You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zcgesv.c 30 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static doublecomplex c_b1 = {-1.,0.};
  487. static doublecomplex c_b2 = {1.,0.};
  488. static integer c__1 = 1;
  489. /* > \brief <b> ZCGESV computes the solution to system of linear equations A * X = B for GE matrices</b> (mixe
  490. d precision with iterative refinement) */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* > \htmlonly */
  495. /* > Download ZCGESV + dependencies */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zcgesv.
  497. f"> */
  498. /* > [TGZ]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zcgesv.
  500. f"> */
  501. /* > [ZIP]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zcgesv.
  503. f"> */
  504. /* > [TXT]</a> */
  505. /* > \endhtmlonly */
  506. /* Definition: */
  507. /* =========== */
  508. /* SUBROUTINE ZCGESV( N, NRHS, A, LDA, IPIV, B, LDB, X, LDX, WORK, */
  509. /* SWORK, RWORK, ITER, INFO ) */
  510. /* INTEGER INFO, ITER, LDA, LDB, LDX, N, NRHS */
  511. /* INTEGER IPIV( * ) */
  512. /* DOUBLE PRECISION RWORK( * ) */
  513. /* COMPLEX SWORK( * ) */
  514. /* COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( N, * ), */
  515. /* $ X( LDX, * ) */
  516. /* > \par Purpose: */
  517. /* ============= */
  518. /* > */
  519. /* > \verbatim */
  520. /* > */
  521. /* > ZCGESV computes the solution to a complex system of linear equations */
  522. /* > A * X = B, */
  523. /* > where A is an N-by-N matrix and X and B are N-by-NRHS matrices. */
  524. /* > */
  525. /* > ZCGESV first attempts to factorize the matrix in COMPLEX and use this */
  526. /* > factorization within an iterative refinement procedure to produce a */
  527. /* > solution with COMPLEX*16 normwise backward error quality (see below). */
  528. /* > If the approach fails the method switches to a COMPLEX*16 */
  529. /* > factorization and solve. */
  530. /* > */
  531. /* > The iterative refinement is not going to be a winning strategy if */
  532. /* > the ratio COMPLEX performance over COMPLEX*16 performance is too */
  533. /* > small. A reasonable strategy should take the number of right-hand */
  534. /* > sides and the size of the matrix into account. This might be done */
  535. /* > with a call to ILAENV in the future. Up to now, we always try */
  536. /* > iterative refinement. */
  537. /* > */
  538. /* > The iterative refinement process is stopped if */
  539. /* > ITER > ITERMAX */
  540. /* > or for all the RHS we have: */
  541. /* > RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX */
  542. /* > where */
  543. /* > o ITER is the number of the current iteration in the iterative */
  544. /* > refinement process */
  545. /* > o RNRM is the infinity-norm of the residual */
  546. /* > o XNRM is the infinity-norm of the solution */
  547. /* > o ANRM is the infinity-operator-norm of the matrix A */
  548. /* > o EPS is the machine epsilon returned by DLAMCH('Epsilon') */
  549. /* > The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00 */
  550. /* > respectively. */
  551. /* > \endverbatim */
  552. /* Arguments: */
  553. /* ========== */
  554. /* > \param[in] N */
  555. /* > \verbatim */
  556. /* > N is INTEGER */
  557. /* > The number of linear equations, i.e., the order of the */
  558. /* > matrix A. N >= 0. */
  559. /* > \endverbatim */
  560. /* > */
  561. /* > \param[in] NRHS */
  562. /* > \verbatim */
  563. /* > NRHS is INTEGER */
  564. /* > The number of right hand sides, i.e., the number of columns */
  565. /* > of the matrix B. NRHS >= 0. */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[in,out] A */
  569. /* > \verbatim */
  570. /* > A is COMPLEX*16 array, */
  571. /* > dimension (LDA,N) */
  572. /* > On entry, the N-by-N coefficient matrix A. */
  573. /* > On exit, if iterative refinement has been successfully used */
  574. /* > (INFO = 0 and ITER >= 0, see description below), then A is */
  575. /* > unchanged, if double precision factorization has been used */
  576. /* > (INFO = 0 and ITER < 0, see description below), then the */
  577. /* > array A contains the factors L and U from the factorization */
  578. /* > A = P*L*U; the unit diagonal elements of L are not stored. */
  579. /* > \endverbatim */
  580. /* > */
  581. /* > \param[in] LDA */
  582. /* > \verbatim */
  583. /* > LDA is INTEGER */
  584. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  585. /* > \endverbatim */
  586. /* > */
  587. /* > \param[out] IPIV */
  588. /* > \verbatim */
  589. /* > IPIV is INTEGER array, dimension (N) */
  590. /* > The pivot indices that define the permutation matrix P; */
  591. /* > row i of the matrix was interchanged with row IPIV(i). */
  592. /* > Corresponds either to the single precision factorization */
  593. /* > (if INFO = 0 and ITER >= 0) or the double precision */
  594. /* > factorization (if INFO = 0 and ITER < 0). */
  595. /* > \endverbatim */
  596. /* > */
  597. /* > \param[in] B */
  598. /* > \verbatim */
  599. /* > B is COMPLEX*16 array, dimension (LDB,NRHS) */
  600. /* > The N-by-NRHS right hand side matrix B. */
  601. /* > \endverbatim */
  602. /* > */
  603. /* > \param[in] LDB */
  604. /* > \verbatim */
  605. /* > LDB is INTEGER */
  606. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  607. /* > \endverbatim */
  608. /* > */
  609. /* > \param[out] X */
  610. /* > \verbatim */
  611. /* > X is COMPLEX*16 array, dimension (LDX,NRHS) */
  612. /* > If INFO = 0, the N-by-NRHS solution matrix X. */
  613. /* > \endverbatim */
  614. /* > */
  615. /* > \param[in] LDX */
  616. /* > \verbatim */
  617. /* > LDX is INTEGER */
  618. /* > The leading dimension of the array X. LDX >= f2cmax(1,N). */
  619. /* > \endverbatim */
  620. /* > */
  621. /* > \param[out] WORK */
  622. /* > \verbatim */
  623. /* > WORK is COMPLEX*16 array, dimension (N,NRHS) */
  624. /* > This array is used to hold the residual vectors. */
  625. /* > \endverbatim */
  626. /* > */
  627. /* > \param[out] SWORK */
  628. /* > \verbatim */
  629. /* > SWORK is COMPLEX array, dimension (N*(N+NRHS)) */
  630. /* > This array is used to use the single precision matrix and the */
  631. /* > right-hand sides or solutions in single precision. */
  632. /* > \endverbatim */
  633. /* > */
  634. /* > \param[out] RWORK */
  635. /* > \verbatim */
  636. /* > RWORK is DOUBLE PRECISION array, dimension (N) */
  637. /* > \endverbatim */
  638. /* > */
  639. /* > \param[out] ITER */
  640. /* > \verbatim */
  641. /* > ITER is INTEGER */
  642. /* > < 0: iterative refinement has failed, COMPLEX*16 */
  643. /* > factorization has been performed */
  644. /* > -1 : the routine fell back to full precision for */
  645. /* > implementation- or machine-specific reasons */
  646. /* > -2 : narrowing the precision induced an overflow, */
  647. /* > the routine fell back to full precision */
  648. /* > -3 : failure of CGETRF */
  649. /* > -31: stop the iterative refinement after the 30th */
  650. /* > iterations */
  651. /* > > 0: iterative refinement has been successfully used. */
  652. /* > Returns the number of iterations */
  653. /* > \endverbatim */
  654. /* > */
  655. /* > \param[out] INFO */
  656. /* > \verbatim */
  657. /* > INFO is INTEGER */
  658. /* > = 0: successful exit */
  659. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  660. /* > > 0: if INFO = i, U(i,i) computed in COMPLEX*16 is exactly */
  661. /* > zero. The factorization has been completed, but the */
  662. /* > factor U is exactly singular, so the solution */
  663. /* > could not be computed. */
  664. /* > \endverbatim */
  665. /* Authors: */
  666. /* ======== */
  667. /* > \author Univ. of Tennessee */
  668. /* > \author Univ. of California Berkeley */
  669. /* > \author Univ. of Colorado Denver */
  670. /* > \author NAG Ltd. */
  671. /* > \date June 2016 */
  672. /* > \ingroup complex16GEsolve */
  673. /* ===================================================================== */
  674. /* Subroutine */ int zcgesv_(integer *n, integer *nrhs, doublecomplex *a,
  675. integer *lda, integer *ipiv, doublecomplex *b, integer *ldb,
  676. doublecomplex *x, integer *ldx, doublecomplex *work, complex *swork,
  677. doublereal *rwork, integer *iter, integer *info)
  678. {
  679. /* System generated locals */
  680. integer a_dim1, a_offset, b_dim1, b_offset, work_dim1, work_offset,
  681. x_dim1, x_offset, i__1, i__2;
  682. doublereal d__1, d__2;
  683. /* Local variables */
  684. doublereal anrm;
  685. integer ptsa;
  686. doublereal rnrm, xnrm;
  687. integer ptsx, i__, iiter;
  688. extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *,
  689. integer *, doublecomplex *, doublecomplex *, integer *,
  690. doublecomplex *, integer *, doublecomplex *, doublecomplex *,
  691. integer *), zaxpy_(integer *, doublecomplex *,
  692. doublecomplex *, integer *, doublecomplex *, integer *), clag2z_(
  693. integer *, integer *, complex *, integer *, doublecomplex *,
  694. integer *, integer *), zlag2c_(integer *, integer *,
  695. doublecomplex *, integer *, complex *, integer *, integer *);
  696. extern doublereal dlamch_(char *);
  697. extern /* Subroutine */ int cgetrf_(integer *, integer *, complex *,
  698. integer *, integer *, integer *), xerbla_(char *, integer *, ftnlen);
  699. extern doublereal zlange_(char *, integer *, integer *, doublecomplex *,
  700. integer *, doublereal *);
  701. extern /* Subroutine */ int cgetrs_(char *, integer *, integer *, complex
  702. *, integer *, integer *, complex *, integer *, integer *);
  703. extern integer izamax_(integer *, doublecomplex *, integer *);
  704. extern /* Subroutine */ int zlacpy_(char *, integer *, integer *,
  705. doublecomplex *, integer *, doublecomplex *, integer *),
  706. zgetrf_(integer *, integer *, doublecomplex *, integer *, integer
  707. *, integer *), zgetrs_(char *, integer *, integer *,
  708. doublecomplex *, integer *, integer *, doublecomplex *, integer *,
  709. integer *);
  710. doublereal cte, eps;
  711. /* -- LAPACK driver routine (version 3.8.0) -- */
  712. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  713. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  714. /* June 2016 */
  715. /* ===================================================================== */
  716. /* Parameter adjustments */
  717. work_dim1 = *n;
  718. work_offset = 1 + work_dim1 * 1;
  719. work -= work_offset;
  720. a_dim1 = *lda;
  721. a_offset = 1 + a_dim1 * 1;
  722. a -= a_offset;
  723. --ipiv;
  724. b_dim1 = *ldb;
  725. b_offset = 1 + b_dim1 * 1;
  726. b -= b_offset;
  727. x_dim1 = *ldx;
  728. x_offset = 1 + x_dim1 * 1;
  729. x -= x_offset;
  730. --swork;
  731. --rwork;
  732. /* Function Body */
  733. *info = 0;
  734. *iter = 0;
  735. /* Test the input parameters. */
  736. if (*n < 0) {
  737. *info = -1;
  738. } else if (*nrhs < 0) {
  739. *info = -2;
  740. } else if (*lda < f2cmax(1,*n)) {
  741. *info = -4;
  742. } else if (*ldb < f2cmax(1,*n)) {
  743. *info = -7;
  744. } else if (*ldx < f2cmax(1,*n)) {
  745. *info = -9;
  746. }
  747. if (*info != 0) {
  748. i__1 = -(*info);
  749. xerbla_("ZCGESV", &i__1, (ftnlen)6);
  750. return 0;
  751. }
  752. /* Quick return if (N.EQ.0). */
  753. if (*n == 0) {
  754. return 0;
  755. }
  756. /* Skip single precision iterative refinement if a priori slower */
  757. /* than double precision factorization. */
  758. if (FALSE_) {
  759. *iter = -1;
  760. goto L40;
  761. }
  762. /* Compute some constants. */
  763. anrm = zlange_("I", n, n, &a[a_offset], lda, &rwork[1]);
  764. eps = dlamch_("Epsilon");
  765. cte = anrm * eps * sqrt((doublereal) (*n)) * 1.;
  766. /* Set the indices PTSA, PTSX for referencing SA and SX in SWORK. */
  767. ptsa = 1;
  768. ptsx = ptsa + *n * *n;
  769. /* Convert B from double precision to single precision and store the */
  770. /* result in SX. */
  771. zlag2c_(n, nrhs, &b[b_offset], ldb, &swork[ptsx], n, info);
  772. if (*info != 0) {
  773. *iter = -2;
  774. goto L40;
  775. }
  776. /* Convert A from double precision to single precision and store the */
  777. /* result in SA. */
  778. zlag2c_(n, n, &a[a_offset], lda, &swork[ptsa], n, info);
  779. if (*info != 0) {
  780. *iter = -2;
  781. goto L40;
  782. }
  783. /* Compute the LU factorization of SA. */
  784. cgetrf_(n, n, &swork[ptsa], n, &ipiv[1], info);
  785. if (*info != 0) {
  786. *iter = -3;
  787. goto L40;
  788. }
  789. /* Solve the system SA*SX = SB. */
  790. cgetrs_("No transpose", n, nrhs, &swork[ptsa], n, &ipiv[1], &swork[ptsx],
  791. n, info);
  792. /* Convert SX back to double precision */
  793. clag2z_(n, nrhs, &swork[ptsx], n, &x[x_offset], ldx, info);
  794. /* Compute R = B - AX (R is WORK). */
  795. zlacpy_("All", n, nrhs, &b[b_offset], ldb, &work[work_offset], n);
  796. zgemm_("No Transpose", "No Transpose", n, nrhs, n, &c_b1, &a[a_offset],
  797. lda, &x[x_offset], ldx, &c_b2, &work[work_offset], n);
  798. /* Check whether the NRHS normwise backward errors satisfy the */
  799. /* stopping criterion. If yes, set ITER=0 and return. */
  800. i__1 = *nrhs;
  801. for (i__ = 1; i__ <= i__1; ++i__) {
  802. i__2 = izamax_(n, &x[i__ * x_dim1 + 1], &c__1) + i__ * x_dim1;
  803. xnrm = (d__1 = x[i__2].r, abs(d__1)) + (d__2 = d_imag(&x[izamax_(n, &
  804. x[i__ * x_dim1 + 1], &c__1) + i__ * x_dim1]), abs(d__2));
  805. i__2 = izamax_(n, &work[i__ * work_dim1 + 1], &c__1) + i__ *
  806. work_dim1;
  807. rnrm = (d__1 = work[i__2].r, abs(d__1)) + (d__2 = d_imag(&work[
  808. izamax_(n, &work[i__ * work_dim1 + 1], &c__1) + i__ *
  809. work_dim1]), abs(d__2));
  810. if (rnrm > xnrm * cte) {
  811. goto L10;
  812. }
  813. }
  814. /* If we are here, the NRHS normwise backward errors satisfy the */
  815. /* stopping criterion. We are good to exit. */
  816. *iter = 0;
  817. return 0;
  818. L10:
  819. for (iiter = 1; iiter <= 30; ++iiter) {
  820. /* Convert R (in WORK) from double precision to single precision */
  821. /* and store the result in SX. */
  822. zlag2c_(n, nrhs, &work[work_offset], n, &swork[ptsx], n, info);
  823. if (*info != 0) {
  824. *iter = -2;
  825. goto L40;
  826. }
  827. /* Solve the system SA*SX = SR. */
  828. cgetrs_("No transpose", n, nrhs, &swork[ptsa], n, &ipiv[1], &swork[
  829. ptsx], n, info);
  830. /* Convert SX back to double precision and update the current */
  831. /* iterate. */
  832. clag2z_(n, nrhs, &swork[ptsx], n, &work[work_offset], n, info);
  833. i__1 = *nrhs;
  834. for (i__ = 1; i__ <= i__1; ++i__) {
  835. zaxpy_(n, &c_b2, &work[i__ * work_dim1 + 1], &c__1, &x[i__ *
  836. x_dim1 + 1], &c__1);
  837. }
  838. /* Compute R = B - AX (R is WORK). */
  839. zlacpy_("All", n, nrhs, &b[b_offset], ldb, &work[work_offset], n);
  840. zgemm_("No Transpose", "No Transpose", n, nrhs, n, &c_b1, &a[a_offset]
  841. , lda, &x[x_offset], ldx, &c_b2, &work[work_offset], n);
  842. /* Check whether the NRHS normwise backward errors satisfy the */
  843. /* stopping criterion. If yes, set ITER=IITER>0 and return. */
  844. i__1 = *nrhs;
  845. for (i__ = 1; i__ <= i__1; ++i__) {
  846. i__2 = izamax_(n, &x[i__ * x_dim1 + 1], &c__1) + i__ * x_dim1;
  847. xnrm = (d__1 = x[i__2].r, abs(d__1)) + (d__2 = d_imag(&x[izamax_(
  848. n, &x[i__ * x_dim1 + 1], &c__1) + i__ * x_dim1]), abs(
  849. d__2));
  850. i__2 = izamax_(n, &work[i__ * work_dim1 + 1], &c__1) + i__ *
  851. work_dim1;
  852. rnrm = (d__1 = work[i__2].r, abs(d__1)) + (d__2 = d_imag(&work[
  853. izamax_(n, &work[i__ * work_dim1 + 1], &c__1) + i__ *
  854. work_dim1]), abs(d__2));
  855. if (rnrm > xnrm * cte) {
  856. goto L20;
  857. }
  858. }
  859. /* If we are here, the NRHS normwise backward errors satisfy the */
  860. /* stopping criterion, we are good to exit. */
  861. *iter = iiter;
  862. return 0;
  863. L20:
  864. /* L30: */
  865. ;
  866. }
  867. /* If we are at this place of the code, this is because we have */
  868. /* performed ITER=ITERMAX iterations and never satisfied the stopping */
  869. /* criterion, set up the ITER flag accordingly and follow up on double */
  870. /* precision routine. */
  871. *iter = -31;
  872. L40:
  873. /* Single-precision iterative refinement failed to converge to a */
  874. /* satisfactory solution, so we resort to double precision. */
  875. zgetrf_(n, n, &a[a_offset], lda, &ipiv[1], info);
  876. if (*info != 0) {
  877. return 0;
  878. }
  879. zlacpy_("All", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
  880. zgetrs_("No transpose", n, nrhs, &a[a_offset], lda, &ipiv[1], &x[x_offset]
  881. , ldx, info);
  882. return 0;
  883. /* End of ZCGESV. */
  884. } /* zcgesv_ */