You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slasyf.c 42 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static real c_b8 = -1.f;
  488. static real c_b9 = 1.f;
  489. /* > \brief \b SLASYF computes a partial factorization of a real symmetric matrix using the Bunch-Kaufman diag
  490. onal pivoting method. */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* > \htmlonly */
  495. /* > Download SLASYF + dependencies */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasyf.
  497. f"> */
  498. /* > [TGZ]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasyf.
  500. f"> */
  501. /* > [ZIP]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasyf.
  503. f"> */
  504. /* > [TXT]</a> */
  505. /* > \endhtmlonly */
  506. /* Definition: */
  507. /* =========== */
  508. /* SUBROUTINE SLASYF( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO ) */
  509. /* CHARACTER UPLO */
  510. /* INTEGER INFO, KB, LDA, LDW, N, NB */
  511. /* INTEGER IPIV( * ) */
  512. /* REAL A( LDA, * ), W( LDW, * ) */
  513. /* > \par Purpose: */
  514. /* ============= */
  515. /* > */
  516. /* > \verbatim */
  517. /* > */
  518. /* > SLASYF computes a partial factorization of a real symmetric matrix A */
  519. /* > using the Bunch-Kaufman diagonal pivoting method. The partial */
  520. /* > factorization has the form: */
  521. /* > */
  522. /* > A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or: */
  523. /* > ( 0 U22 ) ( 0 D ) ( U12**T U22**T ) */
  524. /* > */
  525. /* > A = ( L11 0 ) ( D 0 ) ( L11**T L21**T ) if UPLO = 'L' */
  526. /* > ( L21 I ) ( 0 A22 ) ( 0 I ) */
  527. /* > */
  528. /* > where the order of D is at most NB. The actual order is returned in */
  529. /* > the argument KB, and is either NB or NB-1, or N if N <= NB. */
  530. /* > */
  531. /* > SLASYF is an auxiliary routine called by SSYTRF. It uses blocked code */
  532. /* > (calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or */
  533. /* > A22 (if UPLO = 'L'). */
  534. /* > \endverbatim */
  535. /* Arguments: */
  536. /* ========== */
  537. /* > \param[in] UPLO */
  538. /* > \verbatim */
  539. /* > UPLO is CHARACTER*1 */
  540. /* > Specifies whether the upper or lower triangular part of the */
  541. /* > symmetric matrix A is stored: */
  542. /* > = 'U': Upper triangular */
  543. /* > = 'L': Lower triangular */
  544. /* > \endverbatim */
  545. /* > */
  546. /* > \param[in] N */
  547. /* > \verbatim */
  548. /* > N is INTEGER */
  549. /* > The order of the matrix A. N >= 0. */
  550. /* > \endverbatim */
  551. /* > */
  552. /* > \param[in] NB */
  553. /* > \verbatim */
  554. /* > NB is INTEGER */
  555. /* > The maximum number of columns of the matrix A that should be */
  556. /* > factored. NB should be at least 2 to allow for 2-by-2 pivot */
  557. /* > blocks. */
  558. /* > \endverbatim */
  559. /* > */
  560. /* > \param[out] KB */
  561. /* > \verbatim */
  562. /* > KB is INTEGER */
  563. /* > The number of columns of A that were actually factored. */
  564. /* > KB is either NB-1 or NB, or N if N <= NB. */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[in,out] A */
  568. /* > \verbatim */
  569. /* > A is REAL array, dimension (LDA,N) */
  570. /* > On entry, the symmetric matrix A. If UPLO = 'U', the leading */
  571. /* > n-by-n upper triangular part of A contains the upper */
  572. /* > triangular part of the matrix A, and the strictly lower */
  573. /* > triangular part of A is not referenced. If UPLO = 'L', the */
  574. /* > leading n-by-n lower triangular part of A contains the lower */
  575. /* > triangular part of the matrix A, and the strictly upper */
  576. /* > triangular part of A is not referenced. */
  577. /* > On exit, A contains details of the partial factorization. */
  578. /* > \endverbatim */
  579. /* > */
  580. /* > \param[in] LDA */
  581. /* > \verbatim */
  582. /* > LDA is INTEGER */
  583. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  584. /* > \endverbatim */
  585. /* > */
  586. /* > \param[out] IPIV */
  587. /* > \verbatim */
  588. /* > IPIV is INTEGER array, dimension (N) */
  589. /* > Details of the interchanges and the block structure of D. */
  590. /* > */
  591. /* > If UPLO = 'U': */
  592. /* > Only the last KB elements of IPIV are set. */
  593. /* > */
  594. /* > If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
  595. /* > interchanged and D(k,k) is a 1-by-1 diagonal block. */
  596. /* > */
  597. /* > If IPIV(k) = IPIV(k-1) < 0, then rows and columns */
  598. /* > k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) */
  599. /* > is a 2-by-2 diagonal block. */
  600. /* > */
  601. /* > If UPLO = 'L': */
  602. /* > Only the first KB elements of IPIV are set. */
  603. /* > */
  604. /* > If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
  605. /* > interchanged and D(k,k) is a 1-by-1 diagonal block. */
  606. /* > */
  607. /* > If IPIV(k) = IPIV(k+1) < 0, then rows and columns */
  608. /* > k+1 and -IPIV(k) were interchanged and D(k:k+1,k:k+1) */
  609. /* > is a 2-by-2 diagonal block. */
  610. /* > \endverbatim */
  611. /* > */
  612. /* > \param[out] W */
  613. /* > \verbatim */
  614. /* > W is REAL array, dimension (LDW,NB) */
  615. /* > \endverbatim */
  616. /* > */
  617. /* > \param[in] LDW */
  618. /* > \verbatim */
  619. /* > LDW is INTEGER */
  620. /* > The leading dimension of the array W. LDW >= f2cmax(1,N). */
  621. /* > \endverbatim */
  622. /* > */
  623. /* > \param[out] INFO */
  624. /* > \verbatim */
  625. /* > INFO is INTEGER */
  626. /* > = 0: successful exit */
  627. /* > > 0: if INFO = k, D(k,k) is exactly zero. The factorization */
  628. /* > has been completed, but the block diagonal matrix D is */
  629. /* > exactly singular. */
  630. /* > \endverbatim */
  631. /* Authors: */
  632. /* ======== */
  633. /* > \author Univ. of Tennessee */
  634. /* > \author Univ. of California Berkeley */
  635. /* > \author Univ. of Colorado Denver */
  636. /* > \author NAG Ltd. */
  637. /* > \date November 2013 */
  638. /* > \ingroup realSYcomputational */
  639. /* > \par Contributors: */
  640. /* ================== */
  641. /* > */
  642. /* > \verbatim */
  643. /* > */
  644. /* > November 2013, Igor Kozachenko, */
  645. /* > Computer Science Division, */
  646. /* > University of California, Berkeley */
  647. /* > \endverbatim */
  648. /* ===================================================================== */
  649. /* Subroutine */ int slasyf_(char *uplo, integer *n, integer *nb, integer *kb,
  650. real *a, integer *lda, integer *ipiv, real *w, integer *ldw, integer
  651. *info)
  652. {
  653. /* System generated locals */
  654. integer a_dim1, a_offset, w_dim1, w_offset, i__1, i__2, i__3, i__4, i__5;
  655. real r__1, r__2, r__3;
  656. /* Local variables */
  657. integer imax, jmax, j, k;
  658. real t, alpha;
  659. extern logical lsame_(char *, char *);
  660. extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *),
  661. sgemm_(char *, char *, integer *, integer *, integer *, real *,
  662. real *, integer *, real *, integer *, real *, real *, integer *), sgemv_(char *, integer *, integer *, real *,
  663. real *, integer *, real *, integer *, real *, real *, integer *);
  664. integer kstep;
  665. extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *,
  666. integer *), sswap_(integer *, real *, integer *, real *, integer *
  667. );
  668. real r1, d11, d21, d22;
  669. integer jb, jj, kk, jp, kp;
  670. real absakk;
  671. integer kw;
  672. extern integer isamax_(integer *, real *, integer *);
  673. real colmax, rowmax;
  674. integer kkw;
  675. /* -- LAPACK computational routine (version 3.5.0) -- */
  676. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  677. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  678. /* November 2013 */
  679. /* ===================================================================== */
  680. /* Parameter adjustments */
  681. a_dim1 = *lda;
  682. a_offset = 1 + a_dim1 * 1;
  683. a -= a_offset;
  684. --ipiv;
  685. w_dim1 = *ldw;
  686. w_offset = 1 + w_dim1 * 1;
  687. w -= w_offset;
  688. /* Function Body */
  689. *info = 0;
  690. /* Initialize ALPHA for use in choosing pivot block size. */
  691. alpha = (sqrt(17.f) + 1.f) / 8.f;
  692. if (lsame_(uplo, "U")) {
  693. /* Factorize the trailing columns of A using the upper triangle */
  694. /* of A and working backwards, and compute the matrix W = U12*D */
  695. /* for use in updating A11 */
  696. /* K is the main loop index, decreasing from N in steps of 1 or 2 */
  697. /* KW is the column of W which corresponds to column K of A */
  698. k = *n;
  699. L10:
  700. kw = *nb + k - *n;
  701. /* Exit from loop */
  702. if (k <= *n - *nb + 1 && *nb < *n || k < 1) {
  703. goto L30;
  704. }
  705. /* Copy column K of A to column KW of W and update it */
  706. scopy_(&k, &a[k * a_dim1 + 1], &c__1, &w[kw * w_dim1 + 1], &c__1);
  707. if (k < *n) {
  708. i__1 = *n - k;
  709. sgemv_("No transpose", &k, &i__1, &c_b8, &a[(k + 1) * a_dim1 + 1],
  710. lda, &w[k + (kw + 1) * w_dim1], ldw, &c_b9, &w[kw *
  711. w_dim1 + 1], &c__1);
  712. }
  713. kstep = 1;
  714. /* Determine rows and columns to be interchanged and whether */
  715. /* a 1-by-1 or 2-by-2 pivot block will be used */
  716. absakk = (r__1 = w[k + kw * w_dim1], abs(r__1));
  717. /* IMAX is the row-index of the largest off-diagonal element in */
  718. /* column K, and COLMAX is its absolute value. */
  719. /* Determine both COLMAX and IMAX. */
  720. if (k > 1) {
  721. i__1 = k - 1;
  722. imax = isamax_(&i__1, &w[kw * w_dim1 + 1], &c__1);
  723. colmax = (r__1 = w[imax + kw * w_dim1], abs(r__1));
  724. } else {
  725. colmax = 0.f;
  726. }
  727. if (f2cmax(absakk,colmax) == 0.f) {
  728. /* Column K is zero or underflow: set INFO and continue */
  729. if (*info == 0) {
  730. *info = k;
  731. }
  732. kp = k;
  733. } else {
  734. if (absakk >= alpha * colmax) {
  735. /* no interchange, use 1-by-1 pivot block */
  736. kp = k;
  737. } else {
  738. /* Copy column IMAX to column KW-1 of W and update it */
  739. scopy_(&imax, &a[imax * a_dim1 + 1], &c__1, &w[(kw - 1) *
  740. w_dim1 + 1], &c__1);
  741. i__1 = k - imax;
  742. scopy_(&i__1, &a[imax + (imax + 1) * a_dim1], lda, &w[imax +
  743. 1 + (kw - 1) * w_dim1], &c__1);
  744. if (k < *n) {
  745. i__1 = *n - k;
  746. sgemv_("No transpose", &k, &i__1, &c_b8, &a[(k + 1) *
  747. a_dim1 + 1], lda, &w[imax + (kw + 1) * w_dim1],
  748. ldw, &c_b9, &w[(kw - 1) * w_dim1 + 1], &c__1);
  749. }
  750. /* JMAX is the column-index of the largest off-diagonal */
  751. /* element in row IMAX, and ROWMAX is its absolute value */
  752. i__1 = k - imax;
  753. jmax = imax + isamax_(&i__1, &w[imax + 1 + (kw - 1) * w_dim1],
  754. &c__1);
  755. rowmax = (r__1 = w[jmax + (kw - 1) * w_dim1], abs(r__1));
  756. if (imax > 1) {
  757. i__1 = imax - 1;
  758. jmax = isamax_(&i__1, &w[(kw - 1) * w_dim1 + 1], &c__1);
  759. /* Computing MAX */
  760. r__2 = rowmax, r__3 = (r__1 = w[jmax + (kw - 1) * w_dim1],
  761. abs(r__1));
  762. rowmax = f2cmax(r__2,r__3);
  763. }
  764. if (absakk >= alpha * colmax * (colmax / rowmax)) {
  765. /* no interchange, use 1-by-1 pivot block */
  766. kp = k;
  767. } else if ((r__1 = w[imax + (kw - 1) * w_dim1], abs(r__1)) >=
  768. alpha * rowmax) {
  769. /* interchange rows and columns K and IMAX, use 1-by-1 */
  770. /* pivot block */
  771. kp = imax;
  772. /* copy column KW-1 of W to column KW of W */
  773. scopy_(&k, &w[(kw - 1) * w_dim1 + 1], &c__1, &w[kw *
  774. w_dim1 + 1], &c__1);
  775. } else {
  776. /* interchange rows and columns K-1 and IMAX, use 2-by-2 */
  777. /* pivot block */
  778. kp = imax;
  779. kstep = 2;
  780. }
  781. }
  782. /* ============================================================ */
  783. /* KK is the column of A where pivoting step stopped */
  784. kk = k - kstep + 1;
  785. /* KKW is the column of W which corresponds to column KK of A */
  786. kkw = *nb + kk - *n;
  787. /* Interchange rows and columns KP and KK. */
  788. /* Updated column KP is already stored in column KKW of W. */
  789. if (kp != kk) {
  790. /* Copy non-updated column KK to column KP of submatrix A */
  791. /* at step K. No need to copy element into column K */
  792. /* (or K and K-1 for 2-by-2 pivot) of A, since these columns */
  793. /* will be later overwritten. */
  794. a[kp + kp * a_dim1] = a[kk + kk * a_dim1];
  795. i__1 = kk - 1 - kp;
  796. scopy_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + (kp +
  797. 1) * a_dim1], lda);
  798. if (kp > 1) {
  799. i__1 = kp - 1;
  800. scopy_(&i__1, &a[kk * a_dim1 + 1], &c__1, &a[kp * a_dim1
  801. + 1], &c__1);
  802. }
  803. /* Interchange rows KK and KP in last K+1 to N columns of A */
  804. /* (columns K (or K and K-1 for 2-by-2 pivot) of A will be */
  805. /* later overwritten). Interchange rows KK and KP */
  806. /* in last KKW to NB columns of W. */
  807. if (k < *n) {
  808. i__1 = *n - k;
  809. sswap_(&i__1, &a[kk + (k + 1) * a_dim1], lda, &a[kp + (k
  810. + 1) * a_dim1], lda);
  811. }
  812. i__1 = *n - kk + 1;
  813. sswap_(&i__1, &w[kk + kkw * w_dim1], ldw, &w[kp + kkw *
  814. w_dim1], ldw);
  815. }
  816. if (kstep == 1) {
  817. /* 1-by-1 pivot block D(k): column kw of W now holds */
  818. /* W(kw) = U(k)*D(k), */
  819. /* where U(k) is the k-th column of U */
  820. /* Store subdiag. elements of column U(k) */
  821. /* and 1-by-1 block D(k) in column k of A. */
  822. /* NOTE: Diagonal element U(k,k) is a UNIT element */
  823. /* and not stored. */
  824. /* A(k,k) := D(k,k) = W(k,kw) */
  825. /* A(1:k-1,k) := U(1:k-1,k) = W(1:k-1,kw)/D(k,k) */
  826. scopy_(&k, &w[kw * w_dim1 + 1], &c__1, &a[k * a_dim1 + 1], &
  827. c__1);
  828. r1 = 1.f / a[k + k * a_dim1];
  829. i__1 = k - 1;
  830. sscal_(&i__1, &r1, &a[k * a_dim1 + 1], &c__1);
  831. } else {
  832. /* 2-by-2 pivot block D(k): columns kw and kw-1 of W now hold */
  833. /* ( W(kw-1) W(kw) ) = ( U(k-1) U(k) )*D(k) */
  834. /* where U(k) and U(k-1) are the k-th and (k-1)-th columns */
  835. /* of U */
  836. /* Store U(1:k-2,k-1) and U(1:k-2,k) and 2-by-2 */
  837. /* block D(k-1:k,k-1:k) in columns k-1 and k of A. */
  838. /* NOTE: 2-by-2 diagonal block U(k-1:k,k-1:k) is a UNIT */
  839. /* block and not stored. */
  840. /* A(k-1:k,k-1:k) := D(k-1:k,k-1:k) = W(k-1:k,kw-1:kw) */
  841. /* A(1:k-2,k-1:k) := U(1:k-2,k:k-1:k) = */
  842. /* = W(1:k-2,kw-1:kw) * ( D(k-1:k,k-1:k)**(-1) ) */
  843. if (k > 2) {
  844. /* Compose the columns of the inverse of 2-by-2 pivot */
  845. /* block D in the following way to reduce the number */
  846. /* of FLOPS when we myltiply panel ( W(kw-1) W(kw) ) by */
  847. /* this inverse */
  848. /* D**(-1) = ( d11 d21 )**(-1) = */
  849. /* ( d21 d22 ) */
  850. /* = 1/(d11*d22-d21**2) * ( ( d22 ) (-d21 ) ) = */
  851. /* ( (-d21 ) ( d11 ) ) */
  852. /* = 1/d21 * 1/((d11/d21)*(d22/d21)-1) * */
  853. /* * ( ( d22/d21 ) ( -1 ) ) = */
  854. /* ( ( -1 ) ( d11/d21 ) ) */
  855. /* = 1/d21 * 1/(D22*D11-1) * ( ( D11 ) ( -1 ) ) = */
  856. /* ( ( -1 ) ( D22 ) ) */
  857. /* = 1/d21 * T * ( ( D11 ) ( -1 ) ) */
  858. /* ( ( -1 ) ( D22 ) ) */
  859. /* = D21 * ( ( D11 ) ( -1 ) ) */
  860. /* ( ( -1 ) ( D22 ) ) */
  861. d21 = w[k - 1 + kw * w_dim1];
  862. d11 = w[k + kw * w_dim1] / d21;
  863. d22 = w[k - 1 + (kw - 1) * w_dim1] / d21;
  864. t = 1.f / (d11 * d22 - 1.f);
  865. d21 = t / d21;
  866. /* Update elements in columns A(k-1) and A(k) as */
  867. /* dot products of rows of ( W(kw-1) W(kw) ) and columns */
  868. /* of D**(-1) */
  869. i__1 = k - 2;
  870. for (j = 1; j <= i__1; ++j) {
  871. a[j + (k - 1) * a_dim1] = d21 * (d11 * w[j + (kw - 1)
  872. * w_dim1] - w[j + kw * w_dim1]);
  873. a[j + k * a_dim1] = d21 * (d22 * w[j + kw * w_dim1] -
  874. w[j + (kw - 1) * w_dim1]);
  875. /* L20: */
  876. }
  877. }
  878. /* Copy D(k) to A */
  879. a[k - 1 + (k - 1) * a_dim1] = w[k - 1 + (kw - 1) * w_dim1];
  880. a[k - 1 + k * a_dim1] = w[k - 1 + kw * w_dim1];
  881. a[k + k * a_dim1] = w[k + kw * w_dim1];
  882. }
  883. }
  884. /* Store details of the interchanges in IPIV */
  885. if (kstep == 1) {
  886. ipiv[k] = kp;
  887. } else {
  888. ipiv[k] = -kp;
  889. ipiv[k - 1] = -kp;
  890. }
  891. /* Decrease K and return to the start of the main loop */
  892. k -= kstep;
  893. goto L10;
  894. L30:
  895. /* Update the upper triangle of A11 (= A(1:k,1:k)) as */
  896. /* A11 := A11 - U12*D*U12**T = A11 - U12*W**T */
  897. /* computing blocks of NB columns at a time */
  898. i__1 = -(*nb);
  899. for (j = (k - 1) / *nb * *nb + 1; i__1 < 0 ? j >= 1 : j <= 1; j +=
  900. i__1) {
  901. /* Computing MIN */
  902. i__2 = *nb, i__3 = k - j + 1;
  903. jb = f2cmin(i__2,i__3);
  904. /* Update the upper triangle of the diagonal block */
  905. i__2 = j + jb - 1;
  906. for (jj = j; jj <= i__2; ++jj) {
  907. i__3 = jj - j + 1;
  908. i__4 = *n - k;
  909. sgemv_("No transpose", &i__3, &i__4, &c_b8, &a[j + (k + 1) *
  910. a_dim1], lda, &w[jj + (kw + 1) * w_dim1], ldw, &c_b9,
  911. &a[j + jj * a_dim1], &c__1);
  912. /* L40: */
  913. }
  914. /* Update the rectangular superdiagonal block */
  915. i__2 = j - 1;
  916. i__3 = *n - k;
  917. sgemm_("No transpose", "Transpose", &i__2, &jb, &i__3, &c_b8, &a[(
  918. k + 1) * a_dim1 + 1], lda, &w[j + (kw + 1) * w_dim1], ldw,
  919. &c_b9, &a[j * a_dim1 + 1], lda);
  920. /* L50: */
  921. }
  922. /* Put U12 in standard form by partially undoing the interchanges */
  923. /* in columns k+1:n looping backwards from k+1 to n */
  924. j = k + 1;
  925. L60:
  926. /* Undo the interchanges (if any) of rows JJ and JP at each */
  927. /* step J */
  928. /* (Here, J is a diagonal index) */
  929. jj = j;
  930. jp = ipiv[j];
  931. if (jp < 0) {
  932. jp = -jp;
  933. /* (Here, J is a diagonal index) */
  934. ++j;
  935. }
  936. /* (NOTE: Here, J is used to determine row length. Length N-J+1 */
  937. /* of the rows to swap back doesn't include diagonal element) */
  938. ++j;
  939. if (jp != jj && j <= *n) {
  940. i__1 = *n - j + 1;
  941. sswap_(&i__1, &a[jp + j * a_dim1], lda, &a[jj + j * a_dim1], lda);
  942. }
  943. if (j < *n) {
  944. goto L60;
  945. }
  946. /* Set KB to the number of columns factorized */
  947. *kb = *n - k;
  948. } else {
  949. /* Factorize the leading columns of A using the lower triangle */
  950. /* of A and working forwards, and compute the matrix W = L21*D */
  951. /* for use in updating A22 */
  952. /* K is the main loop index, increasing from 1 in steps of 1 or 2 */
  953. k = 1;
  954. L70:
  955. /* Exit from loop */
  956. if (k >= *nb && *nb < *n || k > *n) {
  957. goto L90;
  958. }
  959. /* Copy column K of A to column K of W and update it */
  960. i__1 = *n - k + 1;
  961. scopy_(&i__1, &a[k + k * a_dim1], &c__1, &w[k + k * w_dim1], &c__1);
  962. i__1 = *n - k + 1;
  963. i__2 = k - 1;
  964. sgemv_("No transpose", &i__1, &i__2, &c_b8, &a[k + a_dim1], lda, &w[k
  965. + w_dim1], ldw, &c_b9, &w[k + k * w_dim1], &c__1);
  966. kstep = 1;
  967. /* Determine rows and columns to be interchanged and whether */
  968. /* a 1-by-1 or 2-by-2 pivot block will be used */
  969. absakk = (r__1 = w[k + k * w_dim1], abs(r__1));
  970. /* IMAX is the row-index of the largest off-diagonal element in */
  971. /* column K, and COLMAX is its absolute value. */
  972. /* Determine both COLMAX and IMAX. */
  973. if (k < *n) {
  974. i__1 = *n - k;
  975. imax = k + isamax_(&i__1, &w[k + 1 + k * w_dim1], &c__1);
  976. colmax = (r__1 = w[imax + k * w_dim1], abs(r__1));
  977. } else {
  978. colmax = 0.f;
  979. }
  980. if (f2cmax(absakk,colmax) == 0.f) {
  981. /* Column K is zero or underflow: set INFO and continue */
  982. if (*info == 0) {
  983. *info = k;
  984. }
  985. kp = k;
  986. } else {
  987. if (absakk >= alpha * colmax) {
  988. /* no interchange, use 1-by-1 pivot block */
  989. kp = k;
  990. } else {
  991. /* Copy column IMAX to column K+1 of W and update it */
  992. i__1 = imax - k;
  993. scopy_(&i__1, &a[imax + k * a_dim1], lda, &w[k + (k + 1) *
  994. w_dim1], &c__1);
  995. i__1 = *n - imax + 1;
  996. scopy_(&i__1, &a[imax + imax * a_dim1], &c__1, &w[imax + (k +
  997. 1) * w_dim1], &c__1);
  998. i__1 = *n - k + 1;
  999. i__2 = k - 1;
  1000. sgemv_("No transpose", &i__1, &i__2, &c_b8, &a[k + a_dim1],
  1001. lda, &w[imax + w_dim1], ldw, &c_b9, &w[k + (k + 1) *
  1002. w_dim1], &c__1);
  1003. /* JMAX is the column-index of the largest off-diagonal */
  1004. /* element in row IMAX, and ROWMAX is its absolute value */
  1005. i__1 = imax - k;
  1006. jmax = k - 1 + isamax_(&i__1, &w[k + (k + 1) * w_dim1], &c__1)
  1007. ;
  1008. rowmax = (r__1 = w[jmax + (k + 1) * w_dim1], abs(r__1));
  1009. if (imax < *n) {
  1010. i__1 = *n - imax;
  1011. jmax = imax + isamax_(&i__1, &w[imax + 1 + (k + 1) *
  1012. w_dim1], &c__1);
  1013. /* Computing MAX */
  1014. r__2 = rowmax, r__3 = (r__1 = w[jmax + (k + 1) * w_dim1],
  1015. abs(r__1));
  1016. rowmax = f2cmax(r__2,r__3);
  1017. }
  1018. if (absakk >= alpha * colmax * (colmax / rowmax)) {
  1019. /* no interchange, use 1-by-1 pivot block */
  1020. kp = k;
  1021. } else if ((r__1 = w[imax + (k + 1) * w_dim1], abs(r__1)) >=
  1022. alpha * rowmax) {
  1023. /* interchange rows and columns K and IMAX, use 1-by-1 */
  1024. /* pivot block */
  1025. kp = imax;
  1026. /* copy column K+1 of W to column K of W */
  1027. i__1 = *n - k + 1;
  1028. scopy_(&i__1, &w[k + (k + 1) * w_dim1], &c__1, &w[k + k *
  1029. w_dim1], &c__1);
  1030. } else {
  1031. /* interchange rows and columns K+1 and IMAX, use 2-by-2 */
  1032. /* pivot block */
  1033. kp = imax;
  1034. kstep = 2;
  1035. }
  1036. }
  1037. /* ============================================================ */
  1038. /* KK is the column of A where pivoting step stopped */
  1039. kk = k + kstep - 1;
  1040. /* Interchange rows and columns KP and KK. */
  1041. /* Updated column KP is already stored in column KK of W. */
  1042. if (kp != kk) {
  1043. /* Copy non-updated column KK to column KP of submatrix A */
  1044. /* at step K. No need to copy element into column K */
  1045. /* (or K and K+1 for 2-by-2 pivot) of A, since these columns */
  1046. /* will be later overwritten. */
  1047. a[kp + kp * a_dim1] = a[kk + kk * a_dim1];
  1048. i__1 = kp - kk - 1;
  1049. scopy_(&i__1, &a[kk + 1 + kk * a_dim1], &c__1, &a[kp + (kk +
  1050. 1) * a_dim1], lda);
  1051. if (kp < *n) {
  1052. i__1 = *n - kp;
  1053. scopy_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + 1
  1054. + kp * a_dim1], &c__1);
  1055. }
  1056. /* Interchange rows KK and KP in first K-1 columns of A */
  1057. /* (columns K (or K and K+1 for 2-by-2 pivot) of A will be */
  1058. /* later overwritten). Interchange rows KK and KP */
  1059. /* in first KK columns of W. */
  1060. if (k > 1) {
  1061. i__1 = k - 1;
  1062. sswap_(&i__1, &a[kk + a_dim1], lda, &a[kp + a_dim1], lda);
  1063. }
  1064. sswap_(&kk, &w[kk + w_dim1], ldw, &w[kp + w_dim1], ldw);
  1065. }
  1066. if (kstep == 1) {
  1067. /* 1-by-1 pivot block D(k): column k of W now holds */
  1068. /* W(k) = L(k)*D(k), */
  1069. /* where L(k) is the k-th column of L */
  1070. /* Store subdiag. elements of column L(k) */
  1071. /* and 1-by-1 block D(k) in column k of A. */
  1072. /* (NOTE: Diagonal element L(k,k) is a UNIT element */
  1073. /* and not stored) */
  1074. /* A(k,k) := D(k,k) = W(k,k) */
  1075. /* A(k+1:N,k) := L(k+1:N,k) = W(k+1:N,k)/D(k,k) */
  1076. i__1 = *n - k + 1;
  1077. scopy_(&i__1, &w[k + k * w_dim1], &c__1, &a[k + k * a_dim1], &
  1078. c__1);
  1079. if (k < *n) {
  1080. r1 = 1.f / a[k + k * a_dim1];
  1081. i__1 = *n - k;
  1082. sscal_(&i__1, &r1, &a[k + 1 + k * a_dim1], &c__1);
  1083. }
  1084. } else {
  1085. /* 2-by-2 pivot block D(k): columns k and k+1 of W now hold */
  1086. /* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k) */
  1087. /* where L(k) and L(k+1) are the k-th and (k+1)-th columns */
  1088. /* of L */
  1089. /* Store L(k+2:N,k) and L(k+2:N,k+1) and 2-by-2 */
  1090. /* block D(k:k+1,k:k+1) in columns k and k+1 of A. */
  1091. /* (NOTE: 2-by-2 diagonal block L(k:k+1,k:k+1) is a UNIT */
  1092. /* block and not stored) */
  1093. /* A(k:k+1,k:k+1) := D(k:k+1,k:k+1) = W(k:k+1,k:k+1) */
  1094. /* A(k+2:N,k:k+1) := L(k+2:N,k:k+1) = */
  1095. /* = W(k+2:N,k:k+1) * ( D(k:k+1,k:k+1)**(-1) ) */
  1096. if (k < *n - 1) {
  1097. /* Compose the columns of the inverse of 2-by-2 pivot */
  1098. /* block D in the following way to reduce the number */
  1099. /* of FLOPS when we myltiply panel ( W(k) W(k+1) ) by */
  1100. /* this inverse */
  1101. /* D**(-1) = ( d11 d21 )**(-1) = */
  1102. /* ( d21 d22 ) */
  1103. /* = 1/(d11*d22-d21**2) * ( ( d22 ) (-d21 ) ) = */
  1104. /* ( (-d21 ) ( d11 ) ) */
  1105. /* = 1/d21 * 1/((d11/d21)*(d22/d21)-1) * */
  1106. /* * ( ( d22/d21 ) ( -1 ) ) = */
  1107. /* ( ( -1 ) ( d11/d21 ) ) */
  1108. /* = 1/d21 * 1/(D22*D11-1) * ( ( D11 ) ( -1 ) ) = */
  1109. /* ( ( -1 ) ( D22 ) ) */
  1110. /* = 1/d21 * T * ( ( D11 ) ( -1 ) ) */
  1111. /* ( ( -1 ) ( D22 ) ) */
  1112. /* = D21 * ( ( D11 ) ( -1 ) ) */
  1113. /* ( ( -1 ) ( D22 ) ) */
  1114. d21 = w[k + 1 + k * w_dim1];
  1115. d11 = w[k + 1 + (k + 1) * w_dim1] / d21;
  1116. d22 = w[k + k * w_dim1] / d21;
  1117. t = 1.f / (d11 * d22 - 1.f);
  1118. d21 = t / d21;
  1119. /* Update elements in columns A(k) and A(k+1) as */
  1120. /* dot products of rows of ( W(k) W(k+1) ) and columns */
  1121. /* of D**(-1) */
  1122. i__1 = *n;
  1123. for (j = k + 2; j <= i__1; ++j) {
  1124. a[j + k * a_dim1] = d21 * (d11 * w[j + k * w_dim1] -
  1125. w[j + (k + 1) * w_dim1]);
  1126. a[j + (k + 1) * a_dim1] = d21 * (d22 * w[j + (k + 1) *
  1127. w_dim1] - w[j + k * w_dim1]);
  1128. /* L80: */
  1129. }
  1130. }
  1131. /* Copy D(k) to A */
  1132. a[k + k * a_dim1] = w[k + k * w_dim1];
  1133. a[k + 1 + k * a_dim1] = w[k + 1 + k * w_dim1];
  1134. a[k + 1 + (k + 1) * a_dim1] = w[k + 1 + (k + 1) * w_dim1];
  1135. }
  1136. }
  1137. /* Store details of the interchanges in IPIV */
  1138. if (kstep == 1) {
  1139. ipiv[k] = kp;
  1140. } else {
  1141. ipiv[k] = -kp;
  1142. ipiv[k + 1] = -kp;
  1143. }
  1144. /* Increase K and return to the start of the main loop */
  1145. k += kstep;
  1146. goto L70;
  1147. L90:
  1148. /* Update the lower triangle of A22 (= A(k:n,k:n)) as */
  1149. /* A22 := A22 - L21*D*L21**T = A22 - L21*W**T */
  1150. /* computing blocks of NB columns at a time */
  1151. i__1 = *n;
  1152. i__2 = *nb;
  1153. for (j = k; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
  1154. /* Computing MIN */
  1155. i__3 = *nb, i__4 = *n - j + 1;
  1156. jb = f2cmin(i__3,i__4);
  1157. /* Update the lower triangle of the diagonal block */
  1158. i__3 = j + jb - 1;
  1159. for (jj = j; jj <= i__3; ++jj) {
  1160. i__4 = j + jb - jj;
  1161. i__5 = k - 1;
  1162. sgemv_("No transpose", &i__4, &i__5, &c_b8, &a[jj + a_dim1],
  1163. lda, &w[jj + w_dim1], ldw, &c_b9, &a[jj + jj * a_dim1]
  1164. , &c__1);
  1165. /* L100: */
  1166. }
  1167. /* Update the rectangular subdiagonal block */
  1168. if (j + jb <= *n) {
  1169. i__3 = *n - j - jb + 1;
  1170. i__4 = k - 1;
  1171. sgemm_("No transpose", "Transpose", &i__3, &jb, &i__4, &c_b8,
  1172. &a[j + jb + a_dim1], lda, &w[j + w_dim1], ldw, &c_b9,
  1173. &a[j + jb + j * a_dim1], lda);
  1174. }
  1175. /* L110: */
  1176. }
  1177. /* Put L21 in standard form by partially undoing the interchanges */
  1178. /* of rows in columns 1:k-1 looping backwards from k-1 to 1 */
  1179. j = k - 1;
  1180. L120:
  1181. /* Undo the interchanges (if any) of rows JJ and JP at each */
  1182. /* step J */
  1183. /* (Here, J is a diagonal index) */
  1184. jj = j;
  1185. jp = ipiv[j];
  1186. if (jp < 0) {
  1187. jp = -jp;
  1188. /* (Here, J is a diagonal index) */
  1189. --j;
  1190. }
  1191. /* (NOTE: Here, J is used to determine row length. Length J */
  1192. /* of the rows to swap back doesn't include diagonal element) */
  1193. --j;
  1194. if (jp != jj && j >= 1) {
  1195. sswap_(&j, &a[jp + a_dim1], lda, &a[jj + a_dim1], lda);
  1196. }
  1197. if (j > 1) {
  1198. goto L120;
  1199. }
  1200. /* Set KB to the number of columns factorized */
  1201. *kb = k - 1;
  1202. }
  1203. return 0;
  1204. /* End of SLASYF */
  1205. } /* slasyf_ */