You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sggsvp3.c 33 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c_n1 = -1;
  487. static real c_b14 = 0.f;
  488. static real c_b24 = 1.f;
  489. /* > \brief \b SGGSVP3 */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download SGGSVP3 + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sggsvp3
  496. .f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sggsvp3
  499. .f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sggsvp3
  502. .f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE SGGSVP3( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, */
  508. /* TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ, */
  509. /* IWORK, TAU, WORK, LWORK, INFO ) */
  510. /* CHARACTER JOBQ, JOBU, JOBV */
  511. /* INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P, LWORK */
  512. /* REAL TOLA, TOLB */
  513. /* INTEGER IWORK( * ) */
  514. /* REAL A( LDA, * ), B( LDB, * ), Q( LDQ, * ), */
  515. /* $ TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * ) */
  516. /* > \par Purpose: */
  517. /* ============= */
  518. /* > */
  519. /* > \verbatim */
  520. /* > */
  521. /* > SGGSVP3 computes orthogonal matrices U, V and Q such that */
  522. /* > */
  523. /* > N-K-L K L */
  524. /* > U**T*A*Q = K ( 0 A12 A13 ) if M-K-L >= 0; */
  525. /* > L ( 0 0 A23 ) */
  526. /* > M-K-L ( 0 0 0 ) */
  527. /* > */
  528. /* > N-K-L K L */
  529. /* > = K ( 0 A12 A13 ) if M-K-L < 0; */
  530. /* > M-K ( 0 0 A23 ) */
  531. /* > */
  532. /* > N-K-L K L */
  533. /* > V**T*B*Q = L ( 0 0 B13 ) */
  534. /* > P-L ( 0 0 0 ) */
  535. /* > */
  536. /* > where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular */
  537. /* > upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0, */
  538. /* > otherwise A23 is (M-K)-by-L upper trapezoidal. K+L = the effective */
  539. /* > numerical rank of the (M+P)-by-N matrix (A**T,B**T)**T. */
  540. /* > */
  541. /* > This decomposition is the preprocessing step for computing the */
  542. /* > Generalized Singular Value Decomposition (GSVD), see subroutine */
  543. /* > SGGSVD3. */
  544. /* > \endverbatim */
  545. /* Arguments: */
  546. /* ========== */
  547. /* > \param[in] JOBU */
  548. /* > \verbatim */
  549. /* > JOBU is CHARACTER*1 */
  550. /* > = 'U': Orthogonal matrix U is computed; */
  551. /* > = 'N': U is not computed. */
  552. /* > \endverbatim */
  553. /* > */
  554. /* > \param[in] JOBV */
  555. /* > \verbatim */
  556. /* > JOBV is CHARACTER*1 */
  557. /* > = 'V': Orthogonal matrix V is computed; */
  558. /* > = 'N': V is not computed. */
  559. /* > \endverbatim */
  560. /* > */
  561. /* > \param[in] JOBQ */
  562. /* > \verbatim */
  563. /* > JOBQ is CHARACTER*1 */
  564. /* > = 'Q': Orthogonal matrix Q is computed; */
  565. /* > = 'N': Q is not computed. */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[in] M */
  569. /* > \verbatim */
  570. /* > M is INTEGER */
  571. /* > The number of rows of the matrix A. M >= 0. */
  572. /* > \endverbatim */
  573. /* > */
  574. /* > \param[in] P */
  575. /* > \verbatim */
  576. /* > P is INTEGER */
  577. /* > The number of rows of the matrix B. P >= 0. */
  578. /* > \endverbatim */
  579. /* > */
  580. /* > \param[in] N */
  581. /* > \verbatim */
  582. /* > N is INTEGER */
  583. /* > The number of columns of the matrices A and B. N >= 0. */
  584. /* > \endverbatim */
  585. /* > */
  586. /* > \param[in,out] A */
  587. /* > \verbatim */
  588. /* > A is REAL array, dimension (LDA,N) */
  589. /* > On entry, the M-by-N matrix A. */
  590. /* > On exit, A contains the triangular (or trapezoidal) matrix */
  591. /* > described in the Purpose section. */
  592. /* > \endverbatim */
  593. /* > */
  594. /* > \param[in] LDA */
  595. /* > \verbatim */
  596. /* > LDA is INTEGER */
  597. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  598. /* > \endverbatim */
  599. /* > */
  600. /* > \param[in,out] B */
  601. /* > \verbatim */
  602. /* > B is REAL array, dimension (LDB,N) */
  603. /* > On entry, the P-by-N matrix B. */
  604. /* > On exit, B contains the triangular matrix described in */
  605. /* > the Purpose section. */
  606. /* > \endverbatim */
  607. /* > */
  608. /* > \param[in] LDB */
  609. /* > \verbatim */
  610. /* > LDB is INTEGER */
  611. /* > The leading dimension of the array B. LDB >= f2cmax(1,P). */
  612. /* > \endverbatim */
  613. /* > */
  614. /* > \param[in] TOLA */
  615. /* > \verbatim */
  616. /* > TOLA is REAL */
  617. /* > \endverbatim */
  618. /* > */
  619. /* > \param[in] TOLB */
  620. /* > \verbatim */
  621. /* > TOLB is REAL */
  622. /* > */
  623. /* > TOLA and TOLB are the thresholds to determine the effective */
  624. /* > numerical rank of matrix B and a subblock of A. Generally, */
  625. /* > they are set to */
  626. /* > TOLA = MAX(M,N)*norm(A)*MACHEPS, */
  627. /* > TOLB = MAX(P,N)*norm(B)*MACHEPS. */
  628. /* > The size of TOLA and TOLB may affect the size of backward */
  629. /* > errors of the decomposition. */
  630. /* > \endverbatim */
  631. /* > */
  632. /* > \param[out] K */
  633. /* > \verbatim */
  634. /* > K is INTEGER */
  635. /* > \endverbatim */
  636. /* > */
  637. /* > \param[out] L */
  638. /* > \verbatim */
  639. /* > L is INTEGER */
  640. /* > */
  641. /* > On exit, K and L specify the dimension of the subblocks */
  642. /* > described in Purpose section. */
  643. /* > K + L = effective numerical rank of (A**T,B**T)**T. */
  644. /* > \endverbatim */
  645. /* > */
  646. /* > \param[out] U */
  647. /* > \verbatim */
  648. /* > U is REAL array, dimension (LDU,M) */
  649. /* > If JOBU = 'U', U contains the orthogonal matrix U. */
  650. /* > If JOBU = 'N', U is not referenced. */
  651. /* > \endverbatim */
  652. /* > */
  653. /* > \param[in] LDU */
  654. /* > \verbatim */
  655. /* > LDU is INTEGER */
  656. /* > The leading dimension of the array U. LDU >= f2cmax(1,M) if */
  657. /* > JOBU = 'U'; LDU >= 1 otherwise. */
  658. /* > \endverbatim */
  659. /* > */
  660. /* > \param[out] V */
  661. /* > \verbatim */
  662. /* > V is REAL array, dimension (LDV,P) */
  663. /* > If JOBV = 'V', V contains the orthogonal matrix V. */
  664. /* > If JOBV = 'N', V is not referenced. */
  665. /* > \endverbatim */
  666. /* > */
  667. /* > \param[in] LDV */
  668. /* > \verbatim */
  669. /* > LDV is INTEGER */
  670. /* > The leading dimension of the array V. LDV >= f2cmax(1,P) if */
  671. /* > JOBV = 'V'; LDV >= 1 otherwise. */
  672. /* > \endverbatim */
  673. /* > */
  674. /* > \param[out] Q */
  675. /* > \verbatim */
  676. /* > Q is REAL array, dimension (LDQ,N) */
  677. /* > If JOBQ = 'Q', Q contains the orthogonal matrix Q. */
  678. /* > If JOBQ = 'N', Q is not referenced. */
  679. /* > \endverbatim */
  680. /* > */
  681. /* > \param[in] LDQ */
  682. /* > \verbatim */
  683. /* > LDQ is INTEGER */
  684. /* > The leading dimension of the array Q. LDQ >= f2cmax(1,N) if */
  685. /* > JOBQ = 'Q'; LDQ >= 1 otherwise. */
  686. /* > \endverbatim */
  687. /* > */
  688. /* > \param[out] IWORK */
  689. /* > \verbatim */
  690. /* > IWORK is INTEGER array, dimension (N) */
  691. /* > \endverbatim */
  692. /* > */
  693. /* > \param[out] TAU */
  694. /* > \verbatim */
  695. /* > TAU is REAL array, dimension (N) */
  696. /* > \endverbatim */
  697. /* > */
  698. /* > \param[out] WORK */
  699. /* > \verbatim */
  700. /* > WORK is REAL array, dimension (MAX(1,LWORK)) */
  701. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  702. /* > \endverbatim */
  703. /* > */
  704. /* > \param[in] LWORK */
  705. /* > \verbatim */
  706. /* > LWORK is INTEGER */
  707. /* > The dimension of the array WORK. */
  708. /* > */
  709. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  710. /* > only calculates the optimal size of the WORK array, returns */
  711. /* > this value as the first entry of the WORK array, and no error */
  712. /* > message related to LWORK is issued by XERBLA. */
  713. /* > \endverbatim */
  714. /* > */
  715. /* > \param[out] INFO */
  716. /* > \verbatim */
  717. /* > INFO is INTEGER */
  718. /* > = 0: successful exit */
  719. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  720. /* > \endverbatim */
  721. /* Authors: */
  722. /* ======== */
  723. /* > \author Univ. of Tennessee */
  724. /* > \author Univ. of California Berkeley */
  725. /* > \author Univ. of Colorado Denver */
  726. /* > \author NAG Ltd. */
  727. /* > \date August 2015 */
  728. /* > \ingroup realOTHERcomputational */
  729. /* > \par Further Details: */
  730. /* ===================== */
  731. /* > */
  732. /* > \verbatim */
  733. /* > */
  734. /* > The subroutine uses LAPACK subroutine SGEQP3 for the QR factorization */
  735. /* > with column pivoting to detect the effective numerical rank of the */
  736. /* > a matrix. It may be replaced by a better rank determination strategy. */
  737. /* > */
  738. /* > SGGSVP3 replaces the deprecated subroutine SGGSVP. */
  739. /* > */
  740. /* > \endverbatim */
  741. /* > */
  742. /* ===================================================================== */
  743. /* Subroutine */ int sggsvp3_(char *jobu, char *jobv, char *jobq, integer *m,
  744. integer *p, integer *n, real *a, integer *lda, real *b, integer *ldb,
  745. real *tola, real *tolb, integer *k, integer *l, real *u, integer *ldu,
  746. real *v, integer *ldv, real *q, integer *ldq, integer *iwork, real *
  747. tau, real *work, integer *lwork, integer *info)
  748. {
  749. /* System generated locals */
  750. integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, u_dim1,
  751. u_offset, v_dim1, v_offset, i__1, i__2, i__3;
  752. real r__1;
  753. /* Local variables */
  754. integer i__, j;
  755. extern logical lsame_(char *, char *);
  756. logical wantq, wantu, wantv;
  757. extern /* Subroutine */ int sgeqp3_(integer *, integer *, real *, integer
  758. *, integer *, real *, real *, integer *, integer *), sgeqr2_(
  759. integer *, integer *, real *, integer *, real *, real *, integer *
  760. ), sgerq2_(integer *, integer *, real *, integer *, real *, real *
  761. , integer *), sorg2r_(integer *, integer *, integer *, real *,
  762. integer *, real *, real *, integer *), sorm2r_(char *, char *,
  763. integer *, integer *, integer *, real *, integer *, real *, real *
  764. , integer *, real *, integer *), sormr2_(char *,
  765. char *, integer *, integer *, integer *, real *, integer *, real *
  766. , real *, integer *, real *, integer *), xerbla_(
  767. char *, integer *, ftnlen), slacpy_(char *, integer *, integer *,
  768. real *, integer *, real *, integer *), slaset_(char *,
  769. integer *, integer *, real *, real *, real *, integer *),
  770. slapmt_(logical *, integer *, integer *, real *, integer *,
  771. integer *);
  772. logical forwrd;
  773. integer lwkopt;
  774. logical lquery;
  775. /* -- LAPACK computational routine (version 3.7.0) -- */
  776. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  777. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  778. /* August 2015 */
  779. /* ===================================================================== */
  780. /* Test the input parameters */
  781. /* Parameter adjustments */
  782. a_dim1 = *lda;
  783. a_offset = 1 + a_dim1 * 1;
  784. a -= a_offset;
  785. b_dim1 = *ldb;
  786. b_offset = 1 + b_dim1 * 1;
  787. b -= b_offset;
  788. u_dim1 = *ldu;
  789. u_offset = 1 + u_dim1 * 1;
  790. u -= u_offset;
  791. v_dim1 = *ldv;
  792. v_offset = 1 + v_dim1 * 1;
  793. v -= v_offset;
  794. q_dim1 = *ldq;
  795. q_offset = 1 + q_dim1 * 1;
  796. q -= q_offset;
  797. --iwork;
  798. --tau;
  799. --work;
  800. /* Function Body */
  801. wantu = lsame_(jobu, "U");
  802. wantv = lsame_(jobv, "V");
  803. wantq = lsame_(jobq, "Q");
  804. forwrd = TRUE_;
  805. lquery = *lwork == -1;
  806. lwkopt = 1;
  807. /* Test the input arguments */
  808. *info = 0;
  809. if (! (wantu || lsame_(jobu, "N"))) {
  810. *info = -1;
  811. } else if (! (wantv || lsame_(jobv, "N"))) {
  812. *info = -2;
  813. } else if (! (wantq || lsame_(jobq, "N"))) {
  814. *info = -3;
  815. } else if (*m < 0) {
  816. *info = -4;
  817. } else if (*p < 0) {
  818. *info = -5;
  819. } else if (*n < 0) {
  820. *info = -6;
  821. } else if (*lda < f2cmax(1,*m)) {
  822. *info = -8;
  823. } else if (*ldb < f2cmax(1,*p)) {
  824. *info = -10;
  825. } else if (*ldu < 1 || wantu && *ldu < *m) {
  826. *info = -16;
  827. } else if (*ldv < 1 || wantv && *ldv < *p) {
  828. *info = -18;
  829. } else if (*ldq < 1 || wantq && *ldq < *n) {
  830. *info = -20;
  831. } else if (*lwork < 1 && ! lquery) {
  832. *info = -24;
  833. }
  834. /* Compute workspace */
  835. if (*info == 0) {
  836. sgeqp3_(p, n, &b[b_offset], ldb, &iwork[1], &tau[1], &work[1], &c_n1,
  837. info);
  838. lwkopt = (integer) work[1];
  839. if (wantv) {
  840. lwkopt = f2cmax(lwkopt,*p);
  841. }
  842. /* Computing MAX */
  843. i__1 = lwkopt, i__2 = f2cmin(*n,*p);
  844. lwkopt = f2cmax(i__1,i__2);
  845. lwkopt = f2cmax(lwkopt,*m);
  846. if (wantq) {
  847. lwkopt = f2cmax(lwkopt,*n);
  848. }
  849. sgeqp3_(m, n, &a[a_offset], lda, &iwork[1], &tau[1], &work[1], &c_n1,
  850. info);
  851. /* Computing MAX */
  852. i__1 = lwkopt, i__2 = (integer) work[1];
  853. lwkopt = f2cmax(i__1,i__2);
  854. lwkopt = f2cmax(1,lwkopt);
  855. work[1] = (real) lwkopt;
  856. }
  857. if (*info != 0) {
  858. i__1 = -(*info);
  859. xerbla_("SGGSVP3", &i__1, (ftnlen)7);
  860. return 0;
  861. }
  862. if (lquery) {
  863. return 0;
  864. }
  865. /* QR with column pivoting of B: B*P = V*( S11 S12 ) */
  866. /* ( 0 0 ) */
  867. i__1 = *n;
  868. for (i__ = 1; i__ <= i__1; ++i__) {
  869. iwork[i__] = 0;
  870. /* L10: */
  871. }
  872. sgeqp3_(p, n, &b[b_offset], ldb, &iwork[1], &tau[1], &work[1], lwork,
  873. info);
  874. /* Update A := A*P */
  875. slapmt_(&forwrd, m, n, &a[a_offset], lda, &iwork[1]);
  876. /* Determine the effective rank of matrix B. */
  877. *l = 0;
  878. i__1 = f2cmin(*p,*n);
  879. for (i__ = 1; i__ <= i__1; ++i__) {
  880. if ((r__1 = b[i__ + i__ * b_dim1], abs(r__1)) > *tolb) {
  881. ++(*l);
  882. }
  883. /* L20: */
  884. }
  885. if (wantv) {
  886. /* Copy the details of V, and form V. */
  887. slaset_("Full", p, p, &c_b14, &c_b14, &v[v_offset], ldv);
  888. if (*p > 1) {
  889. i__1 = *p - 1;
  890. slacpy_("Lower", &i__1, n, &b[b_dim1 + 2], ldb, &v[v_dim1 + 2],
  891. ldv);
  892. }
  893. i__1 = f2cmin(*p,*n);
  894. sorg2r_(p, p, &i__1, &v[v_offset], ldv, &tau[1], &work[1], info);
  895. }
  896. /* Clean up B */
  897. i__1 = *l - 1;
  898. for (j = 1; j <= i__1; ++j) {
  899. i__2 = *l;
  900. for (i__ = j + 1; i__ <= i__2; ++i__) {
  901. b[i__ + j * b_dim1] = 0.f;
  902. /* L30: */
  903. }
  904. /* L40: */
  905. }
  906. if (*p > *l) {
  907. i__1 = *p - *l;
  908. slaset_("Full", &i__1, n, &c_b14, &c_b14, &b[*l + 1 + b_dim1], ldb);
  909. }
  910. if (wantq) {
  911. /* Set Q = I and Update Q := Q*P */
  912. slaset_("Full", n, n, &c_b14, &c_b24, &q[q_offset], ldq);
  913. slapmt_(&forwrd, n, n, &q[q_offset], ldq, &iwork[1]);
  914. }
  915. if (*p >= *l && *n != *l) {
  916. /* RQ factorization of (S11 S12): ( S11 S12 ) = ( 0 S12 )*Z */
  917. sgerq2_(l, n, &b[b_offset], ldb, &tau[1], &work[1], info);
  918. /* Update A := A*Z**T */
  919. sormr2_("Right", "Transpose", m, n, l, &b[b_offset], ldb, &tau[1], &a[
  920. a_offset], lda, &work[1], info);
  921. if (wantq) {
  922. /* Update Q := Q*Z**T */
  923. sormr2_("Right", "Transpose", n, n, l, &b[b_offset], ldb, &tau[1],
  924. &q[q_offset], ldq, &work[1], info);
  925. }
  926. /* Clean up B */
  927. i__1 = *n - *l;
  928. slaset_("Full", l, &i__1, &c_b14, &c_b14, &b[b_offset], ldb);
  929. i__1 = *n;
  930. for (j = *n - *l + 1; j <= i__1; ++j) {
  931. i__2 = *l;
  932. for (i__ = j - *n + *l + 1; i__ <= i__2; ++i__) {
  933. b[i__ + j * b_dim1] = 0.f;
  934. /* L50: */
  935. }
  936. /* L60: */
  937. }
  938. }
  939. /* Let N-L L */
  940. /* A = ( A11 A12 ) M, */
  941. /* then the following does the complete QR decomposition of A11: */
  942. /* A11 = U*( 0 T12 )*P1**T */
  943. /* ( 0 0 ) */
  944. i__1 = *n - *l;
  945. for (i__ = 1; i__ <= i__1; ++i__) {
  946. iwork[i__] = 0;
  947. /* L70: */
  948. }
  949. i__1 = *n - *l;
  950. sgeqp3_(m, &i__1, &a[a_offset], lda, &iwork[1], &tau[1], &work[1], lwork,
  951. info);
  952. /* Determine the effective rank of A11 */
  953. *k = 0;
  954. /* Computing MIN */
  955. i__2 = *m, i__3 = *n - *l;
  956. i__1 = f2cmin(i__2,i__3);
  957. for (i__ = 1; i__ <= i__1; ++i__) {
  958. if ((r__1 = a[i__ + i__ * a_dim1], abs(r__1)) > *tola) {
  959. ++(*k);
  960. }
  961. /* L80: */
  962. }
  963. /* Update A12 := U**T*A12, where A12 = A( 1:M, N-L+1:N ) */
  964. /* Computing MIN */
  965. i__2 = *m, i__3 = *n - *l;
  966. i__1 = f2cmin(i__2,i__3);
  967. sorm2r_("Left", "Transpose", m, l, &i__1, &a[a_offset], lda, &tau[1], &a[(
  968. *n - *l + 1) * a_dim1 + 1], lda, &work[1], info);
  969. if (wantu) {
  970. /* Copy the details of U, and form U */
  971. slaset_("Full", m, m, &c_b14, &c_b14, &u[u_offset], ldu);
  972. if (*m > 1) {
  973. i__1 = *m - 1;
  974. i__2 = *n - *l;
  975. slacpy_("Lower", &i__1, &i__2, &a[a_dim1 + 2], lda, &u[u_dim1 + 2]
  976. , ldu);
  977. }
  978. /* Computing MIN */
  979. i__2 = *m, i__3 = *n - *l;
  980. i__1 = f2cmin(i__2,i__3);
  981. sorg2r_(m, m, &i__1, &u[u_offset], ldu, &tau[1], &work[1], info);
  982. }
  983. if (wantq) {
  984. /* Update Q( 1:N, 1:N-L ) = Q( 1:N, 1:N-L )*P1 */
  985. i__1 = *n - *l;
  986. slapmt_(&forwrd, n, &i__1, &q[q_offset], ldq, &iwork[1]);
  987. }
  988. /* Clean up A: set the strictly lower triangular part of */
  989. /* A(1:K, 1:K) = 0, and A( K+1:M, 1:N-L ) = 0. */
  990. i__1 = *k - 1;
  991. for (j = 1; j <= i__1; ++j) {
  992. i__2 = *k;
  993. for (i__ = j + 1; i__ <= i__2; ++i__) {
  994. a[i__ + j * a_dim1] = 0.f;
  995. /* L90: */
  996. }
  997. /* L100: */
  998. }
  999. if (*m > *k) {
  1000. i__1 = *m - *k;
  1001. i__2 = *n - *l;
  1002. slaset_("Full", &i__1, &i__2, &c_b14, &c_b14, &a[*k + 1 + a_dim1],
  1003. lda);
  1004. }
  1005. if (*n - *l > *k) {
  1006. /* RQ factorization of ( T11 T12 ) = ( 0 T12 )*Z1 */
  1007. i__1 = *n - *l;
  1008. sgerq2_(k, &i__1, &a[a_offset], lda, &tau[1], &work[1], info);
  1009. if (wantq) {
  1010. /* Update Q( 1:N,1:N-L ) = Q( 1:N,1:N-L )*Z1**T */
  1011. i__1 = *n - *l;
  1012. sormr2_("Right", "Transpose", n, &i__1, k, &a[a_offset], lda, &
  1013. tau[1], &q[q_offset], ldq, &work[1], info);
  1014. }
  1015. /* Clean up A */
  1016. i__1 = *n - *l - *k;
  1017. slaset_("Full", k, &i__1, &c_b14, &c_b14, &a[a_offset], lda);
  1018. i__1 = *n - *l;
  1019. for (j = *n - *l - *k + 1; j <= i__1; ++j) {
  1020. i__2 = *k;
  1021. for (i__ = j - *n + *l + *k + 1; i__ <= i__2; ++i__) {
  1022. a[i__ + j * a_dim1] = 0.f;
  1023. /* L110: */
  1024. }
  1025. /* L120: */
  1026. }
  1027. }
  1028. if (*m > *k) {
  1029. /* QR factorization of A( K+1:M,N-L+1:N ) */
  1030. i__1 = *m - *k;
  1031. sgeqr2_(&i__1, l, &a[*k + 1 + (*n - *l + 1) * a_dim1], lda, &tau[1], &
  1032. work[1], info);
  1033. if (wantu) {
  1034. /* Update U(:,K+1:M) := U(:,K+1:M)*U1 */
  1035. i__1 = *m - *k;
  1036. /* Computing MIN */
  1037. i__3 = *m - *k;
  1038. i__2 = f2cmin(i__3,*l);
  1039. sorm2r_("Right", "No transpose", m, &i__1, &i__2, &a[*k + 1 + (*n
  1040. - *l + 1) * a_dim1], lda, &tau[1], &u[(*k + 1) * u_dim1 +
  1041. 1], ldu, &work[1], info);
  1042. }
  1043. /* Clean up */
  1044. i__1 = *n;
  1045. for (j = *n - *l + 1; j <= i__1; ++j) {
  1046. i__2 = *m;
  1047. for (i__ = j - *n + *k + *l + 1; i__ <= i__2; ++i__) {
  1048. a[i__ + j * a_dim1] = 0.f;
  1049. /* L130: */
  1050. }
  1051. /* L140: */
  1052. }
  1053. }
  1054. work[1] = (real) lwkopt;
  1055. return 0;
  1056. /* End of SGGSVP3 */
  1057. } /* sggsvp3_ */