You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sbdsqr.c 42 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static doublereal c_b15 = -.125;
  487. static integer c__1 = 1;
  488. static real c_b49 = 1.f;
  489. static real c_b72 = -1.f;
  490. /* > \brief \b SBDSQR */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* > \htmlonly */
  495. /* > Download SBDSQR + dependencies */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sbdsqr.
  497. f"> */
  498. /* > [TGZ]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sbdsqr.
  500. f"> */
  501. /* > [ZIP]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sbdsqr.
  503. f"> */
  504. /* > [TXT]</a> */
  505. /* > \endhtmlonly */
  506. /* Definition: */
  507. /* =========== */
  508. /* SUBROUTINE SBDSQR( UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U, */
  509. /* LDU, C, LDC, WORK, INFO ) */
  510. /* CHARACTER UPLO */
  511. /* INTEGER INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU */
  512. /* REAL C( LDC, * ), D( * ), E( * ), U( LDU, * ), */
  513. /* $ VT( LDVT, * ), WORK( * ) */
  514. /* > \par Purpose: */
  515. /* ============= */
  516. /* > */
  517. /* > \verbatim */
  518. /* > */
  519. /* > SBDSQR computes the singular values and, optionally, the right and/or */
  520. /* > left singular vectors from the singular value decomposition (SVD) of */
  521. /* > a real N-by-N (upper or lower) bidiagonal matrix B using the implicit */
  522. /* > zero-shift QR algorithm. The SVD of B has the form */
  523. /* > */
  524. /* > B = Q * S * P**T */
  525. /* > */
  526. /* > where S is the diagonal matrix of singular values, Q is an orthogonal */
  527. /* > matrix of left singular vectors, and P is an orthogonal matrix of */
  528. /* > right singular vectors. If left singular vectors are requested, this */
  529. /* > subroutine actually returns U*Q instead of Q, and, if right singular */
  530. /* > vectors are requested, this subroutine returns P**T*VT instead of */
  531. /* > P**T, for given real input matrices U and VT. When U and VT are the */
  532. /* > orthogonal matrices that reduce a general matrix A to bidiagonal */
  533. /* > form: A = U*B*VT, as computed by SGEBRD, then */
  534. /* > */
  535. /* > A = (U*Q) * S * (P**T*VT) */
  536. /* > */
  537. /* > is the SVD of A. Optionally, the subroutine may also compute Q**T*C */
  538. /* > for a given real input matrix C. */
  539. /* > */
  540. /* > See "Computing Small Singular Values of Bidiagonal Matrices With */
  541. /* > Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan, */
  542. /* > LAPACK Working Note #3 (or SIAM J. Sci. Statist. Comput. vol. 11, */
  543. /* > no. 5, pp. 873-912, Sept 1990) and */
  544. /* > "Accurate singular values and differential qd algorithms," by */
  545. /* > B. Parlett and V. Fernando, Technical Report CPAM-554, Mathematics */
  546. /* > Department, University of California at Berkeley, July 1992 */
  547. /* > for a detailed description of the algorithm. */
  548. /* > \endverbatim */
  549. /* Arguments: */
  550. /* ========== */
  551. /* > \param[in] UPLO */
  552. /* > \verbatim */
  553. /* > UPLO is CHARACTER*1 */
  554. /* > = 'U': B is upper bidiagonal; */
  555. /* > = 'L': B is lower bidiagonal. */
  556. /* > \endverbatim */
  557. /* > */
  558. /* > \param[in] N */
  559. /* > \verbatim */
  560. /* > N is INTEGER */
  561. /* > The order of the matrix B. N >= 0. */
  562. /* > \endverbatim */
  563. /* > */
  564. /* > \param[in] NCVT */
  565. /* > \verbatim */
  566. /* > NCVT is INTEGER */
  567. /* > The number of columns of the matrix VT. NCVT >= 0. */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[in] NRU */
  571. /* > \verbatim */
  572. /* > NRU is INTEGER */
  573. /* > The number of rows of the matrix U. NRU >= 0. */
  574. /* > \endverbatim */
  575. /* > */
  576. /* > \param[in] NCC */
  577. /* > \verbatim */
  578. /* > NCC is INTEGER */
  579. /* > The number of columns of the matrix C. NCC >= 0. */
  580. /* > \endverbatim */
  581. /* > */
  582. /* > \param[in,out] D */
  583. /* > \verbatim */
  584. /* > D is REAL array, dimension (N) */
  585. /* > On entry, the n diagonal elements of the bidiagonal matrix B. */
  586. /* > On exit, if INFO=0, the singular values of B in decreasing */
  587. /* > order. */
  588. /* > \endverbatim */
  589. /* > */
  590. /* > \param[in,out] E */
  591. /* > \verbatim */
  592. /* > E is REAL array, dimension (N-1) */
  593. /* > On entry, the N-1 offdiagonal elements of the bidiagonal */
  594. /* > matrix B. */
  595. /* > On exit, if INFO = 0, E is destroyed; if INFO > 0, D and E */
  596. /* > will contain the diagonal and superdiagonal elements of a */
  597. /* > bidiagonal matrix orthogonally equivalent to the one given */
  598. /* > as input. */
  599. /* > \endverbatim */
  600. /* > */
  601. /* > \param[in,out] VT */
  602. /* > \verbatim */
  603. /* > VT is REAL array, dimension (LDVT, NCVT) */
  604. /* > On entry, an N-by-NCVT matrix VT. */
  605. /* > On exit, VT is overwritten by P**T * VT. */
  606. /* > Not referenced if NCVT = 0. */
  607. /* > \endverbatim */
  608. /* > */
  609. /* > \param[in] LDVT */
  610. /* > \verbatim */
  611. /* > LDVT is INTEGER */
  612. /* > The leading dimension of the array VT. */
  613. /* > LDVT >= f2cmax(1,N) if NCVT > 0; LDVT >= 1 if NCVT = 0. */
  614. /* > \endverbatim */
  615. /* > */
  616. /* > \param[in,out] U */
  617. /* > \verbatim */
  618. /* > U is REAL array, dimension (LDU, N) */
  619. /* > On entry, an NRU-by-N matrix U. */
  620. /* > On exit, U is overwritten by U * Q. */
  621. /* > Not referenced if NRU = 0. */
  622. /* > \endverbatim */
  623. /* > */
  624. /* > \param[in] LDU */
  625. /* > \verbatim */
  626. /* > LDU is INTEGER */
  627. /* > The leading dimension of the array U. LDU >= f2cmax(1,NRU). */
  628. /* > \endverbatim */
  629. /* > */
  630. /* > \param[in,out] C */
  631. /* > \verbatim */
  632. /* > C is REAL array, dimension (LDC, NCC) */
  633. /* > On entry, an N-by-NCC matrix C. */
  634. /* > On exit, C is overwritten by Q**T * C. */
  635. /* > Not referenced if NCC = 0. */
  636. /* > \endverbatim */
  637. /* > */
  638. /* > \param[in] LDC */
  639. /* > \verbatim */
  640. /* > LDC is INTEGER */
  641. /* > The leading dimension of the array C. */
  642. /* > LDC >= f2cmax(1,N) if NCC > 0; LDC >=1 if NCC = 0. */
  643. /* > \endverbatim */
  644. /* > */
  645. /* > \param[out] WORK */
  646. /* > \verbatim */
  647. /* > WORK is REAL array, dimension (4*N) */
  648. /* > \endverbatim */
  649. /* > */
  650. /* > \param[out] INFO */
  651. /* > \verbatim */
  652. /* > INFO is INTEGER */
  653. /* > = 0: successful exit */
  654. /* > < 0: If INFO = -i, the i-th argument had an illegal value */
  655. /* > > 0: */
  656. /* > if NCVT = NRU = NCC = 0, */
  657. /* > = 1, a split was marked by a positive value in E */
  658. /* > = 2, current block of Z not diagonalized after 30*N */
  659. /* > iterations (in inner while loop) */
  660. /* > = 3, termination criterion of outer while loop not met */
  661. /* > (program created more than N unreduced blocks) */
  662. /* > else NCVT = NRU = NCC = 0, */
  663. /* > the algorithm did not converge; D and E contain the */
  664. /* > elements of a bidiagonal matrix which is orthogonally */
  665. /* > similar to the input matrix B; if INFO = i, i */
  666. /* > elements of E have not converged to zero. */
  667. /* > \endverbatim */
  668. /* > \par Internal Parameters: */
  669. /* ========================= */
  670. /* > */
  671. /* > \verbatim */
  672. /* > TOLMUL REAL, default = f2cmax(10,f2cmin(100,EPS**(-1/8))) */
  673. /* > TOLMUL controls the convergence criterion of the QR loop. */
  674. /* > If it is positive, TOLMUL*EPS is the desired relative */
  675. /* > precision in the computed singular values. */
  676. /* > If it is negative, abs(TOLMUL*EPS*sigma_max) is the */
  677. /* > desired absolute accuracy in the computed singular */
  678. /* > values (corresponds to relative accuracy */
  679. /* > abs(TOLMUL*EPS) in the largest singular value. */
  680. /* > abs(TOLMUL) should be between 1 and 1/EPS, and preferably */
  681. /* > between 10 (for fast convergence) and .1/EPS */
  682. /* > (for there to be some accuracy in the results). */
  683. /* > Default is to lose at either one eighth or 2 of the */
  684. /* > available decimal digits in each computed singular value */
  685. /* > (whichever is smaller). */
  686. /* > */
  687. /* > MAXITR INTEGER, default = 6 */
  688. /* > MAXITR controls the maximum number of passes of the */
  689. /* > algorithm through its inner loop. The algorithms stops */
  690. /* > (and so fails to converge) if the number of passes */
  691. /* > through the inner loop exceeds MAXITR*N**2. */
  692. /* > \endverbatim */
  693. /* > \par Note: */
  694. /* =========== */
  695. /* > */
  696. /* > \verbatim */
  697. /* > Bug report from Cezary Dendek. */
  698. /* > On March 23rd 2017, the INTEGER variable MAXIT = MAXITR*N**2 is */
  699. /* > removed since it can overflow pretty easily (for N larger or equal */
  700. /* > than 18,919). We instead use MAXITDIVN = MAXITR*N. */
  701. /* > \endverbatim */
  702. /* Authors: */
  703. /* ======== */
  704. /* > \author Univ. of Tennessee */
  705. /* > \author Univ. of California Berkeley */
  706. /* > \author Univ. of Colorado Denver */
  707. /* > \author NAG Ltd. */
  708. /* > \date June 2017 */
  709. /* > \ingroup auxOTHERcomputational */
  710. /* ===================================================================== */
  711. /* Subroutine */ int sbdsqr_(char *uplo, integer *n, integer *ncvt, integer *
  712. nru, integer *ncc, real *d__, real *e, real *vt, integer *ldvt, real *
  713. u, integer *ldu, real *c__, integer *ldc, real *work, integer *info)
  714. {
  715. /* System generated locals */
  716. integer c_dim1, c_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1,
  717. i__2;
  718. real r__1, r__2, r__3, r__4;
  719. doublereal d__1;
  720. /* Local variables */
  721. real abse;
  722. integer idir;
  723. real abss;
  724. integer oldm;
  725. real cosl;
  726. integer isub, iter;
  727. real unfl, sinl, cosr, smin, smax, sinr;
  728. extern /* Subroutine */ int srot_(integer *, real *, integer *, real *,
  729. integer *, real *, real *);
  730. integer iterdivn;
  731. extern /* Subroutine */ int slas2_(real *, real *, real *, real *, real *)
  732. ;
  733. real f, g, h__;
  734. integer i__, j, m;
  735. real r__;
  736. extern logical lsame_(char *, char *);
  737. real oldcs;
  738. extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
  739. integer oldll;
  740. real shift, sigmn, oldsn, sminl;
  741. extern /* Subroutine */ int slasr_(char *, char *, char *, integer *,
  742. integer *, real *, real *, real *, integer *);
  743. real sigmx;
  744. logical lower;
  745. extern /* Subroutine */ int sswap_(integer *, real *, integer *, real *,
  746. integer *);
  747. integer maxitdivn;
  748. extern /* Subroutine */ int slasq1_(integer *, real *, real *, real *,
  749. integer *), slasv2_(real *, real *, real *, real *, real *, real *
  750. , real *, real *, real *);
  751. real cs;
  752. integer ll;
  753. real sn, mu;
  754. extern real slamch_(char *);
  755. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  756. real sminoa;
  757. extern /* Subroutine */ int slartg_(real *, real *, real *, real *, real *
  758. );
  759. real thresh;
  760. logical rotate;
  761. integer nm1;
  762. real tolmul;
  763. integer nm12, nm13, lll;
  764. real eps, sll, tol;
  765. /* -- LAPACK computational routine (version 3.7.1) -- */
  766. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  767. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  768. /* June 2017 */
  769. /* ===================================================================== */
  770. /* Test the input parameters. */
  771. /* Parameter adjustments */
  772. --d__;
  773. --e;
  774. vt_dim1 = *ldvt;
  775. vt_offset = 1 + vt_dim1 * 1;
  776. vt -= vt_offset;
  777. u_dim1 = *ldu;
  778. u_offset = 1 + u_dim1 * 1;
  779. u -= u_offset;
  780. c_dim1 = *ldc;
  781. c_offset = 1 + c_dim1 * 1;
  782. c__ -= c_offset;
  783. --work;
  784. /* Function Body */
  785. *info = 0;
  786. lower = lsame_(uplo, "L");
  787. if (! lsame_(uplo, "U") && ! lower) {
  788. *info = -1;
  789. } else if (*n < 0) {
  790. *info = -2;
  791. } else if (*ncvt < 0) {
  792. *info = -3;
  793. } else if (*nru < 0) {
  794. *info = -4;
  795. } else if (*ncc < 0) {
  796. *info = -5;
  797. } else if (*ncvt == 0 && *ldvt < 1 || *ncvt > 0 && *ldvt < f2cmax(1,*n)) {
  798. *info = -9;
  799. } else if (*ldu < f2cmax(1,*nru)) {
  800. *info = -11;
  801. } else if (*ncc == 0 && *ldc < 1 || *ncc > 0 && *ldc < f2cmax(1,*n)) {
  802. *info = -13;
  803. }
  804. if (*info != 0) {
  805. i__1 = -(*info);
  806. xerbla_("SBDSQR", &i__1, (ftnlen)6);
  807. return 0;
  808. }
  809. if (*n == 0) {
  810. return 0;
  811. }
  812. if (*n == 1) {
  813. goto L160;
  814. }
  815. /* ROTATE is true if any singular vectors desired, false otherwise */
  816. rotate = *ncvt > 0 || *nru > 0 || *ncc > 0;
  817. /* If no singular vectors desired, use qd algorithm */
  818. if (! rotate) {
  819. slasq1_(n, &d__[1], &e[1], &work[1], info);
  820. /* If INFO equals 2, dqds didn't finish, try to finish */
  821. if (*info != 2) {
  822. return 0;
  823. }
  824. *info = 0;
  825. }
  826. nm1 = *n - 1;
  827. nm12 = nm1 + nm1;
  828. nm13 = nm12 + nm1;
  829. idir = 0;
  830. /* Get machine constants */
  831. eps = slamch_("Epsilon");
  832. unfl = slamch_("Safe minimum");
  833. /* If matrix lower bidiagonal, rotate to be upper bidiagonal */
  834. /* by applying Givens rotations on the left */
  835. if (lower) {
  836. i__1 = *n - 1;
  837. for (i__ = 1; i__ <= i__1; ++i__) {
  838. slartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
  839. d__[i__] = r__;
  840. e[i__] = sn * d__[i__ + 1];
  841. d__[i__ + 1] = cs * d__[i__ + 1];
  842. work[i__] = cs;
  843. work[nm1 + i__] = sn;
  844. /* L10: */
  845. }
  846. /* Update singular vectors if desired */
  847. if (*nru > 0) {
  848. slasr_("R", "V", "F", nru, n, &work[1], &work[*n], &u[u_offset],
  849. ldu);
  850. }
  851. if (*ncc > 0) {
  852. slasr_("L", "V", "F", n, ncc, &work[1], &work[*n], &c__[c_offset],
  853. ldc);
  854. }
  855. }
  856. /* Compute singular values to relative accuracy TOL */
  857. /* (By setting TOL to be negative, algorithm will compute */
  858. /* singular values to absolute accuracy ABS(TOL)*norm(input matrix)) */
  859. /* Computing MAX */
  860. /* Computing MIN */
  861. d__1 = (doublereal) eps;
  862. r__3 = 100.f, r__4 = pow_dd(&d__1, &c_b15);
  863. r__1 = 10.f, r__2 = f2cmin(r__3,r__4);
  864. tolmul = f2cmax(r__1,r__2);
  865. tol = tolmul * eps;
  866. /* Compute approximate maximum, minimum singular values */
  867. smax = 0.f;
  868. i__1 = *n;
  869. for (i__ = 1; i__ <= i__1; ++i__) {
  870. /* Computing MAX */
  871. r__2 = smax, r__3 = (r__1 = d__[i__], abs(r__1));
  872. smax = f2cmax(r__2,r__3);
  873. /* L20: */
  874. }
  875. i__1 = *n - 1;
  876. for (i__ = 1; i__ <= i__1; ++i__) {
  877. /* Computing MAX */
  878. r__2 = smax, r__3 = (r__1 = e[i__], abs(r__1));
  879. smax = f2cmax(r__2,r__3);
  880. /* L30: */
  881. }
  882. sminl = 0.f;
  883. if (tol >= 0.f) {
  884. /* Relative accuracy desired */
  885. sminoa = abs(d__[1]);
  886. if (sminoa == 0.f) {
  887. goto L50;
  888. }
  889. mu = sminoa;
  890. i__1 = *n;
  891. for (i__ = 2; i__ <= i__1; ++i__) {
  892. mu = (r__2 = d__[i__], abs(r__2)) * (mu / (mu + (r__1 = e[i__ - 1]
  893. , abs(r__1))));
  894. sminoa = f2cmin(sminoa,mu);
  895. if (sminoa == 0.f) {
  896. goto L50;
  897. }
  898. /* L40: */
  899. }
  900. L50:
  901. sminoa /= sqrt((real) (*n));
  902. /* Computing MAX */
  903. r__1 = tol * sminoa, r__2 = *n * (*n * unfl) * 6;
  904. thresh = f2cmax(r__1,r__2);
  905. } else {
  906. /* Absolute accuracy desired */
  907. /* Computing MAX */
  908. r__1 = abs(tol) * smax, r__2 = *n * (*n * unfl) * 6;
  909. thresh = f2cmax(r__1,r__2);
  910. }
  911. /* Prepare for main iteration loop for the singular values */
  912. /* (MAXIT is the maximum number of passes through the inner */
  913. /* loop permitted before nonconvergence signalled.) */
  914. maxitdivn = *n * 6;
  915. iterdivn = 0;
  916. iter = -1;
  917. oldll = -1;
  918. oldm = -1;
  919. /* M points to last element of unconverged part of matrix */
  920. m = *n;
  921. /* Begin main iteration loop */
  922. L60:
  923. /* Check for convergence or exceeding iteration count */
  924. if (m <= 1) {
  925. goto L160;
  926. }
  927. if (iter >= *n) {
  928. iter -= *n;
  929. ++iterdivn;
  930. if (iterdivn >= maxitdivn) {
  931. goto L200;
  932. }
  933. }
  934. /* Find diagonal block of matrix to work on */
  935. if (tol < 0.f && (r__1 = d__[m], abs(r__1)) <= thresh) {
  936. d__[m] = 0.f;
  937. }
  938. smax = (r__1 = d__[m], abs(r__1));
  939. smin = smax;
  940. i__1 = m - 1;
  941. for (lll = 1; lll <= i__1; ++lll) {
  942. ll = m - lll;
  943. abss = (r__1 = d__[ll], abs(r__1));
  944. abse = (r__1 = e[ll], abs(r__1));
  945. if (tol < 0.f && abss <= thresh) {
  946. d__[ll] = 0.f;
  947. }
  948. if (abse <= thresh) {
  949. goto L80;
  950. }
  951. smin = f2cmin(smin,abss);
  952. /* Computing MAX */
  953. r__1 = f2cmax(smax,abss);
  954. smax = f2cmax(r__1,abse);
  955. /* L70: */
  956. }
  957. ll = 0;
  958. goto L90;
  959. L80:
  960. e[ll] = 0.f;
  961. /* Matrix splits since E(LL) = 0 */
  962. if (ll == m - 1) {
  963. /* Convergence of bottom singular value, return to top of loop */
  964. --m;
  965. goto L60;
  966. }
  967. L90:
  968. ++ll;
  969. /* E(LL) through E(M-1) are nonzero, E(LL-1) is zero */
  970. if (ll == m - 1) {
  971. /* 2 by 2 block, handle separately */
  972. slasv2_(&d__[m - 1], &e[m - 1], &d__[m], &sigmn, &sigmx, &sinr, &cosr,
  973. &sinl, &cosl);
  974. d__[m - 1] = sigmx;
  975. e[m - 1] = 0.f;
  976. d__[m] = sigmn;
  977. /* Compute singular vectors, if desired */
  978. if (*ncvt > 0) {
  979. srot_(ncvt, &vt[m - 1 + vt_dim1], ldvt, &vt[m + vt_dim1], ldvt, &
  980. cosr, &sinr);
  981. }
  982. if (*nru > 0) {
  983. srot_(nru, &u[(m - 1) * u_dim1 + 1], &c__1, &u[m * u_dim1 + 1], &
  984. c__1, &cosl, &sinl);
  985. }
  986. if (*ncc > 0) {
  987. srot_(ncc, &c__[m - 1 + c_dim1], ldc, &c__[m + c_dim1], ldc, &
  988. cosl, &sinl);
  989. }
  990. m += -2;
  991. goto L60;
  992. }
  993. /* If working on new submatrix, choose shift direction */
  994. /* (from larger end diagonal element towards smaller) */
  995. if (ll > oldm || m < oldll) {
  996. if ((r__1 = d__[ll], abs(r__1)) >= (r__2 = d__[m], abs(r__2))) {
  997. /* Chase bulge from top (big end) to bottom (small end) */
  998. idir = 1;
  999. } else {
  1000. /* Chase bulge from bottom (big end) to top (small end) */
  1001. idir = 2;
  1002. }
  1003. }
  1004. /* Apply convergence tests */
  1005. if (idir == 1) {
  1006. /* Run convergence test in forward direction */
  1007. /* First apply standard test to bottom of matrix */
  1008. if ((r__2 = e[m - 1], abs(r__2)) <= abs(tol) * (r__1 = d__[m], abs(
  1009. r__1)) || tol < 0.f && (r__3 = e[m - 1], abs(r__3)) <= thresh)
  1010. {
  1011. e[m - 1] = 0.f;
  1012. goto L60;
  1013. }
  1014. if (tol >= 0.f) {
  1015. /* If relative accuracy desired, */
  1016. /* apply convergence criterion forward */
  1017. mu = (r__1 = d__[ll], abs(r__1));
  1018. sminl = mu;
  1019. i__1 = m - 1;
  1020. for (lll = ll; lll <= i__1; ++lll) {
  1021. if ((r__1 = e[lll], abs(r__1)) <= tol * mu) {
  1022. e[lll] = 0.f;
  1023. goto L60;
  1024. }
  1025. mu = (r__2 = d__[lll + 1], abs(r__2)) * (mu / (mu + (r__1 = e[
  1026. lll], abs(r__1))));
  1027. sminl = f2cmin(sminl,mu);
  1028. /* L100: */
  1029. }
  1030. }
  1031. } else {
  1032. /* Run convergence test in backward direction */
  1033. /* First apply standard test to top of matrix */
  1034. if ((r__2 = e[ll], abs(r__2)) <= abs(tol) * (r__1 = d__[ll], abs(r__1)
  1035. ) || tol < 0.f && (r__3 = e[ll], abs(r__3)) <= thresh) {
  1036. e[ll] = 0.f;
  1037. goto L60;
  1038. }
  1039. if (tol >= 0.f) {
  1040. /* If relative accuracy desired, */
  1041. /* apply convergence criterion backward */
  1042. mu = (r__1 = d__[m], abs(r__1));
  1043. sminl = mu;
  1044. i__1 = ll;
  1045. for (lll = m - 1; lll >= i__1; --lll) {
  1046. if ((r__1 = e[lll], abs(r__1)) <= tol * mu) {
  1047. e[lll] = 0.f;
  1048. goto L60;
  1049. }
  1050. mu = (r__2 = d__[lll], abs(r__2)) * (mu / (mu + (r__1 = e[lll]
  1051. , abs(r__1))));
  1052. sminl = f2cmin(sminl,mu);
  1053. /* L110: */
  1054. }
  1055. }
  1056. }
  1057. oldll = ll;
  1058. oldm = m;
  1059. /* Compute shift. First, test if shifting would ruin relative */
  1060. /* accuracy, and if so set the shift to zero. */
  1061. /* Computing MAX */
  1062. r__1 = eps, r__2 = tol * .01f;
  1063. if (tol >= 0.f && *n * tol * (sminl / smax) <= f2cmax(r__1,r__2)) {
  1064. /* Use a zero shift to avoid loss of relative accuracy */
  1065. shift = 0.f;
  1066. } else {
  1067. /* Compute the shift from 2-by-2 block at end of matrix */
  1068. if (idir == 1) {
  1069. sll = (r__1 = d__[ll], abs(r__1));
  1070. slas2_(&d__[m - 1], &e[m - 1], &d__[m], &shift, &r__);
  1071. } else {
  1072. sll = (r__1 = d__[m], abs(r__1));
  1073. slas2_(&d__[ll], &e[ll], &d__[ll + 1], &shift, &r__);
  1074. }
  1075. /* Test if shift negligible, and if so set to zero */
  1076. if (sll > 0.f) {
  1077. /* Computing 2nd power */
  1078. r__1 = shift / sll;
  1079. if (r__1 * r__1 < eps) {
  1080. shift = 0.f;
  1081. }
  1082. }
  1083. }
  1084. /* Increment iteration count */
  1085. iter = iter + m - ll;
  1086. /* If SHIFT = 0, do simplified QR iteration */
  1087. if (shift == 0.f) {
  1088. if (idir == 1) {
  1089. /* Chase bulge from top to bottom */
  1090. /* Save cosines and sines for later singular vector updates */
  1091. cs = 1.f;
  1092. oldcs = 1.f;
  1093. i__1 = m - 1;
  1094. for (i__ = ll; i__ <= i__1; ++i__) {
  1095. r__1 = d__[i__] * cs;
  1096. slartg_(&r__1, &e[i__], &cs, &sn, &r__);
  1097. if (i__ > ll) {
  1098. e[i__ - 1] = oldsn * r__;
  1099. }
  1100. r__1 = oldcs * r__;
  1101. r__2 = d__[i__ + 1] * sn;
  1102. slartg_(&r__1, &r__2, &oldcs, &oldsn, &d__[i__]);
  1103. work[i__ - ll + 1] = cs;
  1104. work[i__ - ll + 1 + nm1] = sn;
  1105. work[i__ - ll + 1 + nm12] = oldcs;
  1106. work[i__ - ll + 1 + nm13] = oldsn;
  1107. /* L120: */
  1108. }
  1109. h__ = d__[m] * cs;
  1110. d__[m] = h__ * oldcs;
  1111. e[m - 1] = h__ * oldsn;
  1112. /* Update singular vectors */
  1113. if (*ncvt > 0) {
  1114. i__1 = m - ll + 1;
  1115. slasr_("L", "V", "F", &i__1, ncvt, &work[1], &work[*n], &vt[
  1116. ll + vt_dim1], ldvt);
  1117. }
  1118. if (*nru > 0) {
  1119. i__1 = m - ll + 1;
  1120. slasr_("R", "V", "F", nru, &i__1, &work[nm12 + 1], &work[nm13
  1121. + 1], &u[ll * u_dim1 + 1], ldu);
  1122. }
  1123. if (*ncc > 0) {
  1124. i__1 = m - ll + 1;
  1125. slasr_("L", "V", "F", &i__1, ncc, &work[nm12 + 1], &work[nm13
  1126. + 1], &c__[ll + c_dim1], ldc);
  1127. }
  1128. /* Test convergence */
  1129. if ((r__1 = e[m - 1], abs(r__1)) <= thresh) {
  1130. e[m - 1] = 0.f;
  1131. }
  1132. } else {
  1133. /* Chase bulge from bottom to top */
  1134. /* Save cosines and sines for later singular vector updates */
  1135. cs = 1.f;
  1136. oldcs = 1.f;
  1137. i__1 = ll + 1;
  1138. for (i__ = m; i__ >= i__1; --i__) {
  1139. r__1 = d__[i__] * cs;
  1140. slartg_(&r__1, &e[i__ - 1], &cs, &sn, &r__);
  1141. if (i__ < m) {
  1142. e[i__] = oldsn * r__;
  1143. }
  1144. r__1 = oldcs * r__;
  1145. r__2 = d__[i__ - 1] * sn;
  1146. slartg_(&r__1, &r__2, &oldcs, &oldsn, &d__[i__]);
  1147. work[i__ - ll] = cs;
  1148. work[i__ - ll + nm1] = -sn;
  1149. work[i__ - ll + nm12] = oldcs;
  1150. work[i__ - ll + nm13] = -oldsn;
  1151. /* L130: */
  1152. }
  1153. h__ = d__[ll] * cs;
  1154. d__[ll] = h__ * oldcs;
  1155. e[ll] = h__ * oldsn;
  1156. /* Update singular vectors */
  1157. if (*ncvt > 0) {
  1158. i__1 = m - ll + 1;
  1159. slasr_("L", "V", "B", &i__1, ncvt, &work[nm12 + 1], &work[
  1160. nm13 + 1], &vt[ll + vt_dim1], ldvt);
  1161. }
  1162. if (*nru > 0) {
  1163. i__1 = m - ll + 1;
  1164. slasr_("R", "V", "B", nru, &i__1, &work[1], &work[*n], &u[ll *
  1165. u_dim1 + 1], ldu);
  1166. }
  1167. if (*ncc > 0) {
  1168. i__1 = m - ll + 1;
  1169. slasr_("L", "V", "B", &i__1, ncc, &work[1], &work[*n], &c__[
  1170. ll + c_dim1], ldc);
  1171. }
  1172. /* Test convergence */
  1173. if ((r__1 = e[ll], abs(r__1)) <= thresh) {
  1174. e[ll] = 0.f;
  1175. }
  1176. }
  1177. } else {
  1178. /* Use nonzero shift */
  1179. if (idir == 1) {
  1180. /* Chase bulge from top to bottom */
  1181. /* Save cosines and sines for later singular vector updates */
  1182. f = ((r__1 = d__[ll], abs(r__1)) - shift) * (r_sign(&c_b49, &d__[
  1183. ll]) + shift / d__[ll]);
  1184. g = e[ll];
  1185. i__1 = m - 1;
  1186. for (i__ = ll; i__ <= i__1; ++i__) {
  1187. slartg_(&f, &g, &cosr, &sinr, &r__);
  1188. if (i__ > ll) {
  1189. e[i__ - 1] = r__;
  1190. }
  1191. f = cosr * d__[i__] + sinr * e[i__];
  1192. e[i__] = cosr * e[i__] - sinr * d__[i__];
  1193. g = sinr * d__[i__ + 1];
  1194. d__[i__ + 1] = cosr * d__[i__ + 1];
  1195. slartg_(&f, &g, &cosl, &sinl, &r__);
  1196. d__[i__] = r__;
  1197. f = cosl * e[i__] + sinl * d__[i__ + 1];
  1198. d__[i__ + 1] = cosl * d__[i__ + 1] - sinl * e[i__];
  1199. if (i__ < m - 1) {
  1200. g = sinl * e[i__ + 1];
  1201. e[i__ + 1] = cosl * e[i__ + 1];
  1202. }
  1203. work[i__ - ll + 1] = cosr;
  1204. work[i__ - ll + 1 + nm1] = sinr;
  1205. work[i__ - ll + 1 + nm12] = cosl;
  1206. work[i__ - ll + 1 + nm13] = sinl;
  1207. /* L140: */
  1208. }
  1209. e[m - 1] = f;
  1210. /* Update singular vectors */
  1211. if (*ncvt > 0) {
  1212. i__1 = m - ll + 1;
  1213. slasr_("L", "V", "F", &i__1, ncvt, &work[1], &work[*n], &vt[
  1214. ll + vt_dim1], ldvt);
  1215. }
  1216. if (*nru > 0) {
  1217. i__1 = m - ll + 1;
  1218. slasr_("R", "V", "F", nru, &i__1, &work[nm12 + 1], &work[nm13
  1219. + 1], &u[ll * u_dim1 + 1], ldu);
  1220. }
  1221. if (*ncc > 0) {
  1222. i__1 = m - ll + 1;
  1223. slasr_("L", "V", "F", &i__1, ncc, &work[nm12 + 1], &work[nm13
  1224. + 1], &c__[ll + c_dim1], ldc);
  1225. }
  1226. /* Test convergence */
  1227. if ((r__1 = e[m - 1], abs(r__1)) <= thresh) {
  1228. e[m - 1] = 0.f;
  1229. }
  1230. } else {
  1231. /* Chase bulge from bottom to top */
  1232. /* Save cosines and sines for later singular vector updates */
  1233. f = ((r__1 = d__[m], abs(r__1)) - shift) * (r_sign(&c_b49, &d__[m]
  1234. ) + shift / d__[m]);
  1235. g = e[m - 1];
  1236. i__1 = ll + 1;
  1237. for (i__ = m; i__ >= i__1; --i__) {
  1238. slartg_(&f, &g, &cosr, &sinr, &r__);
  1239. if (i__ < m) {
  1240. e[i__] = r__;
  1241. }
  1242. f = cosr * d__[i__] + sinr * e[i__ - 1];
  1243. e[i__ - 1] = cosr * e[i__ - 1] - sinr * d__[i__];
  1244. g = sinr * d__[i__ - 1];
  1245. d__[i__ - 1] = cosr * d__[i__ - 1];
  1246. slartg_(&f, &g, &cosl, &sinl, &r__);
  1247. d__[i__] = r__;
  1248. f = cosl * e[i__ - 1] + sinl * d__[i__ - 1];
  1249. d__[i__ - 1] = cosl * d__[i__ - 1] - sinl * e[i__ - 1];
  1250. if (i__ > ll + 1) {
  1251. g = sinl * e[i__ - 2];
  1252. e[i__ - 2] = cosl * e[i__ - 2];
  1253. }
  1254. work[i__ - ll] = cosr;
  1255. work[i__ - ll + nm1] = -sinr;
  1256. work[i__ - ll + nm12] = cosl;
  1257. work[i__ - ll + nm13] = -sinl;
  1258. /* L150: */
  1259. }
  1260. e[ll] = f;
  1261. /* Test convergence */
  1262. if ((r__1 = e[ll], abs(r__1)) <= thresh) {
  1263. e[ll] = 0.f;
  1264. }
  1265. /* Update singular vectors if desired */
  1266. if (*ncvt > 0) {
  1267. i__1 = m - ll + 1;
  1268. slasr_("L", "V", "B", &i__1, ncvt, &work[nm12 + 1], &work[
  1269. nm13 + 1], &vt[ll + vt_dim1], ldvt);
  1270. }
  1271. if (*nru > 0) {
  1272. i__1 = m - ll + 1;
  1273. slasr_("R", "V", "B", nru, &i__1, &work[1], &work[*n], &u[ll *
  1274. u_dim1 + 1], ldu);
  1275. }
  1276. if (*ncc > 0) {
  1277. i__1 = m - ll + 1;
  1278. slasr_("L", "V", "B", &i__1, ncc, &work[1], &work[*n], &c__[
  1279. ll + c_dim1], ldc);
  1280. }
  1281. }
  1282. }
  1283. /* QR iteration finished, go back and check convergence */
  1284. goto L60;
  1285. /* All singular values converged, so make them positive */
  1286. L160:
  1287. i__1 = *n;
  1288. for (i__ = 1; i__ <= i__1; ++i__) {
  1289. if (d__[i__] < 0.f) {
  1290. d__[i__] = -d__[i__];
  1291. /* Change sign of singular vectors, if desired */
  1292. if (*ncvt > 0) {
  1293. sscal_(ncvt, &c_b72, &vt[i__ + vt_dim1], ldvt);
  1294. }
  1295. }
  1296. /* L170: */
  1297. }
  1298. /* Sort the singular values into decreasing order (insertion sort on */
  1299. /* singular values, but only one transposition per singular vector) */
  1300. i__1 = *n - 1;
  1301. for (i__ = 1; i__ <= i__1; ++i__) {
  1302. /* Scan for smallest D(I) */
  1303. isub = 1;
  1304. smin = d__[1];
  1305. i__2 = *n + 1 - i__;
  1306. for (j = 2; j <= i__2; ++j) {
  1307. if (d__[j] <= smin) {
  1308. isub = j;
  1309. smin = d__[j];
  1310. }
  1311. /* L180: */
  1312. }
  1313. if (isub != *n + 1 - i__) {
  1314. /* Swap singular values and vectors */
  1315. d__[isub] = d__[*n + 1 - i__];
  1316. d__[*n + 1 - i__] = smin;
  1317. if (*ncvt > 0) {
  1318. sswap_(ncvt, &vt[isub + vt_dim1], ldvt, &vt[*n + 1 - i__ +
  1319. vt_dim1], ldvt);
  1320. }
  1321. if (*nru > 0) {
  1322. sswap_(nru, &u[isub * u_dim1 + 1], &c__1, &u[(*n + 1 - i__) *
  1323. u_dim1 + 1], &c__1);
  1324. }
  1325. if (*ncc > 0) {
  1326. sswap_(ncc, &c__[isub + c_dim1], ldc, &c__[*n + 1 - i__ +
  1327. c_dim1], ldc);
  1328. }
  1329. }
  1330. /* L190: */
  1331. }
  1332. goto L220;
  1333. /* Maximum number of iterations exceeded, failure to converge */
  1334. L200:
  1335. *info = 0;
  1336. i__1 = *n - 1;
  1337. for (i__ = 1; i__ <= i__1; ++i__) {
  1338. if (e[i__] != 0.f) {
  1339. ++(*info);
  1340. }
  1341. /* L210: */
  1342. }
  1343. L220:
  1344. return 0;
  1345. /* End of SBDSQR */
  1346. } /* sbdsqr_ */