You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sgeesx.c 38 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static integer c__0 = 0;
  488. static integer c_n1 = -1;
  489. /* > \brief <b> SGEESX computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors
  490. for GE matrices</b> */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* > \htmlonly */
  495. /* > Download SGEESX + dependencies */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgeesx.
  497. f"> */
  498. /* > [TGZ]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgeesx.
  500. f"> */
  501. /* > [ZIP]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgeesx.
  503. f"> */
  504. /* > [TXT]</a> */
  505. /* > \endhtmlonly */
  506. /* Definition: */
  507. /* =========== */
  508. /* SUBROUTINE SGEESX( JOBVS, SORT, SELECT, SENSE, N, A, LDA, SDIM, */
  509. /* WR, WI, VS, LDVS, RCONDE, RCONDV, WORK, LWORK, */
  510. /* IWORK, LIWORK, BWORK, INFO ) */
  511. /* CHARACTER JOBVS, SENSE, SORT */
  512. /* INTEGER INFO, LDA, LDVS, LIWORK, LWORK, N, SDIM */
  513. /* REAL RCONDE, RCONDV */
  514. /* LOGICAL BWORK( * ) */
  515. /* INTEGER IWORK( * ) */
  516. /* REAL A( LDA, * ), VS( LDVS, * ), WI( * ), WORK( * ), */
  517. /* $ WR( * ) */
  518. /* LOGICAL SELECT */
  519. /* EXTERNAL SELECT */
  520. /* > \par Purpose: */
  521. /* ============= */
  522. /* > */
  523. /* > \verbatim */
  524. /* > */
  525. /* > SGEESX computes for an N-by-N real nonsymmetric matrix A, the */
  526. /* > eigenvalues, the real Schur form T, and, optionally, the matrix of */
  527. /* > Schur vectors Z. This gives the Schur factorization A = Z*T*(Z**T). */
  528. /* > */
  529. /* > Optionally, it also orders the eigenvalues on the diagonal of the */
  530. /* > real Schur form so that selected eigenvalues are at the top left; */
  531. /* > computes a reciprocal condition number for the average of the */
  532. /* > selected eigenvalues (RCONDE); and computes a reciprocal condition */
  533. /* > number for the right invariant subspace corresponding to the */
  534. /* > selected eigenvalues (RCONDV). The leading columns of Z form an */
  535. /* > orthonormal basis for this invariant subspace. */
  536. /* > */
  537. /* > For further explanation of the reciprocal condition numbers RCONDE */
  538. /* > and RCONDV, see Section 4.10 of the LAPACK Users' Guide (where */
  539. /* > these quantities are called s and sep respectively). */
  540. /* > */
  541. /* > A real matrix is in real Schur form if it is upper quasi-triangular */
  542. /* > with 1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in */
  543. /* > the form */
  544. /* > [ a b ] */
  545. /* > [ c a ] */
  546. /* > */
  547. /* > where b*c < 0. The eigenvalues of such a block are a +- sqrt(bc). */
  548. /* > \endverbatim */
  549. /* Arguments: */
  550. /* ========== */
  551. /* > \param[in] JOBVS */
  552. /* > \verbatim */
  553. /* > JOBVS is CHARACTER*1 */
  554. /* > = 'N': Schur vectors are not computed; */
  555. /* > = 'V': Schur vectors are computed. */
  556. /* > \endverbatim */
  557. /* > */
  558. /* > \param[in] SORT */
  559. /* > \verbatim */
  560. /* > SORT is CHARACTER*1 */
  561. /* > Specifies whether or not to order the eigenvalues on the */
  562. /* > diagonal of the Schur form. */
  563. /* > = 'N': Eigenvalues are not ordered; */
  564. /* > = 'S': Eigenvalues are ordered (see SELECT). */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[in] SELECT */
  568. /* > \verbatim */
  569. /* > SELECT is a LOGICAL FUNCTION of two REAL arguments */
  570. /* > SELECT must be declared EXTERNAL in the calling subroutine. */
  571. /* > If SORT = 'S', SELECT is used to select eigenvalues to sort */
  572. /* > to the top left of the Schur form. */
  573. /* > If SORT = 'N', SELECT is not referenced. */
  574. /* > An eigenvalue WR(j)+sqrt(-1)*WI(j) is selected if */
  575. /* > SELECT(WR(j),WI(j)) is true; i.e., if either one of a */
  576. /* > complex conjugate pair of eigenvalues is selected, then both */
  577. /* > are. Note that a selected complex eigenvalue may no longer */
  578. /* > satisfy SELECT(WR(j),WI(j)) = .TRUE. after ordering, since */
  579. /* > ordering may change the value of complex eigenvalues */
  580. /* > (especially if the eigenvalue is ill-conditioned); in this */
  581. /* > case INFO may be set to N+3 (see INFO below). */
  582. /* > \endverbatim */
  583. /* > */
  584. /* > \param[in] SENSE */
  585. /* > \verbatim */
  586. /* > SENSE is CHARACTER*1 */
  587. /* > Determines which reciprocal condition numbers are computed. */
  588. /* > = 'N': None are computed; */
  589. /* > = 'E': Computed for average of selected eigenvalues only; */
  590. /* > = 'V': Computed for selected right invariant subspace only; */
  591. /* > = 'B': Computed for both. */
  592. /* > If SENSE = 'E', 'V' or 'B', SORT must equal 'S'. */
  593. /* > \endverbatim */
  594. /* > */
  595. /* > \param[in] N */
  596. /* > \verbatim */
  597. /* > N is INTEGER */
  598. /* > The order of the matrix A. N >= 0. */
  599. /* > \endverbatim */
  600. /* > */
  601. /* > \param[in,out] A */
  602. /* > \verbatim */
  603. /* > A is REAL array, dimension (LDA, N) */
  604. /* > On entry, the N-by-N matrix A. */
  605. /* > On exit, A is overwritten by its real Schur form T. */
  606. /* > \endverbatim */
  607. /* > */
  608. /* > \param[in] LDA */
  609. /* > \verbatim */
  610. /* > LDA is INTEGER */
  611. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  612. /* > \endverbatim */
  613. /* > */
  614. /* > \param[out] SDIM */
  615. /* > \verbatim */
  616. /* > SDIM is INTEGER */
  617. /* > If SORT = 'N', SDIM = 0. */
  618. /* > If SORT = 'S', SDIM = number of eigenvalues (after sorting) */
  619. /* > for which SELECT is true. (Complex conjugate */
  620. /* > pairs for which SELECT is true for either */
  621. /* > eigenvalue count as 2.) */
  622. /* > \endverbatim */
  623. /* > */
  624. /* > \param[out] WR */
  625. /* > \verbatim */
  626. /* > WR is REAL array, dimension (N) */
  627. /* > \endverbatim */
  628. /* > */
  629. /* > \param[out] WI */
  630. /* > \verbatim */
  631. /* > WI is REAL array, dimension (N) */
  632. /* > WR and WI contain the real and imaginary parts, respectively, */
  633. /* > of the computed eigenvalues, in the same order that they */
  634. /* > appear on the diagonal of the output Schur form T. Complex */
  635. /* > conjugate pairs of eigenvalues appear consecutively with the */
  636. /* > eigenvalue having the positive imaginary part first. */
  637. /* > \endverbatim */
  638. /* > */
  639. /* > \param[out] VS */
  640. /* > \verbatim */
  641. /* > VS is REAL array, dimension (LDVS,N) */
  642. /* > If JOBVS = 'V', VS contains the orthogonal matrix Z of Schur */
  643. /* > vectors. */
  644. /* > If JOBVS = 'N', VS is not referenced. */
  645. /* > \endverbatim */
  646. /* > */
  647. /* > \param[in] LDVS */
  648. /* > \verbatim */
  649. /* > LDVS is INTEGER */
  650. /* > The leading dimension of the array VS. LDVS >= 1, and if */
  651. /* > JOBVS = 'V', LDVS >= N. */
  652. /* > \endverbatim */
  653. /* > */
  654. /* > \param[out] RCONDE */
  655. /* > \verbatim */
  656. /* > RCONDE is REAL */
  657. /* > If SENSE = 'E' or 'B', RCONDE contains the reciprocal */
  658. /* > condition number for the average of the selected eigenvalues. */
  659. /* > Not referenced if SENSE = 'N' or 'V'. */
  660. /* > \endverbatim */
  661. /* > */
  662. /* > \param[out] RCONDV */
  663. /* > \verbatim */
  664. /* > RCONDV is REAL */
  665. /* > If SENSE = 'V' or 'B', RCONDV contains the reciprocal */
  666. /* > condition number for the selected right invariant subspace. */
  667. /* > Not referenced if SENSE = 'N' or 'E'. */
  668. /* > \endverbatim */
  669. /* > */
  670. /* > \param[out] WORK */
  671. /* > \verbatim */
  672. /* > WORK is REAL array, dimension (MAX(1,LWORK)) */
  673. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  674. /* > \endverbatim */
  675. /* > */
  676. /* > \param[in] LWORK */
  677. /* > \verbatim */
  678. /* > LWORK is INTEGER */
  679. /* > The dimension of the array WORK. LWORK >= f2cmax(1,3*N). */
  680. /* > Also, if SENSE = 'E' or 'V' or 'B', */
  681. /* > LWORK >= N+2*SDIM*(N-SDIM), where SDIM is the number of */
  682. /* > selected eigenvalues computed by this routine. Note that */
  683. /* > N+2*SDIM*(N-SDIM) <= N+N*N/2. Note also that an error is only */
  684. /* > returned if LWORK < f2cmax(1,3*N), but if SENSE = 'E' or 'V' or */
  685. /* > 'B' this may not be large enough. */
  686. /* > For good performance, LWORK must generally be larger. */
  687. /* > */
  688. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  689. /* > only calculates upper bounds on the optimal sizes of the */
  690. /* > arrays WORK and IWORK, returns these values as the first */
  691. /* > entries of the WORK and IWORK arrays, and no error messages */
  692. /* > related to LWORK or LIWORK are issued by XERBLA. */
  693. /* > \endverbatim */
  694. /* > */
  695. /* > \param[out] IWORK */
  696. /* > \verbatim */
  697. /* > IWORK is INTEGER array, dimension (MAX(1,LIWORK)) */
  698. /* > On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */
  699. /* > \endverbatim */
  700. /* > */
  701. /* > \param[in] LIWORK */
  702. /* > \verbatim */
  703. /* > LIWORK is INTEGER */
  704. /* > The dimension of the array IWORK. */
  705. /* > LIWORK >= 1; if SENSE = 'V' or 'B', LIWORK >= SDIM*(N-SDIM). */
  706. /* > Note that SDIM*(N-SDIM) <= N*N/4. Note also that an error is */
  707. /* > only returned if LIWORK < 1, but if SENSE = 'V' or 'B' this */
  708. /* > may not be large enough. */
  709. /* > */
  710. /* > If LIWORK = -1, then a workspace query is assumed; the */
  711. /* > routine only calculates upper bounds on the optimal sizes of */
  712. /* > the arrays WORK and IWORK, returns these values as the first */
  713. /* > entries of the WORK and IWORK arrays, and no error messages */
  714. /* > related to LWORK or LIWORK are issued by XERBLA. */
  715. /* > \endverbatim */
  716. /* > */
  717. /* > \param[out] BWORK */
  718. /* > \verbatim */
  719. /* > BWORK is LOGICAL array, dimension (N) */
  720. /* > Not referenced if SORT = 'N'. */
  721. /* > \endverbatim */
  722. /* > */
  723. /* > \param[out] INFO */
  724. /* > \verbatim */
  725. /* > INFO is INTEGER */
  726. /* > = 0: successful exit */
  727. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  728. /* > > 0: if INFO = i, and i is */
  729. /* > <= N: the QR algorithm failed to compute all the */
  730. /* > eigenvalues; elements 1:ILO-1 and i+1:N of WR and WI */
  731. /* > contain those eigenvalues which have converged; if */
  732. /* > JOBVS = 'V', VS contains the transformation which */
  733. /* > reduces A to its partially converged Schur form. */
  734. /* > = N+1: the eigenvalues could not be reordered because some */
  735. /* > eigenvalues were too close to separate (the problem */
  736. /* > is very ill-conditioned); */
  737. /* > = N+2: after reordering, roundoff changed values of some */
  738. /* > complex eigenvalues so that leading eigenvalues in */
  739. /* > the Schur form no longer satisfy SELECT=.TRUE. This */
  740. /* > could also be caused by underflow due to scaling. */
  741. /* > \endverbatim */
  742. /* Authors: */
  743. /* ======== */
  744. /* > \author Univ. of Tennessee */
  745. /* > \author Univ. of California Berkeley */
  746. /* > \author Univ. of Colorado Denver */
  747. /* > \author NAG Ltd. */
  748. /* > \date June 2016 */
  749. /* > \ingroup realGEeigen */
  750. /* ===================================================================== */
  751. /* Subroutine */ int sgeesx_(char *jobvs, char *sort, L_fp select, char *
  752. sense, integer *n, real *a, integer *lda, integer *sdim, real *wr,
  753. real *wi, real *vs, integer *ldvs, real *rconde, real *rcondv, real *
  754. work, integer *lwork, integer *iwork, integer *liwork, logical *bwork,
  755. integer *info)
  756. {
  757. /* System generated locals */
  758. integer a_dim1, a_offset, vs_dim1, vs_offset, i__1, i__2, i__3;
  759. /* Local variables */
  760. integer ibal;
  761. real anrm;
  762. integer ierr, itau, iwrk, lwrk, inxt, i__, icond, ieval;
  763. extern logical lsame_(char *, char *);
  764. logical cursl;
  765. integer liwrk, i1, i2;
  766. extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *,
  767. integer *), sswap_(integer *, real *, integer *, real *, integer *
  768. );
  769. logical lst2sl;
  770. extern /* Subroutine */ int slabad_(real *, real *);
  771. logical scalea;
  772. integer ip;
  773. real cscale;
  774. extern /* Subroutine */ int sgebak_(char *, char *, integer *, integer *,
  775. integer *, real *, integer *, real *, integer *, integer *), sgebal_(char *, integer *, real *, integer *,
  776. integer *, integer *, real *, integer *);
  777. extern real slamch_(char *);
  778. extern /* Subroutine */ int sgehrd_(integer *, integer *, integer *, real
  779. *, integer *, real *, real *, integer *, integer *), xerbla_(char
  780. *, integer *, ftnlen);
  781. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  782. integer *, integer *, ftnlen, ftnlen);
  783. extern real slange_(char *, integer *, integer *, real *, integer *, real
  784. *);
  785. real bignum;
  786. extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *,
  787. real *, integer *, integer *, real *, integer *, integer *), slacpy_(char *, integer *, integer *, real *, integer *,
  788. real *, integer *);
  789. logical wantsb, wantse, lastsl;
  790. extern /* Subroutine */ int sorghr_(integer *, integer *, integer *, real
  791. *, integer *, real *, real *, integer *, integer *), shseqr_(char
  792. *, char *, integer *, integer *, integer *, real *, integer *,
  793. real *, real *, real *, integer *, real *, integer *, integer *);
  794. integer minwrk, maxwrk;
  795. logical wantsn;
  796. real smlnum;
  797. integer hswork;
  798. extern /* Subroutine */ int strsen_(char *, char *, logical *, integer *,
  799. real *, integer *, real *, integer *, real *, real *, integer *,
  800. real *, real *, real *, integer *, integer *, integer *, integer *
  801. );
  802. logical wantst, lquery, wantsv, wantvs;
  803. integer ihi, ilo;
  804. real dum[1], eps;
  805. /* -- LAPACK driver routine (version 3.7.0) -- */
  806. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  807. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  808. /* June 2016 */
  809. /* ===================================================================== */
  810. /* Test the input arguments */
  811. /* Parameter adjustments */
  812. a_dim1 = *lda;
  813. a_offset = 1 + a_dim1 * 1;
  814. a -= a_offset;
  815. --wr;
  816. --wi;
  817. vs_dim1 = *ldvs;
  818. vs_offset = 1 + vs_dim1 * 1;
  819. vs -= vs_offset;
  820. --work;
  821. --iwork;
  822. --bwork;
  823. /* Function Body */
  824. *info = 0;
  825. wantvs = lsame_(jobvs, "V");
  826. wantst = lsame_(sort, "S");
  827. wantsn = lsame_(sense, "N");
  828. wantse = lsame_(sense, "E");
  829. wantsv = lsame_(sense, "V");
  830. wantsb = lsame_(sense, "B");
  831. lquery = *lwork == -1 || *liwork == -1;
  832. if (! wantvs && ! lsame_(jobvs, "N")) {
  833. *info = -1;
  834. } else if (! wantst && ! lsame_(sort, "N")) {
  835. *info = -2;
  836. } else if (! (wantsn || wantse || wantsv || wantsb) || ! wantst && !
  837. wantsn) {
  838. *info = -4;
  839. } else if (*n < 0) {
  840. *info = -5;
  841. } else if (*lda < f2cmax(1,*n)) {
  842. *info = -7;
  843. } else if (*ldvs < 1 || wantvs && *ldvs < *n) {
  844. *info = -12;
  845. }
  846. /* Compute workspace */
  847. /* (Note: Comments in the code beginning "RWorkspace:" describe the */
  848. /* minimal amount of real workspace needed at that point in the */
  849. /* code, as well as the preferred amount for good performance. */
  850. /* IWorkspace refers to integer workspace. */
  851. /* NB refers to the optimal block size for the immediately */
  852. /* following subroutine, as returned by ILAENV. */
  853. /* HSWORK refers to the workspace preferred by SHSEQR, as */
  854. /* calculated below. HSWORK is computed assuming ILO=1 and IHI=N, */
  855. /* the worst case. */
  856. /* If SENSE = 'E', 'V' or 'B', then the amount of workspace needed */
  857. /* depends on SDIM, which is computed by the routine STRSEN later */
  858. /* in the code.) */
  859. if (*info == 0) {
  860. liwrk = 1;
  861. if (*n == 0) {
  862. minwrk = 1;
  863. lwrk = 1;
  864. } else {
  865. maxwrk = (*n << 1) + *n * ilaenv_(&c__1, "SGEHRD", " ", n, &c__1,
  866. n, &c__0, (ftnlen)6, (ftnlen)1);
  867. minwrk = *n * 3;
  868. shseqr_("S", jobvs, n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[1]
  869. , &vs[vs_offset], ldvs, &work[1], &c_n1, &ieval);
  870. hswork = work[1];
  871. if (! wantvs) {
  872. /* Computing MAX */
  873. i__1 = maxwrk, i__2 = *n + hswork;
  874. maxwrk = f2cmax(i__1,i__2);
  875. } else {
  876. /* Computing MAX */
  877. i__1 = maxwrk, i__2 = (*n << 1) + (*n - 1) * ilaenv_(&c__1,
  878. "SORGHR", " ", n, &c__1, n, &c_n1, (ftnlen)6, (ftnlen)
  879. 1);
  880. maxwrk = f2cmax(i__1,i__2);
  881. /* Computing MAX */
  882. i__1 = maxwrk, i__2 = *n + hswork;
  883. maxwrk = f2cmax(i__1,i__2);
  884. }
  885. lwrk = maxwrk;
  886. if (! wantsn) {
  887. /* Computing MAX */
  888. i__1 = lwrk, i__2 = *n + *n * *n / 2;
  889. lwrk = f2cmax(i__1,i__2);
  890. }
  891. if (wantsv || wantsb) {
  892. liwrk = *n * *n / 4;
  893. }
  894. }
  895. iwork[1] = liwrk;
  896. work[1] = (real) lwrk;
  897. if (*lwork < minwrk && ! lquery) {
  898. *info = -16;
  899. } else if (*liwork < 1 && ! lquery) {
  900. *info = -18;
  901. }
  902. }
  903. if (*info != 0) {
  904. i__1 = -(*info);
  905. xerbla_("SGEESX", &i__1, (ftnlen)6);
  906. return 0;
  907. } else if (lquery) {
  908. return 0;
  909. }
  910. /* Quick return if possible */
  911. if (*n == 0) {
  912. *sdim = 0;
  913. return 0;
  914. }
  915. /* Get machine constants */
  916. eps = slamch_("P");
  917. smlnum = slamch_("S");
  918. bignum = 1.f / smlnum;
  919. slabad_(&smlnum, &bignum);
  920. smlnum = sqrt(smlnum) / eps;
  921. bignum = 1.f / smlnum;
  922. /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
  923. anrm = slange_("M", n, n, &a[a_offset], lda, dum);
  924. scalea = FALSE_;
  925. if (anrm > 0.f && anrm < smlnum) {
  926. scalea = TRUE_;
  927. cscale = smlnum;
  928. } else if (anrm > bignum) {
  929. scalea = TRUE_;
  930. cscale = bignum;
  931. }
  932. if (scalea) {
  933. slascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, &
  934. ierr);
  935. }
  936. /* Permute the matrix to make it more nearly triangular */
  937. /* (RWorkspace: need N) */
  938. ibal = 1;
  939. sgebal_("P", n, &a[a_offset], lda, &ilo, &ihi, &work[ibal], &ierr);
  940. /* Reduce to upper Hessenberg form */
  941. /* (RWorkspace: need 3*N, prefer 2*N+N*NB) */
  942. itau = *n + ibal;
  943. iwrk = *n + itau;
  944. i__1 = *lwork - iwrk + 1;
  945. sgehrd_(n, &ilo, &ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1,
  946. &ierr);
  947. if (wantvs) {
  948. /* Copy Householder vectors to VS */
  949. slacpy_("L", n, n, &a[a_offset], lda, &vs[vs_offset], ldvs)
  950. ;
  951. /* Generate orthogonal matrix in VS */
  952. /* (RWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB) */
  953. i__1 = *lwork - iwrk + 1;
  954. sorghr_(n, &ilo, &ihi, &vs[vs_offset], ldvs, &work[itau], &work[iwrk],
  955. &i__1, &ierr);
  956. }
  957. *sdim = 0;
  958. /* Perform QR iteration, accumulating Schur vectors in VS if desired */
  959. /* (RWorkspace: need N+1, prefer N+HSWORK (see comments) ) */
  960. iwrk = itau;
  961. i__1 = *lwork - iwrk + 1;
  962. shseqr_("S", jobvs, n, &ilo, &ihi, &a[a_offset], lda, &wr[1], &wi[1], &vs[
  963. vs_offset], ldvs, &work[iwrk], &i__1, &ieval);
  964. if (ieval > 0) {
  965. *info = ieval;
  966. }
  967. /* Sort eigenvalues if desired */
  968. if (wantst && *info == 0) {
  969. if (scalea) {
  970. slascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &wr[1], n, &
  971. ierr);
  972. slascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &wi[1], n, &
  973. ierr);
  974. }
  975. i__1 = *n;
  976. for (i__ = 1; i__ <= i__1; ++i__) {
  977. bwork[i__] = (*select)(&wr[i__], &wi[i__]);
  978. /* L10: */
  979. }
  980. /* Reorder eigenvalues, transform Schur vectors, and compute */
  981. /* reciprocal condition numbers */
  982. /* (RWorkspace: if SENSE is not 'N', need N+2*SDIM*(N-SDIM) */
  983. /* otherwise, need N ) */
  984. /* (IWorkspace: if SENSE is 'V' or 'B', need SDIM*(N-SDIM) */
  985. /* otherwise, need 0 ) */
  986. i__1 = *lwork - iwrk + 1;
  987. strsen_(sense, jobvs, &bwork[1], n, &a[a_offset], lda, &vs[vs_offset],
  988. ldvs, &wr[1], &wi[1], sdim, rconde, rcondv, &work[iwrk], &
  989. i__1, &iwork[1], liwork, &icond);
  990. if (! wantsn) {
  991. /* Computing MAX */
  992. i__1 = maxwrk, i__2 = *n + (*sdim << 1) * (*n - *sdim);
  993. maxwrk = f2cmax(i__1,i__2);
  994. }
  995. if (icond == -15) {
  996. /* Not enough real workspace */
  997. *info = -16;
  998. } else if (icond == -17) {
  999. /* Not enough integer workspace */
  1000. *info = -18;
  1001. } else if (icond > 0) {
  1002. /* STRSEN failed to reorder or to restore standard Schur form */
  1003. *info = icond + *n;
  1004. }
  1005. }
  1006. if (wantvs) {
  1007. /* Undo balancing */
  1008. /* (RWorkspace: need N) */
  1009. sgebak_("P", "R", n, &ilo, &ihi, &work[ibal], n, &vs[vs_offset], ldvs,
  1010. &ierr);
  1011. }
  1012. if (scalea) {
  1013. /* Undo scaling for the Schur form of A */
  1014. slascl_("H", &c__0, &c__0, &cscale, &anrm, n, n, &a[a_offset], lda, &
  1015. ierr);
  1016. i__1 = *lda + 1;
  1017. scopy_(n, &a[a_offset], &i__1, &wr[1], &c__1);
  1018. if ((wantsv || wantsb) && *info == 0) {
  1019. dum[0] = *rcondv;
  1020. slascl_("G", &c__0, &c__0, &cscale, &anrm, &c__1, &c__1, dum, &
  1021. c__1, &ierr);
  1022. *rcondv = dum[0];
  1023. }
  1024. if (cscale == smlnum) {
  1025. /* If scaling back towards underflow, adjust WI if an */
  1026. /* offdiagonal element of a 2-by-2 block in the Schur form */
  1027. /* underflows. */
  1028. if (ieval > 0) {
  1029. i1 = ieval + 1;
  1030. i2 = ihi - 1;
  1031. i__1 = ilo - 1;
  1032. slascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[
  1033. 1], n, &ierr);
  1034. } else if (wantst) {
  1035. i1 = 1;
  1036. i2 = *n - 1;
  1037. } else {
  1038. i1 = ilo;
  1039. i2 = ihi - 1;
  1040. }
  1041. inxt = i1 - 1;
  1042. i__1 = i2;
  1043. for (i__ = i1; i__ <= i__1; ++i__) {
  1044. if (i__ < inxt) {
  1045. goto L20;
  1046. }
  1047. if (wi[i__] == 0.f) {
  1048. inxt = i__ + 1;
  1049. } else {
  1050. if (a[i__ + 1 + i__ * a_dim1] == 0.f) {
  1051. wi[i__] = 0.f;
  1052. wi[i__ + 1] = 0.f;
  1053. } else if (a[i__ + 1 + i__ * a_dim1] != 0.f && a[i__ + (
  1054. i__ + 1) * a_dim1] == 0.f) {
  1055. wi[i__] = 0.f;
  1056. wi[i__ + 1] = 0.f;
  1057. if (i__ > 1) {
  1058. i__2 = i__ - 1;
  1059. sswap_(&i__2, &a[i__ * a_dim1 + 1], &c__1, &a[(
  1060. i__ + 1) * a_dim1 + 1], &c__1);
  1061. }
  1062. if (*n > i__ + 1) {
  1063. i__2 = *n - i__ - 1;
  1064. sswap_(&i__2, &a[i__ + (i__ + 2) * a_dim1], lda, &
  1065. a[i__ + 1 + (i__ + 2) * a_dim1], lda);
  1066. }
  1067. if (wantvs) {
  1068. sswap_(n, &vs[i__ * vs_dim1 + 1], &c__1, &vs[(i__
  1069. + 1) * vs_dim1 + 1], &c__1);
  1070. }
  1071. a[i__ + (i__ + 1) * a_dim1] = a[i__ + 1 + i__ *
  1072. a_dim1];
  1073. a[i__ + 1 + i__ * a_dim1] = 0.f;
  1074. }
  1075. inxt = i__ + 2;
  1076. }
  1077. L20:
  1078. ;
  1079. }
  1080. }
  1081. i__1 = *n - ieval;
  1082. /* Computing MAX */
  1083. i__3 = *n - ieval;
  1084. i__2 = f2cmax(i__3,1);
  1085. slascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[ieval +
  1086. 1], &i__2, &ierr);
  1087. }
  1088. if (wantst && *info == 0) {
  1089. /* Check if reordering successful */
  1090. lastsl = TRUE_;
  1091. lst2sl = TRUE_;
  1092. *sdim = 0;
  1093. ip = 0;
  1094. i__1 = *n;
  1095. for (i__ = 1; i__ <= i__1; ++i__) {
  1096. cursl = (*select)(&wr[i__], &wi[i__]);
  1097. if (wi[i__] == 0.f) {
  1098. if (cursl) {
  1099. ++(*sdim);
  1100. }
  1101. ip = 0;
  1102. if (cursl && ! lastsl) {
  1103. *info = *n + 2;
  1104. }
  1105. } else {
  1106. if (ip == 1) {
  1107. /* Last eigenvalue of conjugate pair */
  1108. cursl = cursl || lastsl;
  1109. lastsl = cursl;
  1110. if (cursl) {
  1111. *sdim += 2;
  1112. }
  1113. ip = -1;
  1114. if (cursl && ! lst2sl) {
  1115. *info = *n + 2;
  1116. }
  1117. } else {
  1118. /* First eigenvalue of conjugate pair */
  1119. ip = 1;
  1120. }
  1121. }
  1122. lst2sl = lastsl;
  1123. lastsl = cursl;
  1124. /* L30: */
  1125. }
  1126. }
  1127. work[1] = (real) maxwrk;
  1128. if (wantsv || wantsb) {
  1129. iwork[1] = *sdim * (*n - *sdim);
  1130. } else {
  1131. iwork[1] = 1;
  1132. }
  1133. return 0;
  1134. /* End of SGEESX */
  1135. } /* sgeesx_ */