You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sgsvj1.c 39 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static integer c__0 = 0;
  488. static real c_b35 = 1.f;
  489. /* > \brief \b SGSVJ1 pre-processor for the routine sgesvj, applies Jacobi rotations targeting only particular
  490. pivots. */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* > \htmlonly */
  495. /* > Download SGSVJ1 + dependencies */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgsvj1.
  497. f"> */
  498. /* > [TGZ]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgsvj1.
  500. f"> */
  501. /* > [ZIP]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgsvj1.
  503. f"> */
  504. /* > [TXT]</a> */
  505. /* > \endhtmlonly */
  506. /* Definition: */
  507. /* =========== */
  508. /* SUBROUTINE SGSVJ1( JOBV, M, N, N1, A, LDA, D, SVA, MV, V, LDV, */
  509. /* EPS, SFMIN, TOL, NSWEEP, WORK, LWORK, INFO ) */
  510. /* REAL EPS, SFMIN, TOL */
  511. /* INTEGER INFO, LDA, LDV, LWORK, M, MV, N, N1, NSWEEP */
  512. /* CHARACTER*1 JOBV */
  513. /* REAL A( LDA, * ), D( N ), SVA( N ), V( LDV, * ), */
  514. /* $ WORK( LWORK ) */
  515. /* > \par Purpose: */
  516. /* ============= */
  517. /* > */
  518. /* > \verbatim */
  519. /* > */
  520. /* > SGSVJ1 is called from SGESVJ as a pre-processor and that is its main */
  521. /* > purpose. It applies Jacobi rotations in the same way as SGESVJ does, but */
  522. /* > it targets only particular pivots and it does not check convergence */
  523. /* > (stopping criterion). Few tunning parameters (marked by [TP]) are */
  524. /* > available for the implementer. */
  525. /* > */
  526. /* > Further Details */
  527. /* > ~~~~~~~~~~~~~~~ */
  528. /* > SGSVJ1 applies few sweeps of Jacobi rotations in the column space of */
  529. /* > the input M-by-N matrix A. The pivot pairs are taken from the (1,2) */
  530. /* > off-diagonal block in the corresponding N-by-N Gram matrix A^T * A. The */
  531. /* > block-entries (tiles) of the (1,2) off-diagonal block are marked by the */
  532. /* > [x]'s in the following scheme: */
  533. /* > */
  534. /* > | * * * [x] [x] [x]| */
  535. /* > | * * * [x] [x] [x]| Row-cycling in the nblr-by-nblc [x] blocks. */
  536. /* > | * * * [x] [x] [x]| Row-cyclic pivoting inside each [x] block. */
  537. /* > |[x] [x] [x] * * * | */
  538. /* > |[x] [x] [x] * * * | */
  539. /* > |[x] [x] [x] * * * | */
  540. /* > */
  541. /* > In terms of the columns of A, the first N1 columns are rotated 'against' */
  542. /* > the remaining N-N1 columns, trying to increase the angle between the */
  543. /* > corresponding subspaces. The off-diagonal block is N1-by(N-N1) and it is */
  544. /* > tiled using quadratic tiles of side KBL. Here, KBL is a tunning parameter. */
  545. /* > The number of sweeps is given in NSWEEP and the orthogonality threshold */
  546. /* > is given in TOL. */
  547. /* > \endverbatim */
  548. /* Arguments: */
  549. /* ========== */
  550. /* > \param[in] JOBV */
  551. /* > \verbatim */
  552. /* > JOBV is CHARACTER*1 */
  553. /* > Specifies whether the output from this procedure is used */
  554. /* > to compute the matrix V: */
  555. /* > = 'V': the product of the Jacobi rotations is accumulated */
  556. /* > by postmulyiplying the N-by-N array V. */
  557. /* > (See the description of V.) */
  558. /* > = 'A': the product of the Jacobi rotations is accumulated */
  559. /* > by postmulyiplying the MV-by-N array V. */
  560. /* > (See the descriptions of MV and V.) */
  561. /* > = 'N': the Jacobi rotations are not accumulated. */
  562. /* > \endverbatim */
  563. /* > */
  564. /* > \param[in] M */
  565. /* > \verbatim */
  566. /* > M is INTEGER */
  567. /* > The number of rows of the input matrix A. M >= 0. */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[in] N */
  571. /* > \verbatim */
  572. /* > N is INTEGER */
  573. /* > The number of columns of the input matrix A. */
  574. /* > M >= N >= 0. */
  575. /* > \endverbatim */
  576. /* > */
  577. /* > \param[in] N1 */
  578. /* > \verbatim */
  579. /* > N1 is INTEGER */
  580. /* > N1 specifies the 2 x 2 block partition, the first N1 columns are */
  581. /* > rotated 'against' the remaining N-N1 columns of A. */
  582. /* > \endverbatim */
  583. /* > */
  584. /* > \param[in,out] A */
  585. /* > \verbatim */
  586. /* > A is REAL array, dimension (LDA,N) */
  587. /* > On entry, M-by-N matrix A, such that A*diag(D) represents */
  588. /* > the input matrix. */
  589. /* > On exit, */
  590. /* > A_onexit * D_onexit represents the input matrix A*diag(D) */
  591. /* > post-multiplied by a sequence of Jacobi rotations, where the */
  592. /* > rotation threshold and the total number of sweeps are given in */
  593. /* > TOL and NSWEEP, respectively. */
  594. /* > (See the descriptions of N1, D, TOL and NSWEEP.) */
  595. /* > \endverbatim */
  596. /* > */
  597. /* > \param[in] LDA */
  598. /* > \verbatim */
  599. /* > LDA is INTEGER */
  600. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  601. /* > \endverbatim */
  602. /* > */
  603. /* > \param[in,out] D */
  604. /* > \verbatim */
  605. /* > D is REAL array, dimension (N) */
  606. /* > The array D accumulates the scaling factors from the fast scaled */
  607. /* > Jacobi rotations. */
  608. /* > On entry, A*diag(D) represents the input matrix. */
  609. /* > On exit, A_onexit*diag(D_onexit) represents the input matrix */
  610. /* > post-multiplied by a sequence of Jacobi rotations, where the */
  611. /* > rotation threshold and the total number of sweeps are given in */
  612. /* > TOL and NSWEEP, respectively. */
  613. /* > (See the descriptions of N1, A, TOL and NSWEEP.) */
  614. /* > \endverbatim */
  615. /* > */
  616. /* > \param[in,out] SVA */
  617. /* > \verbatim */
  618. /* > SVA is REAL array, dimension (N) */
  619. /* > On entry, SVA contains the Euclidean norms of the columns of */
  620. /* > the matrix A*diag(D). */
  621. /* > On exit, SVA contains the Euclidean norms of the columns of */
  622. /* > the matrix onexit*diag(D_onexit). */
  623. /* > \endverbatim */
  624. /* > */
  625. /* > \param[in] MV */
  626. /* > \verbatim */
  627. /* > MV is INTEGER */
  628. /* > If JOBV = 'A', then MV rows of V are post-multipled by a */
  629. /* > sequence of Jacobi rotations. */
  630. /* > If JOBV = 'N', then MV is not referenced. */
  631. /* > \endverbatim */
  632. /* > */
  633. /* > \param[in,out] V */
  634. /* > \verbatim */
  635. /* > V is REAL array, dimension (LDV,N) */
  636. /* > If JOBV = 'V' then N rows of V are post-multipled by a */
  637. /* > sequence of Jacobi rotations. */
  638. /* > If JOBV = 'A' then MV rows of V are post-multipled by a */
  639. /* > sequence of Jacobi rotations. */
  640. /* > If JOBV = 'N', then V is not referenced. */
  641. /* > \endverbatim */
  642. /* > */
  643. /* > \param[in] LDV */
  644. /* > \verbatim */
  645. /* > LDV is INTEGER */
  646. /* > The leading dimension of the array V, LDV >= 1. */
  647. /* > If JOBV = 'V', LDV >= N. */
  648. /* > If JOBV = 'A', LDV >= MV. */
  649. /* > \endverbatim */
  650. /* > */
  651. /* > \param[in] EPS */
  652. /* > \verbatim */
  653. /* > EPS is REAL */
  654. /* > EPS = SLAMCH('Epsilon') */
  655. /* > \endverbatim */
  656. /* > */
  657. /* > \param[in] SFMIN */
  658. /* > \verbatim */
  659. /* > SFMIN is REAL */
  660. /* > SFMIN = SLAMCH('Safe Minimum') */
  661. /* > \endverbatim */
  662. /* > */
  663. /* > \param[in] TOL */
  664. /* > \verbatim */
  665. /* > TOL is REAL */
  666. /* > TOL is the threshold for Jacobi rotations. For a pair */
  667. /* > A(:,p), A(:,q) of pivot columns, the Jacobi rotation is */
  668. /* > applied only if ABS(COS(angle(A(:,p),A(:,q)))) > TOL. */
  669. /* > \endverbatim */
  670. /* > */
  671. /* > \param[in] NSWEEP */
  672. /* > \verbatim */
  673. /* > NSWEEP is INTEGER */
  674. /* > NSWEEP is the number of sweeps of Jacobi rotations to be */
  675. /* > performed. */
  676. /* > \endverbatim */
  677. /* > */
  678. /* > \param[out] WORK */
  679. /* > \verbatim */
  680. /* > WORK is REAL array, dimension (LWORK) */
  681. /* > \endverbatim */
  682. /* > */
  683. /* > \param[in] LWORK */
  684. /* > \verbatim */
  685. /* > LWORK is INTEGER */
  686. /* > LWORK is the dimension of WORK. LWORK >= M. */
  687. /* > \endverbatim */
  688. /* > */
  689. /* > \param[out] INFO */
  690. /* > \verbatim */
  691. /* > INFO is INTEGER */
  692. /* > = 0: successful exit. */
  693. /* > < 0: if INFO = -i, then the i-th argument had an illegal value */
  694. /* > \endverbatim */
  695. /* Authors: */
  696. /* ======== */
  697. /* > \author Univ. of Tennessee */
  698. /* > \author Univ. of California Berkeley */
  699. /* > \author Univ. of Colorado Denver */
  700. /* > \author NAG Ltd. */
  701. /* > \date November 2017 */
  702. /* > \ingroup realOTHERcomputational */
  703. /* > \par Contributors: */
  704. /* ================== */
  705. /* > */
  706. /* > Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany) */
  707. /* ===================================================================== */
  708. /* Subroutine */ int sgsvj1_(char *jobv, integer *m, integer *n, integer *n1,
  709. real *a, integer *lda, real *d__, real *sva, integer *mv, real *v,
  710. integer *ldv, real *eps, real *sfmin, real *tol, integer *nsweep,
  711. real *work, integer *lwork, integer *info)
  712. {
  713. /* System generated locals */
  714. integer a_dim1, a_offset, v_dim1, v_offset, i__1, i__2, i__3, i__4, i__5,
  715. i__6;
  716. real r__1, r__2;
  717. /* Local variables */
  718. integer nblc;
  719. real aapp, aapq, aaqq;
  720. integer nblr, ierr;
  721. real bigtheta;
  722. extern real sdot_(integer *, real *, integer *, real *, integer *);
  723. integer pskipped;
  724. real aapp0, temp1;
  725. extern real snrm2_(integer *, real *, integer *);
  726. integer i__, p, q;
  727. real t, large, apoaq, aqoap;
  728. extern logical lsame_(char *, char *);
  729. real theta, small, fastr[5];
  730. logical applv, rsvec;
  731. extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *,
  732. integer *);
  733. logical rotok;
  734. extern /* Subroutine */ int sswap_(integer *, real *, integer *, real *,
  735. integer *), saxpy_(integer *, real *, real *, integer *, real *,
  736. integer *), srotm_(integer *, real *, integer *, real *, integer *
  737. , real *);
  738. real rootsfmin, cs, sn;
  739. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  740. integer ijblsk, swband;
  741. extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *,
  742. real *, integer *, integer *, real *, integer *, integer *);
  743. extern integer isamax_(integer *, real *, integer *);
  744. integer blskip;
  745. real mxaapq, thsign;
  746. extern /* Subroutine */ int slassq_(integer *, real *, integer *, real *,
  747. real *);
  748. real mxsinj;
  749. integer emptsw, notrot, iswrot, jbc;
  750. real big;
  751. integer kbl, igl, ibr, jgl, mvl;
  752. real rootbig, rooteps;
  753. integer rowskip;
  754. real roottol;
  755. /* -- LAPACK computational routine (version 3.8.0) -- */
  756. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  757. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  758. /* November 2017 */
  759. /* ===================================================================== */
  760. /* Test the input parameters. */
  761. /* Parameter adjustments */
  762. --sva;
  763. --d__;
  764. a_dim1 = *lda;
  765. a_offset = 1 + a_dim1 * 1;
  766. a -= a_offset;
  767. v_dim1 = *ldv;
  768. v_offset = 1 + v_dim1 * 1;
  769. v -= v_offset;
  770. --work;
  771. /* Function Body */
  772. applv = lsame_(jobv, "A");
  773. rsvec = lsame_(jobv, "V");
  774. if (! (rsvec || applv || lsame_(jobv, "N"))) {
  775. *info = -1;
  776. } else if (*m < 0) {
  777. *info = -2;
  778. } else if (*n < 0 || *n > *m) {
  779. *info = -3;
  780. } else if (*n1 < 0) {
  781. *info = -4;
  782. } else if (*lda < *m) {
  783. *info = -6;
  784. } else if ((rsvec || applv) && *mv < 0) {
  785. *info = -9;
  786. } else if (rsvec && *ldv < *n || applv && *ldv < *mv) {
  787. *info = -11;
  788. } else if (*tol <= *eps) {
  789. *info = -14;
  790. } else if (*nsweep < 0) {
  791. *info = -15;
  792. } else if (*lwork < *m) {
  793. *info = -17;
  794. } else {
  795. *info = 0;
  796. }
  797. /* #:( */
  798. if (*info != 0) {
  799. i__1 = -(*info);
  800. xerbla_("SGSVJ1", &i__1, (ftnlen)6);
  801. return 0;
  802. }
  803. if (rsvec) {
  804. mvl = *n;
  805. } else if (applv) {
  806. mvl = *mv;
  807. }
  808. rsvec = rsvec || applv;
  809. rooteps = sqrt(*eps);
  810. rootsfmin = sqrt(*sfmin);
  811. small = *sfmin / *eps;
  812. big = 1.f / *sfmin;
  813. rootbig = 1.f / rootsfmin;
  814. large = big / sqrt((real) (*m * *n));
  815. bigtheta = 1.f / rooteps;
  816. roottol = sqrt(*tol);
  817. /* RSVEC = LSAME( JOBV, 'Y' ) */
  818. emptsw = *n1 * (*n - *n1);
  819. notrot = 0;
  820. fastr[0] = 0.f;
  821. kbl = f2cmin(8,*n);
  822. nblr = *n1 / kbl;
  823. if (nblr * kbl != *n1) {
  824. ++nblr;
  825. }
  826. nblc = (*n - *n1) / kbl;
  827. if (nblc * kbl != *n - *n1) {
  828. ++nblc;
  829. }
  830. /* Computing 2nd power */
  831. i__1 = kbl;
  832. blskip = i__1 * i__1 + 1;
  833. /* [TP] BLKSKIP is a tuning parameter that depends on SWBAND and KBL. */
  834. rowskip = f2cmin(5,kbl);
  835. /* [TP] ROWSKIP is a tuning parameter. */
  836. swband = 0;
  837. /* [TP] SWBAND is a tuning parameter. It is meaningful and effective */
  838. /* if SGESVJ is used as a computational routine in the preconditioned */
  839. /* Jacobi SVD algorithm SGESVJ. */
  840. /* | * * * [x] [x] [x]| */
  841. /* | * * * [x] [x] [x]| Row-cycling in the nblr-by-nblc [x] blocks. */
  842. /* | * * * [x] [x] [x]| Row-cyclic pivoting inside each [x] block. */
  843. /* |[x] [x] [x] * * * | */
  844. /* |[x] [x] [x] * * * | */
  845. /* |[x] [x] [x] * * * | */
  846. i__1 = *nsweep;
  847. for (i__ = 1; i__ <= i__1; ++i__) {
  848. mxaapq = 0.f;
  849. mxsinj = 0.f;
  850. iswrot = 0;
  851. notrot = 0;
  852. pskipped = 0;
  853. i__2 = nblr;
  854. for (ibr = 1; ibr <= i__2; ++ibr) {
  855. igl = (ibr - 1) * kbl + 1;
  856. /* ........................................................ */
  857. /* ... go to the off diagonal blocks */
  858. igl = (ibr - 1) * kbl + 1;
  859. i__3 = nblc;
  860. for (jbc = 1; jbc <= i__3; ++jbc) {
  861. jgl = *n1 + (jbc - 1) * kbl + 1;
  862. /* doing the block at ( ibr, jbc ) */
  863. ijblsk = 0;
  864. /* Computing MIN */
  865. i__5 = igl + kbl - 1;
  866. i__4 = f2cmin(i__5,*n1);
  867. for (p = igl; p <= i__4; ++p) {
  868. aapp = sva[p];
  869. if (aapp > 0.f) {
  870. pskipped = 0;
  871. /* Computing MIN */
  872. i__6 = jgl + kbl - 1;
  873. i__5 = f2cmin(i__6,*n);
  874. for (q = jgl; q <= i__5; ++q) {
  875. aaqq = sva[q];
  876. if (aaqq > 0.f) {
  877. aapp0 = aapp;
  878. if (aaqq >= 1.f) {
  879. if (aapp >= aaqq) {
  880. rotok = small * aapp <= aaqq;
  881. } else {
  882. rotok = small * aaqq <= aapp;
  883. }
  884. if (aapp < big / aaqq) {
  885. aapq = sdot_(m, &a[p * a_dim1 + 1], &
  886. c__1, &a[q * a_dim1 + 1], &
  887. c__1) * d__[p] * d__[q] /
  888. aaqq / aapp;
  889. } else {
  890. scopy_(m, &a[p * a_dim1 + 1], &c__1, &
  891. work[1], &c__1);
  892. slascl_("G", &c__0, &c__0, &aapp, &
  893. d__[p], m, &c__1, &work[1],
  894. lda, &ierr);
  895. aapq = sdot_(m, &work[1], &c__1, &a[q
  896. * a_dim1 + 1], &c__1) * d__[q]
  897. / aaqq;
  898. }
  899. } else {
  900. if (aapp >= aaqq) {
  901. rotok = aapp <= aaqq / small;
  902. } else {
  903. rotok = aaqq <= aapp / small;
  904. }
  905. if (aapp > small / aaqq) {
  906. aapq = sdot_(m, &a[p * a_dim1 + 1], &
  907. c__1, &a[q * a_dim1 + 1], &
  908. c__1) * d__[p] * d__[q] /
  909. aaqq / aapp;
  910. } else {
  911. scopy_(m, &a[q * a_dim1 + 1], &c__1, &
  912. work[1], &c__1);
  913. slascl_("G", &c__0, &c__0, &aaqq, &
  914. d__[q], m, &c__1, &work[1],
  915. lda, &ierr);
  916. aapq = sdot_(m, &work[1], &c__1, &a[p
  917. * a_dim1 + 1], &c__1) * d__[p]
  918. / aapp;
  919. }
  920. }
  921. /* Computing MAX */
  922. r__1 = mxaapq, r__2 = abs(aapq);
  923. mxaapq = f2cmax(r__1,r__2);
  924. /* TO rotate or NOT to rotate, THAT is the question ... */
  925. if (abs(aapq) > *tol) {
  926. notrot = 0;
  927. /* ROTATED = ROTATED + 1 */
  928. pskipped = 0;
  929. ++iswrot;
  930. if (rotok) {
  931. aqoap = aaqq / aapp;
  932. apoaq = aapp / aaqq;
  933. theta = (r__1 = aqoap - apoaq, abs(
  934. r__1)) * -.5f / aapq;
  935. if (aaqq > aapp0) {
  936. theta = -theta;
  937. }
  938. if (abs(theta) > bigtheta) {
  939. t = .5f / theta;
  940. fastr[2] = t * d__[p] / d__[q];
  941. fastr[3] = -t * d__[q] / d__[p];
  942. srotm_(m, &a[p * a_dim1 + 1], &
  943. c__1, &a[q * a_dim1 + 1],
  944. &c__1, fastr);
  945. if (rsvec) {
  946. srotm_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q *
  947. v_dim1 + 1], &c__1, fastr);
  948. }
  949. /* Computing MAX */
  950. r__1 = 0.f, r__2 = t * apoaq *
  951. aapq + 1.f;
  952. sva[q] = aaqq * sqrt((f2cmax(r__1,
  953. r__2)));
  954. /* Computing MAX */
  955. r__1 = 0.f, r__2 = 1.f - t *
  956. aqoap * aapq;
  957. aapp *= sqrt((f2cmax(r__1,r__2)));
  958. /* Computing MAX */
  959. r__1 = mxsinj, r__2 = abs(t);
  960. mxsinj = f2cmax(r__1,r__2);
  961. } else {
  962. thsign = -r_sign(&c_b35, &aapq);
  963. if (aaqq > aapp0) {
  964. thsign = -thsign;
  965. }
  966. t = 1.f / (theta + thsign * sqrt(
  967. theta * theta + 1.f));
  968. cs = sqrt(1.f / (t * t + 1.f));
  969. sn = t * cs;
  970. /* Computing MAX */
  971. r__1 = mxsinj, r__2 = abs(sn);
  972. mxsinj = f2cmax(r__1,r__2);
  973. /* Computing MAX */
  974. r__1 = 0.f, r__2 = t * apoaq *
  975. aapq + 1.f;
  976. sva[q] = aaqq * sqrt((f2cmax(r__1,
  977. r__2)));
  978. /* Computing MAX */
  979. r__1 = 0.f, r__2 = 1.f - t *
  980. aqoap * aapq;
  981. aapp *= sqrt((f2cmax(r__1,r__2)));
  982. apoaq = d__[p] / d__[q];
  983. aqoap = d__[q] / d__[p];
  984. if (d__[p] >= 1.f) {
  985. if (d__[q] >= 1.f) {
  986. fastr[2] = t * apoaq;
  987. fastr[3] = -t * aqoap;
  988. d__[p] *= cs;
  989. d__[q] *= cs;
  990. srotm_(m, &a[p * a_dim1 + 1], &c__1, &a[q *
  991. a_dim1 + 1], &c__1, fastr);
  992. if (rsvec) {
  993. srotm_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[
  994. q * v_dim1 + 1], &c__1, fastr);
  995. }
  996. } else {
  997. r__1 = -t * aqoap;
  998. saxpy_(m, &r__1, &a[q * a_dim1 + 1], &c__1, &a[
  999. p * a_dim1 + 1], &c__1);
  1000. r__1 = cs * sn * apoaq;
  1001. saxpy_(m, &r__1, &a[p * a_dim1 + 1], &c__1, &a[
  1002. q * a_dim1 + 1], &c__1);
  1003. if (rsvec) {
  1004. r__1 = -t * aqoap;
  1005. saxpy_(&mvl, &r__1, &v[q * v_dim1 + 1], &
  1006. c__1, &v[p * v_dim1 + 1], &c__1);
  1007. r__1 = cs * sn * apoaq;
  1008. saxpy_(&mvl, &r__1, &v[p * v_dim1 + 1], &
  1009. c__1, &v[q * v_dim1 + 1], &c__1);
  1010. }
  1011. d__[p] *= cs;
  1012. d__[q] /= cs;
  1013. }
  1014. } else {
  1015. if (d__[q] >= 1.f) {
  1016. r__1 = t * apoaq;
  1017. saxpy_(m, &r__1, &a[p * a_dim1 + 1], &c__1, &a[
  1018. q * a_dim1 + 1], &c__1);
  1019. r__1 = -cs * sn * aqoap;
  1020. saxpy_(m, &r__1, &a[q * a_dim1 + 1], &c__1, &a[
  1021. p * a_dim1 + 1], &c__1);
  1022. if (rsvec) {
  1023. r__1 = t * apoaq;
  1024. saxpy_(&mvl, &r__1, &v[p * v_dim1 + 1], &
  1025. c__1, &v[q * v_dim1 + 1], &c__1);
  1026. r__1 = -cs * sn * aqoap;
  1027. saxpy_(&mvl, &r__1, &v[q * v_dim1 + 1], &
  1028. c__1, &v[p * v_dim1 + 1], &c__1);
  1029. }
  1030. d__[p] /= cs;
  1031. d__[q] *= cs;
  1032. } else {
  1033. if (d__[p] >= d__[q]) {
  1034. r__1 = -t * aqoap;
  1035. saxpy_(m, &r__1, &a[q * a_dim1 + 1], &c__1,
  1036. &a[p * a_dim1 + 1], &c__1);
  1037. r__1 = cs * sn * apoaq;
  1038. saxpy_(m, &r__1, &a[p * a_dim1 + 1], &c__1,
  1039. &a[q * a_dim1 + 1], &c__1);
  1040. d__[p] *= cs;
  1041. d__[q] /= cs;
  1042. if (rsvec) {
  1043. r__1 = -t * aqoap;
  1044. saxpy_(&mvl, &r__1, &v[q * v_dim1 + 1],
  1045. &c__1, &v[p * v_dim1 + 1], &
  1046. c__1);
  1047. r__1 = cs * sn * apoaq;
  1048. saxpy_(&mvl, &r__1, &v[p * v_dim1 + 1],
  1049. &c__1, &v[q * v_dim1 + 1], &
  1050. c__1);
  1051. }
  1052. } else {
  1053. r__1 = t * apoaq;
  1054. saxpy_(m, &r__1, &a[p * a_dim1 + 1], &c__1,
  1055. &a[q * a_dim1 + 1], &c__1);
  1056. r__1 = -cs * sn * aqoap;
  1057. saxpy_(m, &r__1, &a[q * a_dim1 + 1], &c__1,
  1058. &a[p * a_dim1 + 1], &c__1);
  1059. d__[p] /= cs;
  1060. d__[q] *= cs;
  1061. if (rsvec) {
  1062. r__1 = t * apoaq;
  1063. saxpy_(&mvl, &r__1, &v[p * v_dim1 + 1],
  1064. &c__1, &v[q * v_dim1 + 1], &
  1065. c__1);
  1066. r__1 = -cs * sn * aqoap;
  1067. saxpy_(&mvl, &r__1, &v[q * v_dim1 + 1],
  1068. &c__1, &v[p * v_dim1 + 1], &
  1069. c__1);
  1070. }
  1071. }
  1072. }
  1073. }
  1074. }
  1075. } else {
  1076. if (aapp > aaqq) {
  1077. scopy_(m, &a[p * a_dim1 + 1], &
  1078. c__1, &work[1], &c__1);
  1079. slascl_("G", &c__0, &c__0, &aapp,
  1080. &c_b35, m, &c__1, &work[1]
  1081. , lda, &ierr);
  1082. slascl_("G", &c__0, &c__0, &aaqq,
  1083. &c_b35, m, &c__1, &a[q *
  1084. a_dim1 + 1], lda, &ierr);
  1085. temp1 = -aapq * d__[p] / d__[q];
  1086. saxpy_(m, &temp1, &work[1], &c__1,
  1087. &a[q * a_dim1 + 1], &
  1088. c__1);
  1089. slascl_("G", &c__0, &c__0, &c_b35,
  1090. &aaqq, m, &c__1, &a[q *
  1091. a_dim1 + 1], lda, &ierr);
  1092. /* Computing MAX */
  1093. r__1 = 0.f, r__2 = 1.f - aapq *
  1094. aapq;
  1095. sva[q] = aaqq * sqrt((f2cmax(r__1,
  1096. r__2)));
  1097. mxsinj = f2cmax(mxsinj,*sfmin);
  1098. } else {
  1099. scopy_(m, &a[q * a_dim1 + 1], &
  1100. c__1, &work[1], &c__1);
  1101. slascl_("G", &c__0, &c__0, &aaqq,
  1102. &c_b35, m, &c__1, &work[1]
  1103. , lda, &ierr);
  1104. slascl_("G", &c__0, &c__0, &aapp,
  1105. &c_b35, m, &c__1, &a[p *
  1106. a_dim1 + 1], lda, &ierr);
  1107. temp1 = -aapq * d__[q] / d__[p];
  1108. saxpy_(m, &temp1, &work[1], &c__1,
  1109. &a[p * a_dim1 + 1], &
  1110. c__1);
  1111. slascl_("G", &c__0, &c__0, &c_b35,
  1112. &aapp, m, &c__1, &a[p *
  1113. a_dim1 + 1], lda, &ierr);
  1114. /* Computing MAX */
  1115. r__1 = 0.f, r__2 = 1.f - aapq *
  1116. aapq;
  1117. sva[p] = aapp * sqrt((f2cmax(r__1,
  1118. r__2)));
  1119. mxsinj = f2cmax(mxsinj,*sfmin);
  1120. }
  1121. }
  1122. /* END IF ROTOK THEN ... ELSE */
  1123. /* In the case of cancellation in updating SVA(q) */
  1124. /* Computing 2nd power */
  1125. r__1 = sva[q] / aaqq;
  1126. if (r__1 * r__1 <= rooteps) {
  1127. if (aaqq < rootbig && aaqq >
  1128. rootsfmin) {
  1129. sva[q] = snrm2_(m, &a[q * a_dim1
  1130. + 1], &c__1) * d__[q];
  1131. } else {
  1132. t = 0.f;
  1133. aaqq = 1.f;
  1134. slassq_(m, &a[q * a_dim1 + 1], &
  1135. c__1, &t, &aaqq);
  1136. sva[q] = t * sqrt(aaqq) * d__[q];
  1137. }
  1138. }
  1139. /* Computing 2nd power */
  1140. r__1 = aapp / aapp0;
  1141. if (r__1 * r__1 <= rooteps) {
  1142. if (aapp < rootbig && aapp >
  1143. rootsfmin) {
  1144. aapp = snrm2_(m, &a[p * a_dim1 +
  1145. 1], &c__1) * d__[p];
  1146. } else {
  1147. t = 0.f;
  1148. aapp = 1.f;
  1149. slassq_(m, &a[p * a_dim1 + 1], &
  1150. c__1, &t, &aapp);
  1151. aapp = t * sqrt(aapp) * d__[p];
  1152. }
  1153. sva[p] = aapp;
  1154. }
  1155. /* end of OK rotation */
  1156. } else {
  1157. ++notrot;
  1158. /* SKIPPED = SKIPPED + 1 */
  1159. ++pskipped;
  1160. ++ijblsk;
  1161. }
  1162. } else {
  1163. ++notrot;
  1164. ++pskipped;
  1165. ++ijblsk;
  1166. }
  1167. /* IF ( NOTROT .GE. EMPTSW ) GO TO 2011 */
  1168. if (i__ <= swband && ijblsk >= blskip) {
  1169. sva[p] = aapp;
  1170. notrot = 0;
  1171. goto L2011;
  1172. }
  1173. if (i__ <= swband && pskipped > rowskip) {
  1174. aapp = -aapp;
  1175. notrot = 0;
  1176. goto L2203;
  1177. }
  1178. /* L2200: */
  1179. }
  1180. /* end of the q-loop */
  1181. L2203:
  1182. sva[p] = aapp;
  1183. } else {
  1184. if (aapp == 0.f) {
  1185. /* Computing MIN */
  1186. i__5 = jgl + kbl - 1;
  1187. notrot = notrot + f2cmin(i__5,*n) - jgl + 1;
  1188. }
  1189. if (aapp < 0.f) {
  1190. notrot = 0;
  1191. }
  1192. /* ** IF ( NOTROT .GE. EMPTSW ) GO TO 2011 */
  1193. }
  1194. /* L2100: */
  1195. }
  1196. /* end of the p-loop */
  1197. /* L2010: */
  1198. }
  1199. /* end of the jbc-loop */
  1200. L2011:
  1201. /* 2011 bailed out of the jbc-loop */
  1202. /* Computing MIN */
  1203. i__4 = igl + kbl - 1;
  1204. i__3 = f2cmin(i__4,*n);
  1205. for (p = igl; p <= i__3; ++p) {
  1206. sva[p] = (r__1 = sva[p], abs(r__1));
  1207. /* L2012: */
  1208. }
  1209. /* ** IF ( NOTROT .GE. EMPTSW ) GO TO 1994 */
  1210. /* L2000: */
  1211. }
  1212. /* 2000 :: end of the ibr-loop */
  1213. if (sva[*n] < rootbig && sva[*n] > rootsfmin) {
  1214. sva[*n] = snrm2_(m, &a[*n * a_dim1 + 1], &c__1) * d__[*n];
  1215. } else {
  1216. t = 0.f;
  1217. aapp = 1.f;
  1218. slassq_(m, &a[*n * a_dim1 + 1], &c__1, &t, &aapp);
  1219. sva[*n] = t * sqrt(aapp) * d__[*n];
  1220. }
  1221. /* Additional steering devices */
  1222. if (i__ < swband && (mxaapq <= roottol || iswrot <= *n)) {
  1223. swband = i__;
  1224. }
  1225. if (i__ > swband + 1 && mxaapq < (real) (*n) * *tol && (real) (*n) *
  1226. mxaapq * mxsinj < *tol) {
  1227. goto L1994;
  1228. }
  1229. if (notrot >= emptsw) {
  1230. goto L1994;
  1231. }
  1232. /* L1993: */
  1233. }
  1234. /* end i=1:NSWEEP loop */
  1235. /* #:) Reaching this point means that the procedure has completed the given */
  1236. /* number of sweeps. */
  1237. *info = *nsweep - 1;
  1238. goto L1995;
  1239. L1994:
  1240. /* #:) Reaching this point means that during the i-th sweep all pivots were */
  1241. /* below the given threshold, causing early exit. */
  1242. *info = 0;
  1243. /* #:) INFO = 0 confirms successful iterations. */
  1244. L1995:
  1245. /* Sort the vector D */
  1246. i__1 = *n - 1;
  1247. for (p = 1; p <= i__1; ++p) {
  1248. i__2 = *n - p + 1;
  1249. q = isamax_(&i__2, &sva[p], &c__1) + p - 1;
  1250. if (p != q) {
  1251. temp1 = sva[p];
  1252. sva[p] = sva[q];
  1253. sva[q] = temp1;
  1254. temp1 = d__[p];
  1255. d__[p] = d__[q];
  1256. d__[q] = temp1;
  1257. sswap_(m, &a[p * a_dim1 + 1], &c__1, &a[q * a_dim1 + 1], &c__1);
  1258. if (rsvec) {
  1259. sswap_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q * v_dim1 + 1], &
  1260. c__1);
  1261. }
  1262. }
  1263. /* L5991: */
  1264. }
  1265. return 0;
  1266. } /* sgsvj1_ */