05 33 43 53 */
  605. /* > -- -- */
  606. /* > 13 14 15 00 44 54 */
  607. /* > -- */
  608. /* > 23 24 25 10 11 55 */
  609. /* > */
  610. /* > 33 34 35 20 21 22 */
  611. /* > -- */
  612. /* > 00 44 45 30 31 32 */
  613. /* > -- -- */
  614. /* > 01 11 55 40 41 42 */
  615. /* > -- -- -- */
  616. /* > 02 12 22 50 51 52 */
  617. /* > */
  618. /* > Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- */
  619. /* > transpose of RFP A above. One therefore gets: */
  620. /* > */
  621. /* > RFP A RFP A */
  622. /* > */
  623. /* > -- -- -- -- -- -- -- -- -- -- */
  624. /* > 03 13 23 33 00 01 02 33 00 10 20 30 40 50 */
  625. /* > -- -- -- -- -- -- -- -- -- -- */
  626. /* > 04 14 24 34 44 11 12 43 44 11 21 31 41 51 */
  627. /* > -- -- -- -- -- -- -- -- -- -- */
  628. /* > 05 15 25 35 45 55 22 53 54 55 22 32 42 52 */
  629. /* > */
  630. /* > We next consider Standard Packed Format when N is odd. */
  631. /* > We give an example where N = 5. */
  632. /* > */
  633. /* > AP is Upper AP is Lower */
  634. /* > */
  635. /* > 00 01 02 03 04 00 */
  636. /* > 11 12 13 14 10 11 */
  637. /* > 22 23 24 20 21 22 */
  638. /* > 33 34 30 31 32 33 */
  639. /* > 44 40 41 42 43 44 */
  640. /* > */
  641. /* > Let TRANSR = 'N'. RFP holds AP as follows: */
  642. /* > For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last */
  643. /* > three columns of AP upper. The lower triangle A(3:4,0:1) consists of */
  644. /* > conjugate-transpose of the first two columns of AP upper. */
  645. /* > For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first */
  646. /* > three columns of AP lower. The upper triangle A(0:1,1:2) consists of */
  647. /* > conjugate-transpose of the last two columns of AP lower. */
  648. /* > To denote conjugate we place -- above the element. This covers the */
  649. /* > case N odd and TRANSR = 'N'. */
  650. /* > */
  651. /* > RFP A RFP A */
  652. /* > */
  653. /* > -- -- */
  654. /* > 02 03 04 00 33 43 */
  655. /* > -- */
  656. /* > 12 13 14 10 11 44 */
  657. /* > */
  658. /* > 22 23 24 20 21 22 */
  659. /* > -- */
  660. /* > 00 33 34 30 31 32 */
  661. /* > -- -- */
  662. /* > 01 11 44 40 41 42 */
  663. /* > */
  664. /* > Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- */
  665. /* > transpose of RFP A above. One therefore gets: */
  666. /* > */
  667. /* > RFP A RFP A */
  668. /* > */
  669. /* > -- -- -- -- -- -- -- -- -- */
  670. /* > 02 12 22 00 01 00 10 20 30 40 50 */
  671. /* > -- -- -- -- -- -- -- -- -- */
  672. /* > 03 13 23 33 11 33 11 21 31 41 51 */
  673. /* > -- -- -- -- -- -- -- -- -- */
  674. /* > 04 14 24 34 44 43 44 22 32 42 52 */
  675. /* > \endverbatim */
  676. /* Authors: */
  677. /* ======== */
  678. /* > \author Univ. of Tennessee */
  679. /* > \author Univ. of California Berkeley */
  680. /* > \author Univ. of Colorado Denver */
  681. /* > \author NAG Ltd. */
  682. /* > \date June 2016 */
  683. /* > \ingroup complex16OTHERcomputational */
  684. /* ===================================================================== */
  685. /* Subroutine */ int zpftrf_(char *transr, char *uplo, integer *n,
  686. doublecomplex *a, integer *info)
  687. {
  688. /* System generated locals */
  689. integer i__1, i__2;
  690. /* Local variables */
  691. integer k;
  692. logical normaltransr;
  693. extern logical lsame_(char *, char *);
  694. extern /* Subroutine */ int zherk_(char *, char *, integer *, integer *,
  695. doublereal *, doublecomplex *, integer *, doublereal *,
  696. doublecomplex *, integer *);
  697. logical lower;
  698. integer n1, n2;
  699. extern /* Subroutine */ int ztrsm_(char *, char *, char *, char *,
  700. integer *, integer *, doublecomplex *, doublecomplex *, integer *,
  701. doublecomplex *, integer *),
  702. xerbla_(char *, integer *, ftnlen);
  703. logical nisodd;
  704. extern /* Subroutine */ int zpotrf_(char *, integer *, doublecomplex *,
  705. integer *, integer *);
  706. /* -- LAPACK computational routine (version 3.7.0) -- */
  707. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  708. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  709. /* June 2016 */
  710. /* ===================================================================== */
  711. /* Test the input parameters. */
  712. *info = 0;
  713. normaltransr = lsame_(transr, "N");
  714. lower = lsame_(uplo, "L");
  715. if (! normaltransr && ! lsame_(transr, "C")) {
  716. *info = -1;
  717. } else if (! lower && ! lsame_(uplo, "U")) {
  718. *info = -2;
  719. } else if (*n < 0) {
  720. *info = -3;
  721. }
  722. if (*info != 0) {
  723. i__1 = -(*info);
  724. xerbla_("ZPFTRF", &i__1, (ftnlen)6);
  725. return 0;
  726. }
  727. /* Quick return if possible */
  728. if (*n == 0) {
  729. return 0;
  730. }
  731. /* If N is odd, set NISODD = .TRUE. */
  732. /* If N is even, set K = N/2 and NISODD = .FALSE. */
  733. if (*n % 2 == 0) {
  734. k = *n / 2;
  735. nisodd = FALSE_;
  736. } else {
  737. nisodd = TRUE_;
  738. }
  739. /* Set N1 and N2 depending on LOWER */
  740. if (lower) {
  741. n2 = *n / 2;
  742. n1 = *n - n2;
  743. } else {
  744. n1 = *n / 2;
  745. n2 = *n - n1;
  746. }
  747. /* start execution: there are eight cases */
  748. if (nisodd) {
  749. /* N is odd */
  750. if (normaltransr) {
  751. /* N is odd and TRANSR = 'N' */
  752. if (lower) {
  753. /* SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) ) */
  754. /* T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0) */
  755. /* T1 -> a(0), T2 -> a(n), S -> a(n1) */
  756. zpotrf_("L", &n1, a, n, info);
  757. if (*info > 0) {
  758. return 0;
  759. }
  760. ztrsm_("R", "L", "C", "N", &n2, &n1, &c_b1, a, n, &a[n1], n);
  761. zherk_("U", "N", &n2, &n1, &c_b15, &a[n1], n, &c_b16, &a[*n],
  762. n);
  763. zpotrf_("U", &n2, &a[*n], n, info);
  764. if (*info > 0) {
  765. *info += n1;
  766. }
  767. } else {
  768. /* SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1) */
  769. /* T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0) */
  770. /* T1 -> a(n2), T2 -> a(n1), S -> a(0) */
  771. zpotrf_("L", &n1, &a[n2], n, info);
  772. if (*info > 0) {
  773. return 0;
  774. }
  775. ztrsm_("L", "L", "N", "N", &n1, &n2, &c_b1, &a[n2], n, a, n);
  776. zherk_("U", "C", &n2, &n1, &c_b15, a, n, &c_b16, &a[n1], n);
  777. zpotrf_("U", &n2, &a[n1], n, info);
  778. if (*info > 0) {
  779. *info += n1;
  780. }
  781. }
  782. } else {
  783. /* N is odd and TRANSR = 'C' */
  784. if (lower) {
  785. /* SRPA for LOWER, TRANSPOSE and N is odd */
  786. /* T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1) */
  787. /* T1 -> a(0+0) , T2 -> a(1+0) , S -> a(0+n1*n1); lda=n1 */
  788. zpotrf_("U", &n1, a, &n1, info);
  789. if (*info > 0) {
  790. return 0;
  791. }
  792. ztrsm_("L", "U", "C", "N", &n1, &n2, &c_b1, a, &n1, &a[n1 *
  793. n1], &n1);
  794. zherk_("L", "C", &n2, &n1, &c_b15, &a[n1 * n1], &n1, &c_b16, &
  795. a[1], &n1);
  796. zpotrf_("L", &n2, &a[1], &n1, info);
  797. if (*info > 0) {
  798. *info += n1;
  799. }
  800. } else {
  801. /* SRPA for UPPER, TRANSPOSE and N is odd */
  802. /* T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0) */
  803. /* T1 -> a(n2*n2), T2 -> a(n1*n2), S -> a(0); lda = n2 */
  804. zpotrf_("U", &n1, &a[n2 * n2], &n2, info);
  805. if (*info > 0) {
  806. return 0;
  807. }
  808. ztrsm_("R", "U", "N", "N", &n2, &n1, &c_b1, &a[n2 * n2], &n2,
  809. a, &n2);
  810. zherk_("L", "N", &n2, &n1, &c_b15, a, &n2, &c_b16, &a[n1 * n2]
  811. , &n2);
  812. zpotrf_("L", &n2, &a[n1 * n2], &n2, info);
  813. if (*info > 0) {
  814. *info += n1;
  815. }
  816. }
  817. }
  818. } else {
  819. /* N is even */
  820. if (normaltransr) {
  821. /* N is even and TRANSR = 'N' */
  822. if (lower) {
  823. /* SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) ) */
  824. /* T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0) */
  825. /* T1 -> a(1), T2 -> a(0), S -> a(k+1) */
  826. i__1 = *n + 1;
  827. zpotrf_("L", &k, &a[1], &i__1, info);
  828. if (*info > 0) {
  829. return 0;
  830. }
  831. i__1 = *n + 1;
  832. i__2 = *n + 1;
  833. ztrsm_("R", "L", "C", "N", &k, &k, &c_b1, &a[1], &i__1, &a[k
  834. + 1], &i__2);
  835. i__1 = *n + 1;
  836. i__2 = *n + 1;
  837. zherk_("U", "N", &k, &k, &c_b15, &a[k + 1], &i__1, &c_b16, a,
  838. &i__2);
  839. i__1 = *n + 1;
  840. zpotrf_("U", &k, a, &i__1, info);
  841. if (*info > 0) {
  842. *info += k;
  843. }
  844. } else {
  845. /* SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) ) */
  846. /* T1 -> a(k+1,0) , T2 -> a(k,0), S -> a(0,0) */
  847. /* T1 -> a(k+1), T2 -> a(k), S -> a(0) */
  848. i__1 = *n + 1;
  849. zpotrf_("L", &k, &a[k + 1], &i__1, info);
  850. if (*info > 0) {
  851. return 0;
  852. }
  853. i__1 = *n + 1;
  854. i__2 = *n + 1;
  855. ztrsm_("L", "L", "N", "N", &k, &k, &c_b1, &a[k + 1], &i__1, a,
  856. &i__2);
  857. i__1 = *n + 1;
  858. i__2 = *n + 1;
  859. zherk_("U", "C", &k, &k, &c_b15, a, &i__1, &c_b16, &a[k], &
  860. i__2);
  861. i__1 = *n + 1;
  862. zpotrf_("U", &k, &a[k], &i__1, info);
  863. if (*info > 0) {
  864. *info += k;
  865. }
  866. }
  867. } else {
  868. /* N is even and TRANSR = 'C' */
  869. if (lower) {
  870. /* SRPA for LOWER, TRANSPOSE and N is even (see paper) */
  871. /* T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1) */
  872. /* T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k */
  873. zpotrf_("U", &k, &a[k], &k, info);
  874. if (*info > 0) {
  875. return 0;
  876. }
  877. ztrsm_("L", "U", "C", "N", &k, &k, &c_b1, &a[k], &n1, &a[k * (
  878. k + 1)], &k);
  879. zherk_("L", "C", &k, &k, &c_b15, &a[k * (k + 1)], &k, &c_b16,
  880. a, &k);
  881. zpotrf_("L", &k, a, &k, info);
  882. if (*info > 0) {
  883. *info += k;
  884. }
  885. } else {
  886. /* SRPA for UPPER, TRANSPOSE and N is even (see paper) */
  887. /* T1 -> B(0,k+1), T2 -> B(0,k), S -> B(0,0) */
  888. /* T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k */
  889. zpotrf_("U", &k, &a[k * (k + 1)], &k, info);
  890. if (*info > 0) {
  891. return 0;
  892. }
  893. ztrsm_("R", "U", "N", "N", &k, &k, &c_b1, &a[k * (k + 1)], &k,
  894. a, &k);
  895. zherk_("L", "N", &k, &k, &c_b15, a, &k, &c_b16, &a[k * k], &k);
  896. zpotrf_("L", &k, &a[k * k], &k, info);
  897. if (*info > 0) {
  898. *info += k;
  899. }
  900. }
  901. }
  902. }
  903. return 0;
  904. /* End of ZPFTRF */
  905. } /* zpftrf_ */