You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sggev.c 36 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static integer c__0 = 0;
  488. static integer c_n1 = -1;
  489. static real c_b36 = 0.f;
  490. static real c_b37 = 1.f;
  491. /* > \brief <b> SGGEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matr
  492. ices</b> */
  493. /* =========== DOCUMENTATION =========== */
  494. /* Online html documentation available at */
  495. /* http://www.netlib.org/lapack/explore-html/ */
  496. /* > \htmlonly */
  497. /* > Download SGGEV + dependencies */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sggev.f
  499. "> */
  500. /* > [TGZ]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sggev.f
  502. "> */
  503. /* > [ZIP]</a> */
  504. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sggev.f
  505. "> */
  506. /* > [TXT]</a> */
  507. /* > \endhtmlonly */
  508. /* Definition: */
  509. /* =========== */
  510. /* SUBROUTINE SGGEV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, ALPHAI, */
  511. /* BETA, VL, LDVL, VR, LDVR, WORK, LWORK, INFO ) */
  512. /* CHARACTER JOBVL, JOBVR */
  513. /* INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, N */
  514. /* REAL A( LDA, * ), ALPHAI( * ), ALPHAR( * ), */
  515. /* $ B( LDB, * ), BETA( * ), VL( LDVL, * ), */
  516. /* $ VR( LDVR, * ), WORK( * ) */
  517. /* > \par Purpose: */
  518. /* ============= */
  519. /* > */
  520. /* > \verbatim */
  521. /* > */
  522. /* > SGGEV computes for a pair of N-by-N real nonsymmetric matrices (A,B) */
  523. /* > the generalized eigenvalues, and optionally, the left and/or right */
  524. /* > generalized eigenvectors. */
  525. /* > */
  526. /* > A generalized eigenvalue for a pair of matrices (A,B) is a scalar */
  527. /* > lambda or a ratio alpha/beta = lambda, such that A - lambda*B is */
  528. /* > singular. It is usually represented as the pair (alpha,beta), as */
  529. /* > there is a reasonable interpretation for beta=0, and even for both */
  530. /* > being zero. */
  531. /* > */
  532. /* > The right eigenvector v(j) corresponding to the eigenvalue lambda(j) */
  533. /* > of (A,B) satisfies */
  534. /* > */
  535. /* > A * v(j) = lambda(j) * B * v(j). */
  536. /* > */
  537. /* > The left eigenvector u(j) corresponding to the eigenvalue lambda(j) */
  538. /* > of (A,B) satisfies */
  539. /* > */
  540. /* > u(j)**H * A = lambda(j) * u(j)**H * B . */
  541. /* > */
  542. /* > where u(j)**H is the conjugate-transpose of u(j). */
  543. /* > */
  544. /* > \endverbatim */
  545. /* Arguments: */
  546. /* ========== */
  547. /* > \param[in] JOBVL */
  548. /* > \verbatim */
  549. /* > JOBVL is CHARACTER*1 */
  550. /* > = 'N': do not compute the left generalized eigenvectors; */
  551. /* > = 'V': compute the left generalized eigenvectors. */
  552. /* > \endverbatim */
  553. /* > */
  554. /* > \param[in] JOBVR */
  555. /* > \verbatim */
  556. /* > JOBVR is CHARACTER*1 */
  557. /* > = 'N': do not compute the right generalized eigenvectors; */
  558. /* > = 'V': compute the right generalized eigenvectors. */
  559. /* > \endverbatim */
  560. /* > */
  561. /* > \param[in] N */
  562. /* > \verbatim */
  563. /* > N is INTEGER */
  564. /* > The order of the matrices A, B, VL, and VR. N >= 0. */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[in,out] A */
  568. /* > \verbatim */
  569. /* > A is REAL array, dimension (LDA, N) */
  570. /* > On entry, the matrix A in the pair (A,B). */
  571. /* > On exit, A has been overwritten. */
  572. /* > \endverbatim */
  573. /* > */
  574. /* > \param[in] LDA */
  575. /* > \verbatim */
  576. /* > LDA is INTEGER */
  577. /* > The leading dimension of A. LDA >= f2cmax(1,N). */
  578. /* > \endverbatim */
  579. /* > */
  580. /* > \param[in,out] B */
  581. /* > \verbatim */
  582. /* > B is REAL array, dimension (LDB, N) */
  583. /* > On entry, the matrix B in the pair (A,B). */
  584. /* > On exit, B has been overwritten. */
  585. /* > \endverbatim */
  586. /* > */
  587. /* > \param[in] LDB */
  588. /* > \verbatim */
  589. /* > LDB is INTEGER */
  590. /* > The leading dimension of B. LDB >= f2cmax(1,N). */
  591. /* > \endverbatim */
  592. /* > */
  593. /* > \param[out] ALPHAR */
  594. /* > \verbatim */
  595. /* > ALPHAR is REAL array, dimension (N) */
  596. /* > \endverbatim */
  597. /* > */
  598. /* > \param[out] ALPHAI */
  599. /* > \verbatim */
  600. /* > ALPHAI is REAL array, dimension (N) */
  601. /* > \endverbatim */
  602. /* > */
  603. /* > \param[out] BETA */
  604. /* > \verbatim */
  605. /* > BETA is REAL array, dimension (N) */
  606. /* > On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will */
  607. /* > be the generalized eigenvalues. If ALPHAI(j) is zero, then */
  608. /* > the j-th eigenvalue is real; if positive, then the j-th and */
  609. /* > (j+1)-st eigenvalues are a complex conjugate pair, with */
  610. /* > ALPHAI(j+1) negative. */
  611. /* > */
  612. /* > Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j) */
  613. /* > may easily over- or underflow, and BETA(j) may even be zero. */
  614. /* > Thus, the user should avoid naively computing the ratio */
  615. /* > alpha/beta. However, ALPHAR and ALPHAI will be always less */
  616. /* > than and usually comparable with norm(A) in magnitude, and */
  617. /* > BETA always less than and usually comparable with norm(B). */
  618. /* > \endverbatim */
  619. /* > */
  620. /* > \param[out] VL */
  621. /* > \verbatim */
  622. /* > VL is REAL array, dimension (LDVL,N) */
  623. /* > If JOBVL = 'V', the left eigenvectors u(j) are stored one */
  624. /* > after another in the columns of VL, in the same order as */
  625. /* > their eigenvalues. If the j-th eigenvalue is real, then */
  626. /* > u(j) = VL(:,j), the j-th column of VL. If the j-th and */
  627. /* > (j+1)-th eigenvalues form a complex conjugate pair, then */
  628. /* > u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1). */
  629. /* > Each eigenvector is scaled so the largest component has */
  630. /* > abs(real part)+abs(imag. part)=1. */
  631. /* > Not referenced if JOBVL = 'N'. */
  632. /* > \endverbatim */
  633. /* > */
  634. /* > \param[in] LDVL */
  635. /* > \verbatim */
  636. /* > LDVL is INTEGER */
  637. /* > The leading dimension of the matrix VL. LDVL >= 1, and */
  638. /* > if JOBVL = 'V', LDVL >= N. */
  639. /* > \endverbatim */
  640. /* > */
  641. /* > \param[out] VR */
  642. /* > \verbatim */
  643. /* > VR is REAL array, dimension (LDVR,N) */
  644. /* > If JOBVR = 'V', the right eigenvectors v(j) are stored one */
  645. /* > after another in the columns of VR, in the same order as */
  646. /* > their eigenvalues. If the j-th eigenvalue is real, then */
  647. /* > v(j) = VR(:,j), the j-th column of VR. If the j-th and */
  648. /* > (j+1)-th eigenvalues form a complex conjugate pair, then */
  649. /* > v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1). */
  650. /* > Each eigenvector is scaled so the largest component has */
  651. /* > abs(real part)+abs(imag. part)=1. */
  652. /* > Not referenced if JOBVR = 'N'. */
  653. /* > \endverbatim */
  654. /* > */
  655. /* > \param[in] LDVR */
  656. /* > \verbatim */
  657. /* > LDVR is INTEGER */
  658. /* > The leading dimension of the matrix VR. LDVR >= 1, and */
  659. /* > if JOBVR = 'V', LDVR >= N. */
  660. /* > \endverbatim */
  661. /* > */
  662. /* > \param[out] WORK */
  663. /* > \verbatim */
  664. /* > WORK is REAL array, dimension (MAX(1,LWORK)) */
  665. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  666. /* > \endverbatim */
  667. /* > */
  668. /* > \param[in] LWORK */
  669. /* > \verbatim */
  670. /* > LWORK is INTEGER */
  671. /* > The dimension of the array WORK. LWORK >= f2cmax(1,8*N). */
  672. /* > For good performance, LWORK must generally be larger. */
  673. /* > */
  674. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  675. /* > only calculates the optimal size of the WORK array, returns */
  676. /* > this value as the first entry of the WORK array, and no error */
  677. /* > message related to LWORK is issued by XERBLA. */
  678. /* > \endverbatim */
  679. /* > */
  680. /* > \param[out] INFO */
  681. /* > \verbatim */
  682. /* > INFO is INTEGER */
  683. /* > = 0: successful exit */
  684. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  685. /* > = 1,...,N: */
  686. /* > The QZ iteration failed. No eigenvectors have been */
  687. /* > calculated, but ALPHAR(j), ALPHAI(j), and BETA(j) */
  688. /* > should be correct for j=INFO+1,...,N. */
  689. /* > > N: =N+1: other than QZ iteration failed in SHGEQZ. */
  690. /* > =N+2: error return from STGEVC. */
  691. /* > \endverbatim */
  692. /* Authors: */
  693. /* ======== */
  694. /* > \author Univ. of Tennessee */
  695. /* > \author Univ. of California Berkeley */
  696. /* > \author Univ. of Colorado Denver */
  697. /* > \author NAG Ltd. */
  698. /* > \date April 2012 */
  699. /* > \ingroup realGEeigen */
  700. /* ===================================================================== */
  701. /* Subroutine */ int sggev_(char *jobvl, char *jobvr, integer *n, real *a,
  702. integer *lda, real *b, integer *ldb, real *alphar, real *alphai, real
  703. *beta, real *vl, integer *ldvl, real *vr, integer *ldvr, real *work,
  704. integer *lwork, integer *info)
  705. {
  706. /* System generated locals */
  707. integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1,
  708. vr_offset, i__1, i__2;
  709. real r__1, r__2, r__3, r__4;
  710. /* Local variables */
  711. real anrm, bnrm;
  712. integer ierr, itau;
  713. real temp;
  714. logical ilvl, ilvr;
  715. integer iwrk;
  716. extern logical lsame_(char *, char *);
  717. integer ileft, icols, irows, jc;
  718. extern /* Subroutine */ int slabad_(real *, real *);
  719. integer in, jr;
  720. extern /* Subroutine */ int sggbak_(char *, char *, integer *, integer *,
  721. integer *, real *, real *, integer *, real *, integer *, integer *
  722. ), sggbal_(char *, integer *, real *, integer *,
  723. real *, integer *, integer *, integer *, real *, real *, real *,
  724. integer *);
  725. logical ilascl, ilbscl;
  726. extern real slamch_(char *), slange_(char *, integer *, integer *,
  727. real *, integer *, real *);
  728. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), sgghrd_(
  729. char *, char *, integer *, integer *, integer *, real *, integer *
  730. , real *, integer *, real *, integer *, real *, integer *,
  731. integer *);
  732. logical ldumma[1];
  733. char chtemp[1];
  734. real bignum;
  735. extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *,
  736. real *, integer *, integer *, real *, integer *, integer *);
  737. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  738. integer *, integer *, ftnlen, ftnlen);
  739. integer ijobvl, iright;
  740. extern /* Subroutine */ int sgeqrf_(integer *, integer *, real *, integer
  741. *, real *, real *, integer *, integer *);
  742. integer ijobvr;
  743. extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *,
  744. integer *, real *, integer *), slaset_(char *, integer *,
  745. integer *, real *, real *, real *, integer *), stgevc_(
  746. char *, char *, logical *, integer *, real *, integer *, real *,
  747. integer *, real *, integer *, real *, integer *, integer *,
  748. integer *, real *, integer *);
  749. real anrmto, bnrmto;
  750. extern /* Subroutine */ int shgeqz_(char *, char *, char *, integer *,
  751. integer *, integer *, real *, integer *, real *, integer *, real *
  752. , real *, real *, real *, integer *, real *, integer *, real *,
  753. integer *, integer *);
  754. integer minwrk, maxwrk;
  755. real smlnum;
  756. extern /* Subroutine */ int sorgqr_(integer *, integer *, integer *, real
  757. *, integer *, real *, real *, integer *, integer *);
  758. logical lquery;
  759. extern /* Subroutine */ int sormqr_(char *, char *, integer *, integer *,
  760. integer *, real *, integer *, real *, real *, integer *, real *,
  761. integer *, integer *);
  762. integer ihi, ilo;
  763. real eps;
  764. logical ilv;
  765. /* -- LAPACK driver routine (version 3.7.0) -- */
  766. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  767. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  768. /* April 2012 */
  769. /* ===================================================================== */
  770. /* Decode the input arguments */
  771. /* Parameter adjustments */
  772. a_dim1 = *lda;
  773. a_offset = 1 + a_dim1 * 1;
  774. a -= a_offset;
  775. b_dim1 = *ldb;
  776. b_offset = 1 + b_dim1 * 1;
  777. b -= b_offset;
  778. --alphar;
  779. --alphai;
  780. --beta;
  781. vl_dim1 = *ldvl;
  782. vl_offset = 1 + vl_dim1 * 1;
  783. vl -= vl_offset;
  784. vr_dim1 = *ldvr;
  785. vr_offset = 1 + vr_dim1 * 1;
  786. vr -= vr_offset;
  787. --work;
  788. /* Function Body */
  789. if (lsame_(jobvl, "N")) {
  790. ijobvl = 1;
  791. ilvl = FALSE_;
  792. } else if (lsame_(jobvl, "V")) {
  793. ijobvl = 2;
  794. ilvl = TRUE_;
  795. } else {
  796. ijobvl = -1;
  797. ilvl = FALSE_;
  798. }
  799. if (lsame_(jobvr, "N")) {
  800. ijobvr = 1;
  801. ilvr = FALSE_;
  802. } else if (lsame_(jobvr, "V")) {
  803. ijobvr = 2;
  804. ilvr = TRUE_;
  805. } else {
  806. ijobvr = -1;
  807. ilvr = FALSE_;
  808. }
  809. ilv = ilvl || ilvr;
  810. /* Test the input arguments */
  811. *info = 0;
  812. lquery = *lwork == -1;
  813. if (ijobvl <= 0) {
  814. *info = -1;
  815. } else if (ijobvr <= 0) {
  816. *info = -2;
  817. } else if (*n < 0) {
  818. *info = -3;
  819. } else if (*lda < f2cmax(1,*n)) {
  820. *info = -5;
  821. } else if (*ldb < f2cmax(1,*n)) {
  822. *info = -7;
  823. } else if (*ldvl < 1 || ilvl && *ldvl < *n) {
  824. *info = -12;
  825. } else if (*ldvr < 1 || ilvr && *ldvr < *n) {
  826. *info = -14;
  827. }
  828. /* Compute workspace */
  829. /* (Note: Comments in the code beginning "Workspace:" describe the */
  830. /* minimal amount of workspace needed at that point in the code, */
  831. /* as well as the preferred amount for good performance. */
  832. /* NB refers to the optimal block size for the immediately */
  833. /* following subroutine, as returned by ILAENV. The workspace is */
  834. /* computed assuming ILO = 1 and IHI = N, the worst case.) */
  835. if (*info == 0) {
  836. /* Computing MAX */
  837. i__1 = 1, i__2 = *n << 3;
  838. minwrk = f2cmax(i__1,i__2);
  839. /* Computing MAX */
  840. i__1 = 1, i__2 = *n * (ilaenv_(&c__1, "SGEQRF", " ", n, &c__1, n, &
  841. c__0, (ftnlen)6, (ftnlen)1) + 7);
  842. maxwrk = f2cmax(i__1,i__2);
  843. /* Computing MAX */
  844. i__1 = maxwrk, i__2 = *n * (ilaenv_(&c__1, "SORMQR", " ", n, &c__1, n,
  845. &c__0, (ftnlen)6, (ftnlen)1) + 7);
  846. maxwrk = f2cmax(i__1,i__2);
  847. if (ilvl) {
  848. /* Computing MAX */
  849. i__1 = maxwrk, i__2 = *n * (ilaenv_(&c__1, "SORGQR", " ", n, &
  850. c__1, n, &c_n1, (ftnlen)6, (ftnlen)1) + 7);
  851. maxwrk = f2cmax(i__1,i__2);
  852. }
  853. work[1] = (real) maxwrk;
  854. if (*lwork < minwrk && ! lquery) {
  855. *info = -16;
  856. }
  857. }
  858. if (*info != 0) {
  859. i__1 = -(*info);
  860. xerbla_("SGGEV ", &i__1, (ftnlen)6);
  861. return 0;
  862. } else if (lquery) {
  863. return 0;
  864. }
  865. /* Quick return if possible */
  866. if (*n == 0) {
  867. return 0;
  868. }
  869. /* Get machine constants */
  870. eps = slamch_("P");
  871. smlnum = slamch_("S");
  872. bignum = 1.f / smlnum;
  873. slabad_(&smlnum, &bignum);
  874. smlnum = sqrt(smlnum) / eps;
  875. bignum = 1.f / smlnum;
  876. /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
  877. anrm = slange_("M", n, n, &a[a_offset], lda, &work[1]);
  878. ilascl = FALSE_;
  879. if (anrm > 0.f && anrm < smlnum) {
  880. anrmto = smlnum;
  881. ilascl = TRUE_;
  882. } else if (anrm > bignum) {
  883. anrmto = bignum;
  884. ilascl = TRUE_;
  885. }
  886. if (ilascl) {
  887. slascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, &
  888. ierr);
  889. }
  890. /* Scale B if f2cmax element outside range [SMLNUM,BIGNUM] */
  891. bnrm = slange_("M", n, n, &b[b_offset], ldb, &work[1]);
  892. ilbscl = FALSE_;
  893. if (bnrm > 0.f && bnrm < smlnum) {
  894. bnrmto = smlnum;
  895. ilbscl = TRUE_;
  896. } else if (bnrm > bignum) {
  897. bnrmto = bignum;
  898. ilbscl = TRUE_;
  899. }
  900. if (ilbscl) {
  901. slascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &
  902. ierr);
  903. }
  904. /* Permute the matrices A, B to isolate eigenvalues if possible */
  905. /* (Workspace: need 6*N) */
  906. ileft = 1;
  907. iright = *n + 1;
  908. iwrk = iright + *n;
  909. sggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[
  910. ileft], &work[iright], &work[iwrk], &ierr);
  911. /* Reduce B to triangular form (QR decomposition of B) */
  912. /* (Workspace: need N, prefer N*NB) */
  913. irows = ihi + 1 - ilo;
  914. if (ilv) {
  915. icols = *n + 1 - ilo;
  916. } else {
  917. icols = irows;
  918. }
  919. itau = iwrk;
  920. iwrk = itau + irows;
  921. i__1 = *lwork + 1 - iwrk;
  922. sgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[
  923. iwrk], &i__1, &ierr);
  924. /* Apply the orthogonal transformation to matrix A */
  925. /* (Workspace: need N, prefer N*NB) */
  926. i__1 = *lwork + 1 - iwrk;
  927. sormqr_("L", "T", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, &
  928. work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwrk], &i__1, &
  929. ierr);
  930. /* Initialize VL */
  931. /* (Workspace: need N, prefer N*NB) */
  932. if (ilvl) {
  933. slaset_("Full", n, n, &c_b36, &c_b37, &vl[vl_offset], ldvl)
  934. ;
  935. if (irows > 1) {
  936. i__1 = irows - 1;
  937. i__2 = irows - 1;
  938. slacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vl[
  939. ilo + 1 + ilo * vl_dim1], ldvl);
  940. }
  941. i__1 = *lwork + 1 - iwrk;
  942. sorgqr_(&irows, &irows, &irows, &vl[ilo + ilo * vl_dim1], ldvl, &work[
  943. itau], &work[iwrk], &i__1, &ierr);
  944. }
  945. /* Initialize VR */
  946. if (ilvr) {
  947. slaset_("Full", n, n, &c_b36, &c_b37, &vr[vr_offset], ldvr)
  948. ;
  949. }
  950. /* Reduce to generalized Hessenberg form */
  951. /* (Workspace: none needed) */
  952. if (ilv) {
  953. /* Eigenvectors requested -- work on whole matrix. */
  954. sgghrd_(jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset],
  955. ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &ierr);
  956. } else {
  957. sgghrd_("N", "N", &irows, &c__1, &irows, &a[ilo + ilo * a_dim1], lda,
  958. &b[ilo + ilo * b_dim1], ldb, &vl[vl_offset], ldvl, &vr[
  959. vr_offset], ldvr, &ierr);
  960. }
  961. /* Perform QZ algorithm (Compute eigenvalues, and optionally, the */
  962. /* Schur forms and Schur vectors) */
  963. /* (Workspace: need N) */
  964. iwrk = itau;
  965. if (ilv) {
  966. *(unsigned char *)chtemp = 'S';
  967. } else {
  968. *(unsigned char *)chtemp = 'E';
  969. }
  970. i__1 = *lwork + 1 - iwrk;
  971. shgeqz_(chtemp, jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[
  972. b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vl[vl_offset],
  973. ldvl, &vr[vr_offset], ldvr, &work[iwrk], &i__1, &ierr);
  974. if (ierr != 0) {
  975. if (ierr > 0 && ierr <= *n) {
  976. *info = ierr;
  977. } else if (ierr > *n && ierr <= *n << 1) {
  978. *info = ierr - *n;
  979. } else {
  980. *info = *n + 1;
  981. }
  982. goto L110;
  983. }
  984. /* Compute Eigenvectors */
  985. /* (Workspace: need 6*N) */
  986. if (ilv) {
  987. if (ilvl) {
  988. if (ilvr) {
  989. *(unsigned char *)chtemp = 'B';
  990. } else {
  991. *(unsigned char *)chtemp = 'L';
  992. }
  993. } else {
  994. *(unsigned char *)chtemp = 'R';
  995. }
  996. stgevc_(chtemp, "B", ldumma, n, &a[a_offset], lda, &b[b_offset], ldb,
  997. &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &in, &work[
  998. iwrk], &ierr);
  999. if (ierr != 0) {
  1000. *info = *n + 2;
  1001. goto L110;
  1002. }
  1003. /* Undo balancing on VL and VR and normalization */
  1004. /* (Workspace: none needed) */
  1005. if (ilvl) {
  1006. sggbak_("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, &
  1007. vl[vl_offset], ldvl, &ierr);
  1008. i__1 = *n;
  1009. for (jc = 1; jc <= i__1; ++jc) {
  1010. if (alphai[jc] < 0.f) {
  1011. goto L50;
  1012. }
  1013. temp = 0.f;
  1014. if (alphai[jc] == 0.f) {
  1015. i__2 = *n;
  1016. for (jr = 1; jr <= i__2; ++jr) {
  1017. /* Computing MAX */
  1018. r__2 = temp, r__3 = (r__1 = vl[jr + jc * vl_dim1],
  1019. abs(r__1));
  1020. temp = f2cmax(r__2,r__3);
  1021. /* L10: */
  1022. }
  1023. } else {
  1024. i__2 = *n;
  1025. for (jr = 1; jr <= i__2; ++jr) {
  1026. /* Computing MAX */
  1027. r__3 = temp, r__4 = (r__1 = vl[jr + jc * vl_dim1],
  1028. abs(r__1)) + (r__2 = vl[jr + (jc + 1) *
  1029. vl_dim1], abs(r__2));
  1030. temp = f2cmax(r__3,r__4);
  1031. /* L20: */
  1032. }
  1033. }
  1034. if (temp < smlnum) {
  1035. goto L50;
  1036. }
  1037. temp = 1.f / temp;
  1038. if (alphai[jc] == 0.f) {
  1039. i__2 = *n;
  1040. for (jr = 1; jr <= i__2; ++jr) {
  1041. vl[jr + jc * vl_dim1] *= temp;
  1042. /* L30: */
  1043. }
  1044. } else {
  1045. i__2 = *n;
  1046. for (jr = 1; jr <= i__2; ++jr) {
  1047. vl[jr + jc * vl_dim1] *= temp;
  1048. vl[jr + (jc + 1) * vl_dim1] *= temp;
  1049. /* L40: */
  1050. }
  1051. }
  1052. L50:
  1053. ;
  1054. }
  1055. }
  1056. if (ilvr) {
  1057. sggbak_("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, &
  1058. vr[vr_offset], ldvr, &ierr);
  1059. i__1 = *n;
  1060. for (jc = 1; jc <= i__1; ++jc) {
  1061. if (alphai[jc] < 0.f) {
  1062. goto L100;
  1063. }
  1064. temp = 0.f;
  1065. if (alphai[jc] == 0.f) {
  1066. i__2 = *n;
  1067. for (jr = 1; jr <= i__2; ++jr) {
  1068. /* Computing MAX */
  1069. r__2 = temp, r__3 = (r__1 = vr[jr + jc * vr_dim1],
  1070. abs(r__1));
  1071. temp = f2cmax(r__2,r__3);
  1072. /* L60: */
  1073. }
  1074. } else {
  1075. i__2 = *n;
  1076. for (jr = 1; jr <= i__2; ++jr) {
  1077. /* Computing MAX */
  1078. r__3 = temp, r__4 = (r__1 = vr[jr + jc * vr_dim1],
  1079. abs(r__1)) + (r__2 = vr[jr + (jc + 1) *
  1080. vr_dim1], abs(r__2));
  1081. temp = f2cmax(r__3,r__4);
  1082. /* L70: */
  1083. }
  1084. }
  1085. if (temp < smlnum) {
  1086. goto L100;
  1087. }
  1088. temp = 1.f / temp;
  1089. if (alphai[jc] == 0.f) {
  1090. i__2 = *n;
  1091. for (jr = 1; jr <= i__2; ++jr) {
  1092. vr[jr + jc * vr_dim1] *= temp;
  1093. /* L80: */
  1094. }
  1095. } else {
  1096. i__2 = *n;
  1097. for (jr = 1; jr <= i__2; ++jr) {
  1098. vr[jr + jc * vr_dim1] *= temp;
  1099. vr[jr + (jc + 1) * vr_dim1] *= temp;
  1100. /* L90: */
  1101. }
  1102. }
  1103. L100:
  1104. ;
  1105. }
  1106. }
  1107. /* End of eigenvector calculation */
  1108. }
  1109. /* Undo scaling if necessary */
  1110. L110:
  1111. if (ilascl) {
  1112. slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1], n, &
  1113. ierr);
  1114. slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1], n, &
  1115. ierr);
  1116. }
  1117. if (ilbscl) {
  1118. slascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &
  1119. ierr);
  1120. }
  1121. work[1] = (real) maxwrk;
  1122. return 0;
  1123. /* End of SGGEV */
  1124. } /* sggev_ */