You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sggevx.c 46 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static integer c__0 = 0;
  488. static real c_b57 = 0.f;
  489. static real c_b58 = 1.f;
  490. /* > \brief <b> SGGEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE mat
  491. rices</b> */
  492. /* =========== DOCUMENTATION =========== */
  493. /* Online html documentation available at */
  494. /* http://www.netlib.org/lapack/explore-html/ */
  495. /* > \htmlonly */
  496. /* > Download SGGEVX + dependencies */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sggevx.
  498. f"> */
  499. /* > [TGZ]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sggevx.
  501. f"> */
  502. /* > [ZIP]</a> */
  503. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sggevx.
  504. f"> */
  505. /* > [TXT]</a> */
  506. /* > \endhtmlonly */
  507. /* Definition: */
  508. /* =========== */
  509. /* SUBROUTINE SGGEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, B, LDB, */
  510. /* ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR, ILO, */
  511. /* IHI, LSCALE, RSCALE, ABNRM, BBNRM, RCONDE, */
  512. /* RCONDV, WORK, LWORK, IWORK, BWORK, INFO ) */
  513. /* CHARACTER BALANC, JOBVL, JOBVR, SENSE */
  514. /* INTEGER IHI, ILO, INFO, LDA, LDB, LDVL, LDVR, LWORK, N */
  515. /* REAL ABNRM, BBNRM */
  516. /* LOGICAL BWORK( * ) */
  517. /* INTEGER IWORK( * ) */
  518. /* REAL A( LDA, * ), ALPHAI( * ), ALPHAR( * ), */
  519. /* $ B( LDB, * ), BETA( * ), LSCALE( * ), */
  520. /* $ RCONDE( * ), RCONDV( * ), RSCALE( * ), */
  521. /* $ VL( LDVL, * ), VR( LDVR, * ), WORK( * ) */
  522. /* > \par Purpose: */
  523. /* ============= */
  524. /* > */
  525. /* > \verbatim */
  526. /* > */
  527. /* > SGGEVX computes for a pair of N-by-N real nonsymmetric matrices (A,B) */
  528. /* > the generalized eigenvalues, and optionally, the left and/or right */
  529. /* > generalized eigenvectors. */
  530. /* > */
  531. /* > Optionally also, it computes a balancing transformation to improve */
  532. /* > the conditioning of the eigenvalues and eigenvectors (ILO, IHI, */
  533. /* > LSCALE, RSCALE, ABNRM, and BBNRM), reciprocal condition numbers for */
  534. /* > the eigenvalues (RCONDE), and reciprocal condition numbers for the */
  535. /* > right eigenvectors (RCONDV). */
  536. /* > */
  537. /* > A generalized eigenvalue for a pair of matrices (A,B) is a scalar */
  538. /* > lambda or a ratio alpha/beta = lambda, such that A - lambda*B is */
  539. /* > singular. It is usually represented as the pair (alpha,beta), as */
  540. /* > there is a reasonable interpretation for beta=0, and even for both */
  541. /* > being zero. */
  542. /* > */
  543. /* > The right eigenvector v(j) corresponding to the eigenvalue lambda(j) */
  544. /* > of (A,B) satisfies */
  545. /* > */
  546. /* > A * v(j) = lambda(j) * B * v(j) . */
  547. /* > */
  548. /* > The left eigenvector u(j) corresponding to the eigenvalue lambda(j) */
  549. /* > of (A,B) satisfies */
  550. /* > */
  551. /* > u(j)**H * A = lambda(j) * u(j)**H * B. */
  552. /* > */
  553. /* > where u(j)**H is the conjugate-transpose of u(j). */
  554. /* > */
  555. /* > \endverbatim */
  556. /* Arguments: */
  557. /* ========== */
  558. /* > \param[in] BALANC */
  559. /* > \verbatim */
  560. /* > BALANC is CHARACTER*1 */
  561. /* > Specifies the balance option to be performed. */
  562. /* > = 'N': do not diagonally scale or permute; */
  563. /* > = 'P': permute only; */
  564. /* > = 'S': scale only; */
  565. /* > = 'B': both permute and scale. */
  566. /* > Computed reciprocal condition numbers will be for the */
  567. /* > matrices after permuting and/or balancing. Permuting does */
  568. /* > not change condition numbers (in exact arithmetic), but */
  569. /* > balancing does. */
  570. /* > \endverbatim */
  571. /* > */
  572. /* > \param[in] JOBVL */
  573. /* > \verbatim */
  574. /* > JOBVL is CHARACTER*1 */
  575. /* > = 'N': do not compute the left generalized eigenvectors; */
  576. /* > = 'V': compute the left generalized eigenvectors. */
  577. /* > \endverbatim */
  578. /* > */
  579. /* > \param[in] JOBVR */
  580. /* > \verbatim */
  581. /* > JOBVR is CHARACTER*1 */
  582. /* > = 'N': do not compute the right generalized eigenvectors; */
  583. /* > = 'V': compute the right generalized eigenvectors. */
  584. /* > \endverbatim */
  585. /* > */
  586. /* > \param[in] SENSE */
  587. /* > \verbatim */
  588. /* > SENSE is CHARACTER*1 */
  589. /* > Determines which reciprocal condition numbers are computed. */
  590. /* > = 'N': none are computed; */
  591. /* > = 'E': computed for eigenvalues only; */
  592. /* > = 'V': computed for eigenvectors only; */
  593. /* > = 'B': computed for eigenvalues and eigenvectors. */
  594. /* > \endverbatim */
  595. /* > */
  596. /* > \param[in] N */
  597. /* > \verbatim */
  598. /* > N is INTEGER */
  599. /* > The order of the matrices A, B, VL, and VR. N >= 0. */
  600. /* > \endverbatim */
  601. /* > */
  602. /* > \param[in,out] A */
  603. /* > \verbatim */
  604. /* > A is REAL array, dimension (LDA, N) */
  605. /* > On entry, the matrix A in the pair (A,B). */
  606. /* > On exit, A has been overwritten. If JOBVL='V' or JOBVR='V' */
  607. /* > or both, then A contains the first part of the real Schur */
  608. /* > form of the "balanced" versions of the input A and B. */
  609. /* > \endverbatim */
  610. /* > */
  611. /* > \param[in] LDA */
  612. /* > \verbatim */
  613. /* > LDA is INTEGER */
  614. /* > The leading dimension of A. LDA >= f2cmax(1,N). */
  615. /* > \endverbatim */
  616. /* > */
  617. /* > \param[in,out] B */
  618. /* > \verbatim */
  619. /* > B is REAL array, dimension (LDB, N) */
  620. /* > On entry, the matrix B in the pair (A,B). */
  621. /* > On exit, B has been overwritten. If JOBVL='V' or JOBVR='V' */
  622. /* > or both, then B contains the second part of the real Schur */
  623. /* > form of the "balanced" versions of the input A and B. */
  624. /* > \endverbatim */
  625. /* > */
  626. /* > \param[in] LDB */
  627. /* > \verbatim */
  628. /* > LDB is INTEGER */
  629. /* > The leading dimension of B. LDB >= f2cmax(1,N). */
  630. /* > \endverbatim */
  631. /* > */
  632. /* > \param[out] ALPHAR */
  633. /* > \verbatim */
  634. /* > ALPHAR is REAL array, dimension (N) */
  635. /* > \endverbatim */
  636. /* > */
  637. /* > \param[out] ALPHAI */
  638. /* > \verbatim */
  639. /* > ALPHAI is REAL array, dimension (N) */
  640. /* > \endverbatim */
  641. /* > */
  642. /* > \param[out] BETA */
  643. /* > \verbatim */
  644. /* > BETA is REAL array, dimension (N) */
  645. /* > On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will */
  646. /* > be the generalized eigenvalues. If ALPHAI(j) is zero, then */
  647. /* > the j-th eigenvalue is real; if positive, then the j-th and */
  648. /* > (j+1)-st eigenvalues are a complex conjugate pair, with */
  649. /* > ALPHAI(j+1) negative. */
  650. /* > */
  651. /* > Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j) */
  652. /* > may easily over- or underflow, and BETA(j) may even be zero. */
  653. /* > Thus, the user should avoid naively computing the ratio */
  654. /* > ALPHA/BETA. However, ALPHAR and ALPHAI will be always less */
  655. /* > than and usually comparable with norm(A) in magnitude, and */
  656. /* > BETA always less than and usually comparable with norm(B). */
  657. /* > \endverbatim */
  658. /* > */
  659. /* > \param[out] VL */
  660. /* > \verbatim */
  661. /* > VL is REAL array, dimension (LDVL,N) */
  662. /* > If JOBVL = 'V', the left eigenvectors u(j) are stored one */
  663. /* > after another in the columns of VL, in the same order as */
  664. /* > their eigenvalues. If the j-th eigenvalue is real, then */
  665. /* > u(j) = VL(:,j), the j-th column of VL. If the j-th and */
  666. /* > (j+1)-th eigenvalues form a complex conjugate pair, then */
  667. /* > u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1). */
  668. /* > Each eigenvector will be scaled so the largest component have */
  669. /* > abs(real part) + abs(imag. part) = 1. */
  670. /* > Not referenced if JOBVL = 'N'. */
  671. /* > \endverbatim */
  672. /* > */
  673. /* > \param[in] LDVL */
  674. /* > \verbatim */
  675. /* > LDVL is INTEGER */
  676. /* > The leading dimension of the matrix VL. LDVL >= 1, and */
  677. /* > if JOBVL = 'V', LDVL >= N. */
  678. /* > \endverbatim */
  679. /* > */
  680. /* > \param[out] VR */
  681. /* > \verbatim */
  682. /* > VR is REAL array, dimension (LDVR,N) */
  683. /* > If JOBVR = 'V', the right eigenvectors v(j) are stored one */
  684. /* > after another in the columns of VR, in the same order as */
  685. /* > their eigenvalues. If the j-th eigenvalue is real, then */
  686. /* > v(j) = VR(:,j), the j-th column of VR. If the j-th and */
  687. /* > (j+1)-th eigenvalues form a complex conjugate pair, then */
  688. /* > v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1). */
  689. /* > Each eigenvector will be scaled so the largest component have */
  690. /* > abs(real part) + abs(imag. part) = 1. */
  691. /* > Not referenced if JOBVR = 'N'. */
  692. /* > \endverbatim */
  693. /* > */
  694. /* > \param[in] LDVR */
  695. /* > \verbatim */
  696. /* > LDVR is INTEGER */
  697. /* > The leading dimension of the matrix VR. LDVR >= 1, and */
  698. /* > if JOBVR = 'V', LDVR >= N. */
  699. /* > \endverbatim */
  700. /* > */
  701. /* > \param[out] ILO */
  702. /* > \verbatim */
  703. /* > ILO is INTEGER */
  704. /* > \endverbatim */
  705. /* > */
  706. /* > \param[out] IHI */
  707. /* > \verbatim */
  708. /* > IHI is INTEGER */
  709. /* > ILO and IHI are integer values such that on exit */
  710. /* > A(i,j) = 0 and B(i,j) = 0 if i > j and */
  711. /* > j = 1,...,ILO-1 or i = IHI+1,...,N. */
  712. /* > If BALANC = 'N' or 'S', ILO = 1 and IHI = N. */
  713. /* > \endverbatim */
  714. /* > */
  715. /* > \param[out] LSCALE */
  716. /* > \verbatim */
  717. /* > LSCALE is REAL array, dimension (N) */
  718. /* > Details of the permutations and scaling factors applied */
  719. /* > to the left side of A and B. If PL(j) is the index of the */
  720. /* > row interchanged with row j, and DL(j) is the scaling */
  721. /* > factor applied to row j, then */
  722. /* > LSCALE(j) = PL(j) for j = 1,...,ILO-1 */
  723. /* > = DL(j) for j = ILO,...,IHI */
  724. /* > = PL(j) for j = IHI+1,...,N. */
  725. /* > The order in which the interchanges are made is N to IHI+1, */
  726. /* > then 1 to ILO-1. */
  727. /* > \endverbatim */
  728. /* > */
  729. /* > \param[out] RSCALE */
  730. /* > \verbatim */
  731. /* > RSCALE is REAL array, dimension (N) */
  732. /* > Details of the permutations and scaling factors applied */
  733. /* > to the right side of A and B. If PR(j) is the index of the */
  734. /* > column interchanged with column j, and DR(j) is the scaling */
  735. /* > factor applied to column j, then */
  736. /* > RSCALE(j) = PR(j) for j = 1,...,ILO-1 */
  737. /* > = DR(j) for j = ILO,...,IHI */
  738. /* > = PR(j) for j = IHI+1,...,N */
  739. /* > The order in which the interchanges are made is N to IHI+1, */
  740. /* > then 1 to ILO-1. */
  741. /* > \endverbatim */
  742. /* > */
  743. /* > \param[out] ABNRM */
  744. /* > \verbatim */
  745. /* > ABNRM is REAL */
  746. /* > The one-norm of the balanced matrix A. */
  747. /* > \endverbatim */
  748. /* > */
  749. /* > \param[out] BBNRM */
  750. /* > \verbatim */
  751. /* > BBNRM is REAL */
  752. /* > The one-norm of the balanced matrix B. */
  753. /* > \endverbatim */
  754. /* > */
  755. /* > \param[out] RCONDE */
  756. /* > \verbatim */
  757. /* > RCONDE is REAL array, dimension (N) */
  758. /* > If SENSE = 'E' or 'B', the reciprocal condition numbers of */
  759. /* > the eigenvalues, stored in consecutive elements of the array. */
  760. /* > For a complex conjugate pair of eigenvalues two consecutive */
  761. /* > elements of RCONDE are set to the same value. Thus RCONDE(j), */
  762. /* > RCONDV(j), and the j-th columns of VL and VR all correspond */
  763. /* > to the j-th eigenpair. */
  764. /* > If SENSE = 'N' or 'V', RCONDE is not referenced. */
  765. /* > \endverbatim */
  766. /* > */
  767. /* > \param[out] RCONDV */
  768. /* > \verbatim */
  769. /* > RCONDV is REAL array, dimension (N) */
  770. /* > If SENSE = 'V' or 'B', the estimated reciprocal condition */
  771. /* > numbers of the eigenvectors, stored in consecutive elements */
  772. /* > of the array. For a complex eigenvector two consecutive */
  773. /* > elements of RCONDV are set to the same value. If the */
  774. /* > eigenvalues cannot be reordered to compute RCONDV(j), */
  775. /* > RCONDV(j) is set to 0; this can only occur when the true */
  776. /* > value would be very small anyway. */
  777. /* > If SENSE = 'N' or 'E', RCONDV is not referenced. */
  778. /* > \endverbatim */
  779. /* > */
  780. /* > \param[out] WORK */
  781. /* > \verbatim */
  782. /* > WORK is REAL array, dimension (MAX(1,LWORK)) */
  783. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  784. /* > \endverbatim */
  785. /* > */
  786. /* > \param[in] LWORK */
  787. /* > \verbatim */
  788. /* > LWORK is INTEGER */
  789. /* > The dimension of the array WORK. LWORK >= f2cmax(1,2*N). */
  790. /* > If BALANC = 'S' or 'B', or JOBVL = 'V', or JOBVR = 'V', */
  791. /* > LWORK >= f2cmax(1,6*N). */
  792. /* > If SENSE = 'E', LWORK >= f2cmax(1,10*N). */
  793. /* > If SENSE = 'V' or 'B', LWORK >= 2*N*N+8*N+16. */
  794. /* > */
  795. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  796. /* > only calculates the optimal size of the WORK array, returns */
  797. /* > this value as the first entry of the WORK array, and no error */
  798. /* > message related to LWORK is issued by XERBLA. */
  799. /* > \endverbatim */
  800. /* > */
  801. /* > \param[out] IWORK */
  802. /* > \verbatim */
  803. /* > IWORK is INTEGER array, dimension (N+6) */
  804. /* > If SENSE = 'E', IWORK is not referenced. */
  805. /* > \endverbatim */
  806. /* > */
  807. /* > \param[out] BWORK */
  808. /* > \verbatim */
  809. /* > BWORK is LOGICAL array, dimension (N) */
  810. /* > If SENSE = 'N', BWORK is not referenced. */
  811. /* > \endverbatim */
  812. /* > */
  813. /* > \param[out] INFO */
  814. /* > \verbatim */
  815. /* > INFO is INTEGER */
  816. /* > = 0: successful exit */
  817. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  818. /* > = 1,...,N: */
  819. /* > The QZ iteration failed. No eigenvectors have been */
  820. /* > calculated, but ALPHAR(j), ALPHAI(j), and BETA(j) */
  821. /* > should be correct for j=INFO+1,...,N. */
  822. /* > > N: =N+1: other than QZ iteration failed in SHGEQZ. */
  823. /* > =N+2: error return from STGEVC. */
  824. /* > \endverbatim */
  825. /* Authors: */
  826. /* ======== */
  827. /* > \author Univ. of Tennessee */
  828. /* > \author Univ. of California Berkeley */
  829. /* > \author Univ. of Colorado Denver */
  830. /* > \author NAG Ltd. */
  831. /* > \date April 2012 */
  832. /* > \ingroup realGEeigen */
  833. /* > \par Further Details: */
  834. /* ===================== */
  835. /* > */
  836. /* > \verbatim */
  837. /* > */
  838. /* > Balancing a matrix pair (A,B) includes, first, permuting rows and */
  839. /* > columns to isolate eigenvalues, second, applying diagonal similarity */
  840. /* > transformation to the rows and columns to make the rows and columns */
  841. /* > as close in norm as possible. The computed reciprocal condition */
  842. /* > numbers correspond to the balanced matrix. Permuting rows and columns */
  843. /* > will not change the condition numbers (in exact arithmetic) but */
  844. /* > diagonal scaling will. For further explanation of balancing, see */
  845. /* > section 4.11.1.2 of LAPACK Users' Guide. */
  846. /* > */
  847. /* > An approximate error bound on the chordal distance between the i-th */
  848. /* > computed generalized eigenvalue w and the corresponding exact */
  849. /* > eigenvalue lambda is */
  850. /* > */
  851. /* > chord(w, lambda) <= EPS * norm(ABNRM, BBNRM) / RCONDE(I) */
  852. /* > */
  853. /* > An approximate error bound for the angle between the i-th computed */
  854. /* > eigenvector VL(i) or VR(i) is given by */
  855. /* > */
  856. /* > EPS * norm(ABNRM, BBNRM) / DIF(i). */
  857. /* > */
  858. /* > For further explanation of the reciprocal condition numbers RCONDE */
  859. /* > and RCONDV, see section 4.11 of LAPACK User's Guide. */
  860. /* > \endverbatim */
  861. /* > */
  862. /* ===================================================================== */
  863. /* Subroutine */ int sggevx_(char *balanc, char *jobvl, char *jobvr, char *
  864. sense, integer *n, real *a, integer *lda, real *b, integer *ldb, real
  865. *alphar, real *alphai, real *beta, real *vl, integer *ldvl, real *vr,
  866. integer *ldvr, integer *ilo, integer *ihi, real *lscale, real *rscale,
  867. real *abnrm, real *bbnrm, real *rconde, real *rcondv, real *work,
  868. integer *lwork, integer *iwork, logical *bwork, integer *info)
  869. {
  870. /* System generated locals */
  871. integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1,
  872. vr_offset, i__1, i__2;
  873. real r__1, r__2, r__3, r__4;
  874. /* Local variables */
  875. logical pair;
  876. real anrm, bnrm;
  877. integer ierr, itau;
  878. real temp;
  879. logical ilvl, ilvr;
  880. integer iwrk, iwrk1, i__, j, m;
  881. extern logical lsame_(char *, char *);
  882. integer icols;
  883. logical noscl;
  884. integer irows, jc;
  885. extern /* Subroutine */ int slabad_(real *, real *);
  886. integer in, mm, jr;
  887. extern /* Subroutine */ int sggbak_(char *, char *, integer *, integer *,
  888. integer *, real *, real *, integer *, real *, integer *, integer *
  889. ), sggbal_(char *, integer *, real *, integer *,
  890. real *, integer *, integer *, integer *, real *, real *, real *,
  891. integer *);
  892. logical ilascl, ilbscl;
  893. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), sgghrd_(
  894. char *, char *, integer *, integer *, integer *, real *, integer *
  895. , real *, integer *, real *, integer *, real *, integer *,
  896. integer *);
  897. logical ldumma[1];
  898. char chtemp[1];
  899. real bignum;
  900. extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *,
  901. real *, integer *, integer *, real *, integer *, integer *);
  902. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  903. integer *, integer *, ftnlen, ftnlen);
  904. extern real slamch_(char *);
  905. integer ijobvl;
  906. extern real slange_(char *, integer *, integer *, real *, integer *, real
  907. *);
  908. extern /* Subroutine */ int sgeqrf_(integer *, integer *, real *, integer
  909. *, real *, real *, integer *, integer *);
  910. integer ijobvr;
  911. extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *,
  912. integer *, real *, integer *);
  913. logical wantsb;
  914. extern /* Subroutine */ int slaset_(char *, integer *, integer *, real *,
  915. real *, real *, integer *);
  916. real anrmto;
  917. logical wantse;
  918. real bnrmto;
  919. extern /* Subroutine */ int shgeqz_(char *, char *, char *, integer *,
  920. integer *, integer *, real *, integer *, real *, integer *, real *
  921. , real *, real *, real *, integer *, real *, integer *, real *,
  922. integer *, integer *), stgevc_(char *,
  923. char *, logical *, integer *, real *, integer *, real *, integer *
  924. , real *, integer *, real *, integer *, integer *, integer *,
  925. real *, integer *), stgsna_(char *, char *,
  926. logical *, integer *, real *, integer *, real *, integer *, real *
  927. , integer *, real *, integer *, real *, real *, integer *,
  928. integer *, real *, integer *, integer *, integer *);
  929. integer minwrk, maxwrk;
  930. logical wantsn;
  931. real smlnum;
  932. extern /* Subroutine */ int sorgqr_(integer *, integer *, integer *, real
  933. *, integer *, real *, real *, integer *, integer *);
  934. logical lquery, wantsv;
  935. extern /* Subroutine */ int sormqr_(char *, char *, integer *, integer *,
  936. integer *, real *, integer *, real *, real *, integer *, real *,
  937. integer *, integer *);
  938. real eps;
  939. logical ilv;
  940. /* -- LAPACK driver routine (version 3.7.0) -- */
  941. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  942. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  943. /* April 2012 */
  944. /* ===================================================================== */
  945. /* Decode the input arguments */
  946. /* Parameter adjustments */
  947. a_dim1 = *lda;
  948. a_offset = 1 + a_dim1 * 1;
  949. a -= a_offset;
  950. b_dim1 = *ldb;
  951. b_offset = 1 + b_dim1 * 1;
  952. b -= b_offset;
  953. --alphar;
  954. --alphai;
  955. --beta;
  956. vl_dim1 = *ldvl;
  957. vl_offset = 1 + vl_dim1 * 1;
  958. vl -= vl_offset;
  959. vr_dim1 = *ldvr;
  960. vr_offset = 1 + vr_dim1 * 1;
  961. vr -= vr_offset;
  962. --lscale;
  963. --rscale;
  964. --rconde;
  965. --rcondv;
  966. --work;
  967. --iwork;
  968. --bwork;
  969. /* Function Body */
  970. if (lsame_(jobvl, "N")) {
  971. ijobvl = 1;
  972. ilvl = FALSE_;
  973. } else if (lsame_(jobvl, "V")) {
  974. ijobvl = 2;
  975. ilvl = TRUE_;
  976. } else {
  977. ijobvl = -1;
  978. ilvl = FALSE_;
  979. }
  980. if (lsame_(jobvr, "N")) {
  981. ijobvr = 1;
  982. ilvr = FALSE_;
  983. } else if (lsame_(jobvr, "V")) {
  984. ijobvr = 2;
  985. ilvr = TRUE_;
  986. } else {
  987. ijobvr = -1;
  988. ilvr = FALSE_;
  989. }
  990. ilv = ilvl || ilvr;
  991. noscl = lsame_(balanc, "N") || lsame_(balanc, "P");
  992. wantsn = lsame_(sense, "N");
  993. wantse = lsame_(sense, "E");
  994. wantsv = lsame_(sense, "V");
  995. wantsb = lsame_(sense, "B");
  996. /* Test the input arguments */
  997. *info = 0;
  998. lquery = *lwork == -1;
  999. if (! (noscl || lsame_(balanc, "S") || lsame_(
  1000. balanc, "B"))) {
  1001. *info = -1;
  1002. } else if (ijobvl <= 0) {
  1003. *info = -2;
  1004. } else if (ijobvr <= 0) {
  1005. *info = -3;
  1006. } else if (! (wantsn || wantse || wantsb || wantsv)) {
  1007. *info = -4;
  1008. } else if (*n < 0) {
  1009. *info = -5;
  1010. } else if (*lda < f2cmax(1,*n)) {
  1011. *info = -7;
  1012. } else if (*ldb < f2cmax(1,*n)) {
  1013. *info = -9;
  1014. } else if (*ldvl < 1 || ilvl && *ldvl < *n) {
  1015. *info = -14;
  1016. } else if (*ldvr < 1 || ilvr && *ldvr < *n) {
  1017. *info = -16;
  1018. }
  1019. /* Compute workspace */
  1020. /* (Note: Comments in the code beginning "Workspace:" describe the */
  1021. /* minimal amount of workspace needed at that point in the code, */
  1022. /* as well as the preferred amount for good performance. */
  1023. /* NB refers to the optimal block size for the immediately */
  1024. /* following subroutine, as returned by ILAENV. The workspace is */
  1025. /* computed assuming ILO = 1 and IHI = N, the worst case.) */
  1026. if (*info == 0) {
  1027. if (*n == 0) {
  1028. minwrk = 1;
  1029. maxwrk = 1;
  1030. } else {
  1031. if (noscl && ! ilv) {
  1032. minwrk = *n << 1;
  1033. } else {
  1034. minwrk = *n * 6;
  1035. }
  1036. if (wantse) {
  1037. minwrk = *n * 10;
  1038. } else if (wantsv || wantsb) {
  1039. minwrk = (*n << 1) * (*n + 4) + 16;
  1040. }
  1041. maxwrk = minwrk;
  1042. /* Computing MAX */
  1043. i__1 = maxwrk, i__2 = *n + *n * ilaenv_(&c__1, "SGEQRF", " ", n, &
  1044. c__1, n, &c__0, (ftnlen)6, (ftnlen)1);
  1045. maxwrk = f2cmax(i__1,i__2);
  1046. /* Computing MAX */
  1047. i__1 = maxwrk, i__2 = *n + *n * ilaenv_(&c__1, "SORMQR", " ", n, &
  1048. c__1, n, &c__0, (ftnlen)6, (ftnlen)1);
  1049. maxwrk = f2cmax(i__1,i__2);
  1050. if (ilvl) {
  1051. /* Computing MAX */
  1052. i__1 = maxwrk, i__2 = *n + *n * ilaenv_(&c__1, "SORGQR",
  1053. " ", n, &c__1, n, &c__0, (ftnlen)6, (ftnlen)1);
  1054. maxwrk = f2cmax(i__1,i__2);
  1055. }
  1056. }
  1057. work[1] = (real) maxwrk;
  1058. if (*lwork < minwrk && ! lquery) {
  1059. *info = -26;
  1060. }
  1061. }
  1062. if (*info != 0) {
  1063. i__1 = -(*info);
  1064. xerbla_("SGGEVX", &i__1, (ftnlen)6);
  1065. return 0;
  1066. } else if (lquery) {
  1067. return 0;
  1068. }
  1069. /* Quick return if possible */
  1070. if (*n == 0) {
  1071. return 0;
  1072. }
  1073. /* Get machine constants */
  1074. eps = slamch_("P");
  1075. smlnum = slamch_("S");
  1076. bignum = 1.f / smlnum;
  1077. slabad_(&smlnum, &bignum);
  1078. smlnum = sqrt(smlnum) / eps;
  1079. bignum = 1.f / smlnum;
  1080. /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
  1081. anrm = slange_("M", n, n, &a[a_offset], lda, &work[1]);
  1082. ilascl = FALSE_;
  1083. if (anrm > 0.f && anrm < smlnum) {
  1084. anrmto = smlnum;
  1085. ilascl = TRUE_;
  1086. } else if (anrm > bignum) {
  1087. anrmto = bignum;
  1088. ilascl = TRUE_;
  1089. }
  1090. if (ilascl) {
  1091. slascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, &
  1092. ierr);
  1093. }
  1094. /* Scale B if f2cmax element outside range [SMLNUM,BIGNUM] */
  1095. bnrm = slange_("M", n, n, &b[b_offset], ldb, &work[1]);
  1096. ilbscl = FALSE_;
  1097. if (bnrm > 0.f && bnrm < smlnum) {
  1098. bnrmto = smlnum;
  1099. ilbscl = TRUE_;
  1100. } else if (bnrm > bignum) {
  1101. bnrmto = bignum;
  1102. ilbscl = TRUE_;
  1103. }
  1104. if (ilbscl) {
  1105. slascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &
  1106. ierr);
  1107. }
  1108. /* Permute and/or balance the matrix pair (A,B) */
  1109. /* (Workspace: need 6*N if BALANC = 'S' or 'B', 1 otherwise) */
  1110. sggbal_(balanc, n, &a[a_offset], lda, &b[b_offset], ldb, ilo, ihi, &
  1111. lscale[1], &rscale[1], &work[1], &ierr);
  1112. /* Compute ABNRM and BBNRM */
  1113. *abnrm = slange_("1", n, n, &a[a_offset], lda, &work[1]);
  1114. if (ilascl) {
  1115. work[1] = *abnrm;
  1116. slascl_("G", &c__0, &c__0, &anrmto, &anrm, &c__1, &c__1, &work[1], &
  1117. c__1, &ierr);
  1118. *abnrm = work[1];
  1119. }
  1120. *bbnrm = slange_("1", n, n, &b[b_offset], ldb, &work[1]);
  1121. if (ilbscl) {
  1122. work[1] = *bbnrm;
  1123. slascl_("G", &c__0, &c__0, &bnrmto, &bnrm, &c__1, &c__1, &work[1], &
  1124. c__1, &ierr);
  1125. *bbnrm = work[1];
  1126. }
  1127. /* Reduce B to triangular form (QR decomposition of B) */
  1128. /* (Workspace: need N, prefer N*NB ) */
  1129. irows = *ihi + 1 - *ilo;
  1130. if (ilv || ! wantsn) {
  1131. icols = *n + 1 - *ilo;
  1132. } else {
  1133. icols = irows;
  1134. }
  1135. itau = 1;
  1136. iwrk = itau + irows;
  1137. i__1 = *lwork + 1 - iwrk;
  1138. sgeqrf_(&irows, &icols, &b[*ilo + *ilo * b_dim1], ldb, &work[itau], &work[
  1139. iwrk], &i__1, &ierr);
  1140. /* Apply the orthogonal transformation to A */
  1141. /* (Workspace: need N, prefer N*NB) */
  1142. i__1 = *lwork + 1 - iwrk;
  1143. sormqr_("L", "T", &irows, &icols, &irows, &b[*ilo + *ilo * b_dim1], ldb, &
  1144. work[itau], &a[*ilo + *ilo * a_dim1], lda, &work[iwrk], &i__1, &
  1145. ierr);
  1146. /* Initialize VL and/or VR */
  1147. /* (Workspace: need N, prefer N*NB) */
  1148. if (ilvl) {
  1149. slaset_("Full", n, n, &c_b57, &c_b58, &vl[vl_offset], ldvl)
  1150. ;
  1151. if (irows > 1) {
  1152. i__1 = irows - 1;
  1153. i__2 = irows - 1;
  1154. slacpy_("L", &i__1, &i__2, &b[*ilo + 1 + *ilo * b_dim1], ldb, &vl[
  1155. *ilo + 1 + *ilo * vl_dim1], ldvl);
  1156. }
  1157. i__1 = *lwork + 1 - iwrk;
  1158. sorgqr_(&irows, &irows, &irows, &vl[*ilo + *ilo * vl_dim1], ldvl, &
  1159. work[itau], &work[iwrk], &i__1, &ierr);
  1160. }
  1161. if (ilvr) {
  1162. slaset_("Full", n, n, &c_b57, &c_b58, &vr[vr_offset], ldvr)
  1163. ;
  1164. }
  1165. /* Reduce to generalized Hessenberg form */
  1166. /* (Workspace: none needed) */
  1167. if (ilv || ! wantsn) {
  1168. /* Eigenvectors requested -- work on whole matrix. */
  1169. sgghrd_(jobvl, jobvr, n, ilo, ihi, &a[a_offset], lda, &b[b_offset],
  1170. ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &ierr);
  1171. } else {
  1172. sgghrd_("N", "N", &irows, &c__1, &irows, &a[*ilo + *ilo * a_dim1],
  1173. lda, &b[*ilo + *ilo * b_dim1], ldb, &vl[vl_offset], ldvl, &vr[
  1174. vr_offset], ldvr, &ierr);
  1175. }
  1176. /* Perform QZ algorithm (Compute eigenvalues, and optionally, the */
  1177. /* Schur forms and Schur vectors) */
  1178. /* (Workspace: need N) */
  1179. if (ilv || ! wantsn) {
  1180. *(unsigned char *)chtemp = 'S';
  1181. } else {
  1182. *(unsigned char *)chtemp = 'E';
  1183. }
  1184. shgeqz_(chtemp, jobvl, jobvr, n, ilo, ihi, &a[a_offset], lda, &b[b_offset]
  1185. , ldb, &alphar[1], &alphai[1], &beta[1], &vl[vl_offset], ldvl, &
  1186. vr[vr_offset], ldvr, &work[1], lwork, &ierr);
  1187. if (ierr != 0) {
  1188. if (ierr > 0 && ierr <= *n) {
  1189. *info = ierr;
  1190. } else if (ierr > *n && ierr <= *n << 1) {
  1191. *info = ierr - *n;
  1192. } else {
  1193. *info = *n + 1;
  1194. }
  1195. goto L130;
  1196. }
  1197. /* Compute Eigenvectors and estimate condition numbers if desired */
  1198. /* (Workspace: STGEVC: need 6*N */
  1199. /* STGSNA: need 2*N*(N+2)+16 if SENSE = 'V' or 'B', */
  1200. /* need N otherwise ) */
  1201. if (ilv || ! wantsn) {
  1202. if (ilv) {
  1203. if (ilvl) {
  1204. if (ilvr) {
  1205. *(unsigned char *)chtemp = 'B';
  1206. } else {
  1207. *(unsigned char *)chtemp = 'L';
  1208. }
  1209. } else {
  1210. *(unsigned char *)chtemp = 'R';
  1211. }
  1212. stgevc_(chtemp, "B", ldumma, n, &a[a_offset], lda, &b[b_offset],
  1213. ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &in, &
  1214. work[1], &ierr);
  1215. if (ierr != 0) {
  1216. *info = *n + 2;
  1217. goto L130;
  1218. }
  1219. }
  1220. if (! wantsn) {
  1221. /* compute eigenvectors (STGEVC) and estimate condition */
  1222. /* numbers (STGSNA). Note that the definition of the condition */
  1223. /* number is not invariant under transformation (u,v) to */
  1224. /* (Q*u, Z*v), where (u,v) are eigenvectors of the generalized */
  1225. /* Schur form (S,T), Q and Z are orthogonal matrices. In order */
  1226. /* to avoid using extra 2*N*N workspace, we have to recalculate */
  1227. /* eigenvectors and estimate one condition numbers at a time. */
  1228. pair = FALSE_;
  1229. i__1 = *n;
  1230. for (i__ = 1; i__ <= i__1; ++i__) {
  1231. if (pair) {
  1232. pair = FALSE_;
  1233. goto L20;
  1234. }
  1235. mm = 1;
  1236. if (i__ < *n) {
  1237. if (a[i__ + 1 + i__ * a_dim1] != 0.f) {
  1238. pair = TRUE_;
  1239. mm = 2;
  1240. }
  1241. }
  1242. i__2 = *n;
  1243. for (j = 1; j <= i__2; ++j) {
  1244. bwork[j] = FALSE_;
  1245. /* L10: */
  1246. }
  1247. if (mm == 1) {
  1248. bwork[i__] = TRUE_;
  1249. } else if (mm == 2) {
  1250. bwork[i__] = TRUE_;
  1251. bwork[i__ + 1] = TRUE_;
  1252. }
  1253. iwrk = mm * *n + 1;
  1254. iwrk1 = iwrk + mm * *n;
  1255. /* Compute a pair of left and right eigenvectors. */
  1256. /* (compute workspace: need up to 4*N + 6*N) */
  1257. if (wantse || wantsb) {
  1258. stgevc_("B", "S", &bwork[1], n, &a[a_offset], lda, &b[
  1259. b_offset], ldb, &work[1], n, &work[iwrk], n, &mm,
  1260. &m, &work[iwrk1], &ierr);
  1261. if (ierr != 0) {
  1262. *info = *n + 2;
  1263. goto L130;
  1264. }
  1265. }
  1266. i__2 = *lwork - iwrk1 + 1;
  1267. stgsna_(sense, "S", &bwork[1], n, &a[a_offset], lda, &b[
  1268. b_offset], ldb, &work[1], n, &work[iwrk], n, &rconde[
  1269. i__], &rcondv[i__], &mm, &m, &work[iwrk1], &i__2, &
  1270. iwork[1], &ierr);
  1271. L20:
  1272. ;
  1273. }
  1274. }
  1275. }
  1276. /* Undo balancing on VL and VR and normalization */
  1277. /* (Workspace: none needed) */
  1278. if (ilvl) {
  1279. sggbak_(balanc, "L", n, ilo, ihi, &lscale[1], &rscale[1], n, &vl[
  1280. vl_offset], ldvl, &ierr);
  1281. i__1 = *n;
  1282. for (jc = 1; jc <= i__1; ++jc) {
  1283. if (alphai[jc] < 0.f) {
  1284. goto L70;
  1285. }
  1286. temp = 0.f;
  1287. if (alphai[jc] == 0.f) {
  1288. i__2 = *n;
  1289. for (jr = 1; jr <= i__2; ++jr) {
  1290. /* Computing MAX */
  1291. r__2 = temp, r__3 = (r__1 = vl[jr + jc * vl_dim1], abs(
  1292. r__1));
  1293. temp = f2cmax(r__2,r__3);
  1294. /* L30: */
  1295. }
  1296. } else {
  1297. i__2 = *n;
  1298. for (jr = 1; jr <= i__2; ++jr) {
  1299. /* Computing MAX */
  1300. r__3 = temp, r__4 = (r__1 = vl[jr + jc * vl_dim1], abs(
  1301. r__1)) + (r__2 = vl[jr + (jc + 1) * vl_dim1], abs(
  1302. r__2));
  1303. temp = f2cmax(r__3,r__4);
  1304. /* L40: */
  1305. }
  1306. }
  1307. if (temp < smlnum) {
  1308. goto L70;
  1309. }
  1310. temp = 1.f / temp;
  1311. if (alphai[jc] == 0.f) {
  1312. i__2 = *n;
  1313. for (jr = 1; jr <= i__2; ++jr) {
  1314. vl[jr + jc * vl_dim1] *= temp;
  1315. /* L50: */
  1316. }
  1317. } else {
  1318. i__2 = *n;
  1319. for (jr = 1; jr <= i__2; ++jr) {
  1320. vl[jr + jc * vl_dim1] *= temp;
  1321. vl[jr + (jc + 1) * vl_dim1] *= temp;
  1322. /* L60: */
  1323. }
  1324. }
  1325. L70:
  1326. ;
  1327. }
  1328. }
  1329. if (ilvr) {
  1330. sggbak_(balanc, "R", n, ilo, ihi, &lscale[1], &rscale[1], n, &vr[
  1331. vr_offset], ldvr, &ierr);
  1332. i__1 = *n;
  1333. for (jc = 1; jc <= i__1; ++jc) {
  1334. if (alphai[jc] < 0.f) {
  1335. goto L120;
  1336. }
  1337. temp = 0.f;
  1338. if (alphai[jc] == 0.f) {
  1339. i__2 = *n;
  1340. for (jr = 1; jr <= i__2; ++jr) {
  1341. /* Computing MAX */
  1342. r__2 = temp, r__3 = (r__1 = vr[jr + jc * vr_dim1], abs(
  1343. r__1));
  1344. temp = f2cmax(r__2,r__3);
  1345. /* L80: */
  1346. }
  1347. } else {
  1348. i__2 = *n;
  1349. for (jr = 1; jr <= i__2; ++jr) {
  1350. /* Computing MAX */
  1351. r__3 = temp, r__4 = (r__1 = vr[jr + jc * vr_dim1], abs(
  1352. r__1)) + (r__2 = vr[jr + (jc + 1) * vr_dim1], abs(
  1353. r__2));
  1354. temp = f2cmax(r__3,r__4);
  1355. /* L90: */
  1356. }
  1357. }
  1358. if (temp < smlnum) {
  1359. goto L120;
  1360. }
  1361. temp = 1.f / temp;
  1362. if (alphai[jc] == 0.f) {
  1363. i__2 = *n;
  1364. for (jr = 1; jr <= i__2; ++jr) {
  1365. vr[jr + jc * vr_dim1] *= temp;
  1366. /* L100: */
  1367. }
  1368. } else {
  1369. i__2 = *n;
  1370. for (jr = 1; jr <= i__2; ++jr) {
  1371. vr[jr + jc * vr_dim1] *= temp;
  1372. vr[jr + (jc + 1) * vr_dim1] *= temp;
  1373. /* L110: */
  1374. }
  1375. }
  1376. L120:
  1377. ;
  1378. }
  1379. }
  1380. /* Undo scaling if necessary */
  1381. L130:
  1382. if (ilascl) {
  1383. slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1], n, &
  1384. ierr);
  1385. slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1], n, &
  1386. ierr);
  1387. }
  1388. if (ilbscl) {
  1389. slascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &
  1390. ierr);
  1391. }
  1392. work[1] = (real) maxwrk;
  1393. return 0;
  1394. /* End of SGGEVX */
  1395. } /* sggevx_ */