You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slaqr2.c 38 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static integer c_n1 = -1;
  488. static real c_b12 = 0.f;
  489. static real c_b13 = 1.f;
  490. static logical c_true = TRUE_;
  491. /* > \brief \b SLAQR2 performs the orthogonal similarity transformation of a Hessenberg matrix to detect and d
  492. eflate fully converged eigenvalues from a trailing principal submatrix (aggressive early deflation).
  493. */
  494. /* =========== DOCUMENTATION =========== */
  495. /* Online html documentation available at */
  496. /* http://www.netlib.org/lapack/explore-html/ */
  497. /* > \htmlonly */
  498. /* > Download SLAQR2 + dependencies */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaqr2.
  500. f"> */
  501. /* > [TGZ]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaqr2.
  503. f"> */
  504. /* > [ZIP]</a> */
  505. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaqr2.
  506. f"> */
  507. /* > [TXT]</a> */
  508. /* > \endhtmlonly */
  509. /* Definition: */
  510. /* =========== */
  511. /* SUBROUTINE SLAQR2( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ, */
  512. /* IHIZ, Z, LDZ, NS, ND, SR, SI, V, LDV, NH, T, */
  513. /* LDT, NV, WV, LDWV, WORK, LWORK ) */
  514. /* INTEGER IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV, */
  515. /* $ LDZ, LWORK, N, ND, NH, NS, NV, NW */
  516. /* LOGICAL WANTT, WANTZ */
  517. /* REAL H( LDH, * ), SI( * ), SR( * ), T( LDT, * ), */
  518. /* $ V( LDV, * ), WORK( * ), WV( LDWV, * ), */
  519. /* $ Z( LDZ, * ) */
  520. /* > \par Purpose: */
  521. /* ============= */
  522. /* > */
  523. /* > \verbatim */
  524. /* > */
  525. /* > SLAQR2 is identical to SLAQR3 except that it avoids */
  526. /* > recursion by calling SLAHQR instead of SLAQR4. */
  527. /* > */
  528. /* > Aggressive early deflation: */
  529. /* > */
  530. /* > This subroutine accepts as input an upper Hessenberg matrix */
  531. /* > H and performs an orthogonal similarity transformation */
  532. /* > designed to detect and deflate fully converged eigenvalues from */
  533. /* > a trailing principal submatrix. On output H has been over- */
  534. /* > written by a new Hessenberg matrix that is a perturbation of */
  535. /* > an orthogonal similarity transformation of H. It is to be */
  536. /* > hoped that the final version of H has many zero subdiagonal */
  537. /* > entries. */
  538. /* > \endverbatim */
  539. /* Arguments: */
  540. /* ========== */
  541. /* > \param[in] WANTT */
  542. /* > \verbatim */
  543. /* > WANTT is LOGICAL */
  544. /* > If .TRUE., then the Hessenberg matrix H is fully updated */
  545. /* > so that the quasi-triangular Schur factor may be */
  546. /* > computed (in cooperation with the calling subroutine). */
  547. /* > If .FALSE., then only enough of H is updated to preserve */
  548. /* > the eigenvalues. */
  549. /* > \endverbatim */
  550. /* > */
  551. /* > \param[in] WANTZ */
  552. /* > \verbatim */
  553. /* > WANTZ is LOGICAL */
  554. /* > If .TRUE., then the orthogonal matrix Z is updated so */
  555. /* > so that the orthogonal Schur factor may be computed */
  556. /* > (in cooperation with the calling subroutine). */
  557. /* > If .FALSE., then Z is not referenced. */
  558. /* > \endverbatim */
  559. /* > */
  560. /* > \param[in] N */
  561. /* > \verbatim */
  562. /* > N is INTEGER */
  563. /* > The order of the matrix H and (if WANTZ is .TRUE.) the */
  564. /* > order of the orthogonal matrix Z. */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[in] KTOP */
  568. /* > \verbatim */
  569. /* > KTOP is INTEGER */
  570. /* > It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0. */
  571. /* > KBOT and KTOP together determine an isolated block */
  572. /* > along the diagonal of the Hessenberg matrix. */
  573. /* > \endverbatim */
  574. /* > */
  575. /* > \param[in] KBOT */
  576. /* > \verbatim */
  577. /* > KBOT is INTEGER */
  578. /* > It is assumed without a check that either */
  579. /* > KBOT = N or H(KBOT+1,KBOT)=0. KBOT and KTOP together */
  580. /* > determine an isolated block along the diagonal of the */
  581. /* > Hessenberg matrix. */
  582. /* > \endverbatim */
  583. /* > */
  584. /* > \param[in] NW */
  585. /* > \verbatim */
  586. /* > NW is INTEGER */
  587. /* > Deflation window size. 1 <= NW <= (KBOT-KTOP+1). */
  588. /* > \endverbatim */
  589. /* > */
  590. /* > \param[in,out] H */
  591. /* > \verbatim */
  592. /* > H is REAL array, dimension (LDH,N) */
  593. /* > On input the initial N-by-N section of H stores the */
  594. /* > Hessenberg matrix undergoing aggressive early deflation. */
  595. /* > On output H has been transformed by an orthogonal */
  596. /* > similarity transformation, perturbed, and the returned */
  597. /* > to Hessenberg form that (it is to be hoped) has some */
  598. /* > zero subdiagonal entries. */
  599. /* > \endverbatim */
  600. /* > */
  601. /* > \param[in] LDH */
  602. /* > \verbatim */
  603. /* > LDH is INTEGER */
  604. /* > Leading dimension of H just as declared in the calling */
  605. /* > subroutine. N <= LDH */
  606. /* > \endverbatim */
  607. /* > */
  608. /* > \param[in] ILOZ */
  609. /* > \verbatim */
  610. /* > ILOZ is INTEGER */
  611. /* > \endverbatim */
  612. /* > */
  613. /* > \param[in] IHIZ */
  614. /* > \verbatim */
  615. /* > IHIZ is INTEGER */
  616. /* > Specify the rows of Z to which transformations must be */
  617. /* > applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N. */
  618. /* > \endverbatim */
  619. /* > */
  620. /* > \param[in,out] Z */
  621. /* > \verbatim */
  622. /* > Z is REAL array, dimension (LDZ,N) */
  623. /* > IF WANTZ is .TRUE., then on output, the orthogonal */
  624. /* > similarity transformation mentioned above has been */
  625. /* > accumulated into Z(ILOZ:IHIZ,ILOZ:IHIZ) from the right. */
  626. /* > If WANTZ is .FALSE., then Z is unreferenced. */
  627. /* > \endverbatim */
  628. /* > */
  629. /* > \param[in] LDZ */
  630. /* > \verbatim */
  631. /* > LDZ is INTEGER */
  632. /* > The leading dimension of Z just as declared in the */
  633. /* > calling subroutine. 1 <= LDZ. */
  634. /* > \endverbatim */
  635. /* > */
  636. /* > \param[out] NS */
  637. /* > \verbatim */
  638. /* > NS is INTEGER */
  639. /* > The number of unconverged (ie approximate) eigenvalues */
  640. /* > returned in SR and SI that may be used as shifts by the */
  641. /* > calling subroutine. */
  642. /* > \endverbatim */
  643. /* > */
  644. /* > \param[out] ND */
  645. /* > \verbatim */
  646. /* > ND is INTEGER */
  647. /* > The number of converged eigenvalues uncovered by this */
  648. /* > subroutine. */
  649. /* > \endverbatim */
  650. /* > */
  651. /* > \param[out] SR */
  652. /* > \verbatim */
  653. /* > SR is REAL array, dimension (KBOT) */
  654. /* > \endverbatim */
  655. /* > */
  656. /* > \param[out] SI */
  657. /* > \verbatim */
  658. /* > SI is REAL array, dimension (KBOT) */
  659. /* > On output, the real and imaginary parts of approximate */
  660. /* > eigenvalues that may be used for shifts are stored in */
  661. /* > SR(KBOT-ND-NS+1) through SR(KBOT-ND) and */
  662. /* > SI(KBOT-ND-NS+1) through SI(KBOT-ND), respectively. */
  663. /* > The real and imaginary parts of converged eigenvalues */
  664. /* > are stored in SR(KBOT-ND+1) through SR(KBOT) and */
  665. /* > SI(KBOT-ND+1) through SI(KBOT), respectively. */
  666. /* > \endverbatim */
  667. /* > */
  668. /* > \param[out] V */
  669. /* > \verbatim */
  670. /* > V is REAL array, dimension (LDV,NW) */
  671. /* > An NW-by-NW work array. */
  672. /* > \endverbatim */
  673. /* > */
  674. /* > \param[in] LDV */
  675. /* > \verbatim */
  676. /* > LDV is INTEGER */
  677. /* > The leading dimension of V just as declared in the */
  678. /* > calling subroutine. NW <= LDV */
  679. /* > \endverbatim */
  680. /* > */
  681. /* > \param[in] NH */
  682. /* > \verbatim */
  683. /* > NH is INTEGER */
  684. /* > The number of columns of T. NH >= NW. */
  685. /* > \endverbatim */
  686. /* > */
  687. /* > \param[out] T */
  688. /* > \verbatim */
  689. /* > T is REAL array, dimension (LDT,NW) */
  690. /* > \endverbatim */
  691. /* > */
  692. /* > \param[in] LDT */
  693. /* > \verbatim */
  694. /* > LDT is INTEGER */
  695. /* > The leading dimension of T just as declared in the */
  696. /* > calling subroutine. NW <= LDT */
  697. /* > \endverbatim */
  698. /* > */
  699. /* > \param[in] NV */
  700. /* > \verbatim */
  701. /* > NV is INTEGER */
  702. /* > The number of rows of work array WV available for */
  703. /* > workspace. NV >= NW. */
  704. /* > \endverbatim */
  705. /* > */
  706. /* > \param[out] WV */
  707. /* > \verbatim */
  708. /* > WV is REAL array, dimension (LDWV,NW) */
  709. /* > \endverbatim */
  710. /* > */
  711. /* > \param[in] LDWV */
  712. /* > \verbatim */
  713. /* > LDWV is INTEGER */
  714. /* > The leading dimension of W just as declared in the */
  715. /* > calling subroutine. NW <= LDV */
  716. /* > \endverbatim */
  717. /* > */
  718. /* > \param[out] WORK */
  719. /* > \verbatim */
  720. /* > WORK is REAL array, dimension (LWORK) */
  721. /* > On exit, WORK(1) is set to an estimate of the optimal value */
  722. /* > of LWORK for the given values of N, NW, KTOP and KBOT. */
  723. /* > \endverbatim */
  724. /* > */
  725. /* > \param[in] LWORK */
  726. /* > \verbatim */
  727. /* > LWORK is INTEGER */
  728. /* > The dimension of the work array WORK. LWORK = 2*NW */
  729. /* > suffices, but greater efficiency may result from larger */
  730. /* > values of LWORK. */
  731. /* > */
  732. /* > If LWORK = -1, then a workspace query is assumed; SLAQR2 */
  733. /* > only estimates the optimal workspace size for the given */
  734. /* > values of N, NW, KTOP and KBOT. The estimate is returned */
  735. /* > in WORK(1). No error message related to LWORK is issued */
  736. /* > by XERBLA. Neither H nor Z are accessed. */
  737. /* > \endverbatim */
  738. /* Authors: */
  739. /* ======== */
  740. /* > \author Univ. of Tennessee */
  741. /* > \author Univ. of California Berkeley */
  742. /* > \author Univ. of Colorado Denver */
  743. /* > \author NAG Ltd. */
  744. /* > \date June 2017 */
  745. /* > \ingroup realOTHERauxiliary */
  746. /* > \par Contributors: */
  747. /* ================== */
  748. /* > */
  749. /* > Karen Braman and Ralph Byers, Department of Mathematics, */
  750. /* > University of Kansas, USA */
  751. /* > */
  752. /* ===================================================================== */
  753. /* Subroutine */ int slaqr2_(logical *wantt, logical *wantz, integer *n,
  754. integer *ktop, integer *kbot, integer *nw, real *h__, integer *ldh,
  755. integer *iloz, integer *ihiz, real *z__, integer *ldz, integer *ns,
  756. integer *nd, real *sr, real *si, real *v, integer *ldv, integer *nh,
  757. real *t, integer *ldt, integer *nv, real *wv, integer *ldwv, real *
  758. work, integer *lwork)
  759. {
  760. /* System generated locals */
  761. integer h_dim1, h_offset, t_dim1, t_offset, v_dim1, v_offset, wv_dim1,
  762. wv_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4;
  763. real r__1, r__2, r__3, r__4, r__5, r__6;
  764. /* Local variables */
  765. real beta;
  766. integer kend, kcol, info, ifst, ilst, ltop, krow, i__, j, k;
  767. real s;
  768. logical bulge;
  769. extern /* Subroutine */ int slarf_(char *, integer *, integer *, real *,
  770. integer *, real *, real *, integer *, real *), sgemm_(
  771. char *, char *, integer *, integer *, integer *, real *, real *,
  772. integer *, real *, integer *, real *, real *, integer *);
  773. integer infqr;
  774. extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *,
  775. integer *);
  776. integer kwtop;
  777. real aa, bb, cc;
  778. extern /* Subroutine */ int slanv2_(real *, real *, real *, real *, real *
  779. , real *, real *, real *, real *, real *);
  780. real dd, cs;
  781. extern /* Subroutine */ int slabad_(real *, real *);
  782. real sn;
  783. integer jw;
  784. extern real slamch_(char *);
  785. extern /* Subroutine */ int sgehrd_(integer *, integer *, integer *, real
  786. *, integer *, real *, real *, integer *, integer *);
  787. real safmin, safmax;
  788. extern /* Subroutine */ int slarfg_(integer *, real *, real *, integer *,
  789. real *), slahqr_(logical *, logical *, integer *, integer *,
  790. integer *, real *, integer *, real *, real *, integer *, integer *
  791. , real *, integer *, integer *), slacpy_(char *, integer *,
  792. integer *, real *, integer *, real *, integer *), slaset_(
  793. char *, integer *, integer *, real *, real *, real *, integer *);
  794. logical sorted;
  795. extern /* Subroutine */ int strexc_(char *, integer *, real *, integer *,
  796. real *, integer *, integer *, integer *, real *, integer *), sormhr_(char *, char *, integer *, integer *, integer *,
  797. integer *, real *, integer *, real *, real *, integer *, real *,
  798. integer *, integer *);
  799. real smlnum;
  800. integer lwkopt;
  801. real evi, evk, foo;
  802. integer kln;
  803. real tau, ulp;
  804. integer lwk1, lwk2;
  805. /* -- LAPACK auxiliary routine (version 3.7.1) -- */
  806. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  807. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  808. /* June 2017 */
  809. /* ================================================================ */
  810. /* ==== Estimate optimal workspace. ==== */
  811. /* Parameter adjustments */
  812. h_dim1 = *ldh;
  813. h_offset = 1 + h_dim1 * 1;
  814. h__ -= h_offset;
  815. z_dim1 = *ldz;
  816. z_offset = 1 + z_dim1 * 1;
  817. z__ -= z_offset;
  818. --sr;
  819. --si;
  820. v_dim1 = *ldv;
  821. v_offset = 1 + v_dim1 * 1;
  822. v -= v_offset;
  823. t_dim1 = *ldt;
  824. t_offset = 1 + t_dim1 * 1;
  825. t -= t_offset;
  826. wv_dim1 = *ldwv;
  827. wv_offset = 1 + wv_dim1 * 1;
  828. wv -= wv_offset;
  829. --work;
  830. /* Function Body */
  831. /* Computing MIN */
  832. i__1 = *nw, i__2 = *kbot - *ktop + 1;
  833. jw = f2cmin(i__1,i__2);
  834. if (jw <= 2) {
  835. lwkopt = 1;
  836. } else {
  837. /* ==== Workspace query call to SGEHRD ==== */
  838. i__1 = jw - 1;
  839. sgehrd_(&jw, &c__1, &i__1, &t[t_offset], ldt, &work[1], &work[1], &
  840. c_n1, &info);
  841. lwk1 = (integer) work[1];
  842. /* ==== Workspace query call to SORMHR ==== */
  843. i__1 = jw - 1;
  844. sormhr_("R", "N", &jw, &jw, &c__1, &i__1, &t[t_offset], ldt, &work[1],
  845. &v[v_offset], ldv, &work[1], &c_n1, &info);
  846. lwk2 = (integer) work[1];
  847. /* ==== Optimal workspace ==== */
  848. lwkopt = jw + f2cmax(lwk1,lwk2);
  849. }
  850. /* ==== Quick return in case of workspace query. ==== */
  851. if (*lwork == -1) {
  852. work[1] = (real) lwkopt;
  853. return 0;
  854. }
  855. /* ==== Nothing to do ... */
  856. /* ... for an empty active block ... ==== */
  857. *ns = 0;
  858. *nd = 0;
  859. work[1] = 1.f;
  860. if (*ktop > *kbot) {
  861. return 0;
  862. }
  863. /* ... nor for an empty deflation window. ==== */
  864. if (*nw < 1) {
  865. return 0;
  866. }
  867. /* ==== Machine constants ==== */
  868. safmin = slamch_("SAFE MINIMUM");
  869. safmax = 1.f / safmin;
  870. slabad_(&safmin, &safmax);
  871. ulp = slamch_("PRECISION");
  872. smlnum = safmin * ((real) (*n) / ulp);
  873. /* ==== Setup deflation window ==== */
  874. /* Computing MIN */
  875. i__1 = *nw, i__2 = *kbot - *ktop + 1;
  876. jw = f2cmin(i__1,i__2);
  877. kwtop = *kbot - jw + 1;
  878. if (kwtop == *ktop) {
  879. s = 0.f;
  880. } else {
  881. s = h__[kwtop + (kwtop - 1) * h_dim1];
  882. }
  883. if (*kbot == kwtop) {
  884. /* ==== 1-by-1 deflation window: not much to do ==== */
  885. sr[kwtop] = h__[kwtop + kwtop * h_dim1];
  886. si[kwtop] = 0.f;
  887. *ns = 1;
  888. *nd = 0;
  889. /* Computing MAX */
  890. r__2 = smlnum, r__3 = ulp * (r__1 = h__[kwtop + kwtop * h_dim1], abs(
  891. r__1));
  892. if (abs(s) <= f2cmax(r__2,r__3)) {
  893. *ns = 0;
  894. *nd = 1;
  895. if (kwtop > *ktop) {
  896. h__[kwtop + (kwtop - 1) * h_dim1] = 0.f;
  897. }
  898. }
  899. work[1] = 1.f;
  900. return 0;
  901. }
  902. /* ==== Convert to spike-triangular form. (In case of a */
  903. /* . rare QR failure, this routine continues to do */
  904. /* . aggressive early deflation using that part of */
  905. /* . the deflation window that converged using INFQR */
  906. /* . here and there to keep track.) ==== */
  907. slacpy_("U", &jw, &jw, &h__[kwtop + kwtop * h_dim1], ldh, &t[t_offset],
  908. ldt);
  909. i__1 = jw - 1;
  910. i__2 = *ldh + 1;
  911. i__3 = *ldt + 1;
  912. scopy_(&i__1, &h__[kwtop + 1 + kwtop * h_dim1], &i__2, &t[t_dim1 + 2], &
  913. i__3);
  914. slaset_("A", &jw, &jw, &c_b12, &c_b13, &v[v_offset], ldv);
  915. slahqr_(&c_true, &c_true, &jw, &c__1, &jw, &t[t_offset], ldt, &sr[kwtop],
  916. &si[kwtop], &c__1, &jw, &v[v_offset], ldv, &infqr);
  917. /* ==== STREXC needs a clean margin near the diagonal ==== */
  918. i__1 = jw - 3;
  919. for (j = 1; j <= i__1; ++j) {
  920. t[j + 2 + j * t_dim1] = 0.f;
  921. t[j + 3 + j * t_dim1] = 0.f;
  922. /* L10: */
  923. }
  924. if (jw > 2) {
  925. t[jw + (jw - 2) * t_dim1] = 0.f;
  926. }
  927. /* ==== Deflation detection loop ==== */
  928. *ns = jw;
  929. ilst = infqr + 1;
  930. L20:
  931. if (ilst <= *ns) {
  932. if (*ns == 1) {
  933. bulge = FALSE_;
  934. } else {
  935. bulge = t[*ns + (*ns - 1) * t_dim1] != 0.f;
  936. }
  937. /* ==== Small spike tip test for deflation ==== */
  938. if (! bulge) {
  939. /* ==== Real eigenvalue ==== */
  940. foo = (r__1 = t[*ns + *ns * t_dim1], abs(r__1));
  941. if (foo == 0.f) {
  942. foo = abs(s);
  943. }
  944. /* Computing MAX */
  945. r__2 = smlnum, r__3 = ulp * foo;
  946. if ((r__1 = s * v[*ns * v_dim1 + 1], abs(r__1)) <= f2cmax(r__2,r__3))
  947. {
  948. /* ==== Deflatable ==== */
  949. --(*ns);
  950. } else {
  951. /* ==== Undeflatable. Move it up out of the way. */
  952. /* . (STREXC can not fail in this case.) ==== */
  953. ifst = *ns;
  954. strexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst,
  955. &ilst, &work[1], &info);
  956. ++ilst;
  957. }
  958. } else {
  959. /* ==== Complex conjugate pair ==== */
  960. foo = (r__3 = t[*ns + *ns * t_dim1], abs(r__3)) + sqrt((r__1 = t[*
  961. ns + (*ns - 1) * t_dim1], abs(r__1))) * sqrt((r__2 = t[*
  962. ns - 1 + *ns * t_dim1], abs(r__2)));
  963. if (foo == 0.f) {
  964. foo = abs(s);
  965. }
  966. /* Computing MAX */
  967. r__3 = (r__1 = s * v[*ns * v_dim1 + 1], abs(r__1)), r__4 = (r__2 =
  968. s * v[(*ns - 1) * v_dim1 + 1], abs(r__2));
  969. /* Computing MAX */
  970. r__5 = smlnum, r__6 = ulp * foo;
  971. if (f2cmax(r__3,r__4) <= f2cmax(r__5,r__6)) {
  972. /* ==== Deflatable ==== */
  973. *ns += -2;
  974. } else {
  975. /* ==== Undeflatable. Move them up out of the way. */
  976. /* . Fortunately, STREXC does the right thing with */
  977. /* . ILST in case of a rare exchange failure. ==== */
  978. ifst = *ns;
  979. strexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst,
  980. &ilst, &work[1], &info);
  981. ilst += 2;
  982. }
  983. }
  984. /* ==== End deflation detection loop ==== */
  985. goto L20;
  986. }
  987. /* ==== Return to Hessenberg form ==== */
  988. if (*ns == 0) {
  989. s = 0.f;
  990. }
  991. if (*ns < jw) {
  992. /* ==== sorting diagonal blocks of T improves accuracy for */
  993. /* . graded matrices. Bubble sort deals well with */
  994. /* . exchange failures. ==== */
  995. sorted = FALSE_;
  996. i__ = *ns + 1;
  997. L30:
  998. if (sorted) {
  999. goto L50;
  1000. }
  1001. sorted = TRUE_;
  1002. kend = i__ - 1;
  1003. i__ = infqr + 1;
  1004. if (i__ == *ns) {
  1005. k = i__ + 1;
  1006. } else if (t[i__ + 1 + i__ * t_dim1] == 0.f) {
  1007. k = i__ + 1;
  1008. } else {
  1009. k = i__ + 2;
  1010. }
  1011. L40:
  1012. if (k <= kend) {
  1013. if (k == i__ + 1) {
  1014. evi = (r__1 = t[i__ + i__ * t_dim1], abs(r__1));
  1015. } else {
  1016. evi = (r__3 = t[i__ + i__ * t_dim1], abs(r__3)) + sqrt((r__1 =
  1017. t[i__ + 1 + i__ * t_dim1], abs(r__1))) * sqrt((r__2 =
  1018. t[i__ + (i__ + 1) * t_dim1], abs(r__2)));
  1019. }
  1020. if (k == kend) {
  1021. evk = (r__1 = t[k + k * t_dim1], abs(r__1));
  1022. } else if (t[k + 1 + k * t_dim1] == 0.f) {
  1023. evk = (r__1 = t[k + k * t_dim1], abs(r__1));
  1024. } else {
  1025. evk = (r__3 = t[k + k * t_dim1], abs(r__3)) + sqrt((r__1 = t[
  1026. k + 1 + k * t_dim1], abs(r__1))) * sqrt((r__2 = t[k +
  1027. (k + 1) * t_dim1], abs(r__2)));
  1028. }
  1029. if (evi >= evk) {
  1030. i__ = k;
  1031. } else {
  1032. sorted = FALSE_;
  1033. ifst = i__;
  1034. ilst = k;
  1035. strexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst,
  1036. &ilst, &work[1], &info);
  1037. if (info == 0) {
  1038. i__ = ilst;
  1039. } else {
  1040. i__ = k;
  1041. }
  1042. }
  1043. if (i__ == kend) {
  1044. k = i__ + 1;
  1045. } else if (t[i__ + 1 + i__ * t_dim1] == 0.f) {
  1046. k = i__ + 1;
  1047. } else {
  1048. k = i__ + 2;
  1049. }
  1050. goto L40;
  1051. }
  1052. goto L30;
  1053. L50:
  1054. ;
  1055. }
  1056. /* ==== Restore shift/eigenvalue array from T ==== */
  1057. i__ = jw;
  1058. L60:
  1059. if (i__ >= infqr + 1) {
  1060. if (i__ == infqr + 1) {
  1061. sr[kwtop + i__ - 1] = t[i__ + i__ * t_dim1];
  1062. si[kwtop + i__ - 1] = 0.f;
  1063. --i__;
  1064. } else if (t[i__ + (i__ - 1) * t_dim1] == 0.f) {
  1065. sr[kwtop + i__ - 1] = t[i__ + i__ * t_dim1];
  1066. si[kwtop + i__ - 1] = 0.f;
  1067. --i__;
  1068. } else {
  1069. aa = t[i__ - 1 + (i__ - 1) * t_dim1];
  1070. cc = t[i__ + (i__ - 1) * t_dim1];
  1071. bb = t[i__ - 1 + i__ * t_dim1];
  1072. dd = t[i__ + i__ * t_dim1];
  1073. slanv2_(&aa, &bb, &cc, &dd, &sr[kwtop + i__ - 2], &si[kwtop + i__
  1074. - 2], &sr[kwtop + i__ - 1], &si[kwtop + i__ - 1], &cs, &
  1075. sn);
  1076. i__ += -2;
  1077. }
  1078. goto L60;
  1079. }
  1080. if (*ns < jw || s == 0.f) {
  1081. if (*ns > 1 && s != 0.f) {
  1082. /* ==== Reflect spike back into lower triangle ==== */
  1083. scopy_(ns, &v[v_offset], ldv, &work[1], &c__1);
  1084. beta = work[1];
  1085. slarfg_(ns, &beta, &work[2], &c__1, &tau);
  1086. work[1] = 1.f;
  1087. i__1 = jw - 2;
  1088. i__2 = jw - 2;
  1089. slaset_("L", &i__1, &i__2, &c_b12, &c_b12, &t[t_dim1 + 3], ldt);
  1090. slarf_("L", ns, &jw, &work[1], &c__1, &tau, &t[t_offset], ldt, &
  1091. work[jw + 1]);
  1092. slarf_("R", ns, ns, &work[1], &c__1, &tau, &t[t_offset], ldt, &
  1093. work[jw + 1]);
  1094. slarf_("R", &jw, ns, &work[1], &c__1, &tau, &v[v_offset], ldv, &
  1095. work[jw + 1]);
  1096. i__1 = *lwork - jw;
  1097. sgehrd_(&jw, &c__1, ns, &t[t_offset], ldt, &work[1], &work[jw + 1]
  1098. , &i__1, &info);
  1099. }
  1100. /* ==== Copy updated reduced window into place ==== */
  1101. if (kwtop > 1) {
  1102. h__[kwtop + (kwtop - 1) * h_dim1] = s * v[v_dim1 + 1];
  1103. }
  1104. slacpy_("U", &jw, &jw, &t[t_offset], ldt, &h__[kwtop + kwtop * h_dim1]
  1105. , ldh);
  1106. i__1 = jw - 1;
  1107. i__2 = *ldt + 1;
  1108. i__3 = *ldh + 1;
  1109. scopy_(&i__1, &t[t_dim1 + 2], &i__2, &h__[kwtop + 1 + kwtop * h_dim1],
  1110. &i__3);
  1111. /* ==== Accumulate orthogonal matrix in order update */
  1112. /* . H and Z, if requested. ==== */
  1113. if (*ns > 1 && s != 0.f) {
  1114. i__1 = *lwork - jw;
  1115. sormhr_("R", "N", &jw, ns, &c__1, ns, &t[t_offset], ldt, &work[1],
  1116. &v[v_offset], ldv, &work[jw + 1], &i__1, &info);
  1117. }
  1118. /* ==== Update vertical slab in H ==== */
  1119. if (*wantt) {
  1120. ltop = 1;
  1121. } else {
  1122. ltop = *ktop;
  1123. }
  1124. i__1 = kwtop - 1;
  1125. i__2 = *nv;
  1126. for (krow = ltop; i__2 < 0 ? krow >= i__1 : krow <= i__1; krow +=
  1127. i__2) {
  1128. /* Computing MIN */
  1129. i__3 = *nv, i__4 = kwtop - krow;
  1130. kln = f2cmin(i__3,i__4);
  1131. sgemm_("N", "N", &kln, &jw, &jw, &c_b13, &h__[krow + kwtop *
  1132. h_dim1], ldh, &v[v_offset], ldv, &c_b12, &wv[wv_offset],
  1133. ldwv);
  1134. slacpy_("A", &kln, &jw, &wv[wv_offset], ldwv, &h__[krow + kwtop *
  1135. h_dim1], ldh);
  1136. /* L70: */
  1137. }
  1138. /* ==== Update horizontal slab in H ==== */
  1139. if (*wantt) {
  1140. i__2 = *n;
  1141. i__1 = *nh;
  1142. for (kcol = *kbot + 1; i__1 < 0 ? kcol >= i__2 : kcol <= i__2;
  1143. kcol += i__1) {
  1144. /* Computing MIN */
  1145. i__3 = *nh, i__4 = *n - kcol + 1;
  1146. kln = f2cmin(i__3,i__4);
  1147. sgemm_("C", "N", &jw, &kln, &jw, &c_b13, &v[v_offset], ldv, &
  1148. h__[kwtop + kcol * h_dim1], ldh, &c_b12, &t[t_offset],
  1149. ldt);
  1150. slacpy_("A", &jw, &kln, &t[t_offset], ldt, &h__[kwtop + kcol *
  1151. h_dim1], ldh);
  1152. /* L80: */
  1153. }
  1154. }
  1155. /* ==== Update vertical slab in Z ==== */
  1156. if (*wantz) {
  1157. i__1 = *ihiz;
  1158. i__2 = *nv;
  1159. for (krow = *iloz; i__2 < 0 ? krow >= i__1 : krow <= i__1; krow +=
  1160. i__2) {
  1161. /* Computing MIN */
  1162. i__3 = *nv, i__4 = *ihiz - krow + 1;
  1163. kln = f2cmin(i__3,i__4);
  1164. sgemm_("N", "N", &kln, &jw, &jw, &c_b13, &z__[krow + kwtop *
  1165. z_dim1], ldz, &v[v_offset], ldv, &c_b12, &wv[
  1166. wv_offset], ldwv);
  1167. slacpy_("A", &kln, &jw, &wv[wv_offset], ldwv, &z__[krow +
  1168. kwtop * z_dim1], ldz);
  1169. /* L90: */
  1170. }
  1171. }
  1172. }
  1173. /* ==== Return the number of deflations ... ==== */
  1174. *nd = jw - *ns;
  1175. /* ==== ... and the number of shifts. (Subtracting */
  1176. /* . INFQR from the spike length takes care */
  1177. /* . of the case of a rare QR failure while */
  1178. /* . calculating eigenvalues of the deflation */
  1179. /* . window.) ==== */
  1180. *ns -= infqr;
  1181. /* ==== Return optimal workspace. ==== */
  1182. work[1] = (real) lwkopt;
  1183. /* ==== End of SLAQR2 ==== */
  1184. return 0;
  1185. } /* slaqr2_ */