You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ctrevc3.c 39 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static complex c_b1 = {0.f,0.f};
  487. static complex c_b2 = {1.f,0.f};
  488. static integer c__1 = 1;
  489. static integer c_n1 = -1;
  490. static integer c__2 = 2;
  491. /* > \brief \b CTREVC3 */
  492. /* =========== DOCUMENTATION =========== */
  493. /* Online html documentation available at */
  494. /* http://www.netlib.org/lapack/explore-html/ */
  495. /* > \htmlonly */
  496. /* > Download CTREVC3 + dependencies */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctrevc3
  498. .f"> */
  499. /* > [TGZ]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctrevc3
  501. .f"> */
  502. /* > [ZIP]</a> */
  503. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctrevc3
  504. .f"> */
  505. /* > [TXT]</a> */
  506. /* > \endhtmlonly */
  507. /* Definition: */
  508. /* =========== */
  509. /* SUBROUTINE CTREVC3( SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR, */
  510. /* LDVR, MM, M, WORK, LWORK, RWORK, LRWORK, INFO) */
  511. /* CHARACTER HOWMNY, SIDE */
  512. /* INTEGER INFO, LDT, LDVL, LDVR, LWORK, M, MM, N */
  513. /* LOGICAL SELECT( * ) */
  514. /* REAL RWORK( * ) */
  515. /* COMPLEX T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ), */
  516. /* $ WORK( * ) */
  517. /* > \par Purpose: */
  518. /* ============= */
  519. /* > */
  520. /* > \verbatim */
  521. /* > */
  522. /* > CTREVC3 computes some or all of the right and/or left eigenvectors of */
  523. /* > a complex upper triangular matrix T. */
  524. /* > Matrices of this type are produced by the Schur factorization of */
  525. /* > a complex general matrix: A = Q*T*Q**H, as computed by CHSEQR. */
  526. /* > */
  527. /* > The right eigenvector x and the left eigenvector y of T corresponding */
  528. /* > to an eigenvalue w are defined by: */
  529. /* > */
  530. /* > T*x = w*x, (y**H)*T = w*(y**H) */
  531. /* > */
  532. /* > where y**H denotes the conjugate transpose of the vector y. */
  533. /* > The eigenvalues are not input to this routine, but are read directly */
  534. /* > from the diagonal of T. */
  535. /* > */
  536. /* > This routine returns the matrices X and/or Y of right and left */
  537. /* > eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an */
  538. /* > input matrix. If Q is the unitary factor that reduces a matrix A to */
  539. /* > Schur form T, then Q*X and Q*Y are the matrices of right and left */
  540. /* > eigenvectors of A. */
  541. /* > */
  542. /* > This uses a Level 3 BLAS version of the back transformation. */
  543. /* > \endverbatim */
  544. /* Arguments: */
  545. /* ========== */
  546. /* > \param[in] SIDE */
  547. /* > \verbatim */
  548. /* > SIDE is CHARACTER*1 */
  549. /* > = 'R': compute right eigenvectors only; */
  550. /* > = 'L': compute left eigenvectors only; */
  551. /* > = 'B': compute both right and left eigenvectors. */
  552. /* > \endverbatim */
  553. /* > */
  554. /* > \param[in] HOWMNY */
  555. /* > \verbatim */
  556. /* > HOWMNY is CHARACTER*1 */
  557. /* > = 'A': compute all right and/or left eigenvectors; */
  558. /* > = 'B': compute all right and/or left eigenvectors, */
  559. /* > backtransformed using the matrices supplied in */
  560. /* > VR and/or VL; */
  561. /* > = 'S': compute selected right and/or left eigenvectors, */
  562. /* > as indicated by the logical array SELECT. */
  563. /* > \endverbatim */
  564. /* > */
  565. /* > \param[in] SELECT */
  566. /* > \verbatim */
  567. /* > SELECT is LOGICAL array, dimension (N) */
  568. /* > If HOWMNY = 'S', SELECT specifies the eigenvectors to be */
  569. /* > computed. */
  570. /* > The eigenvector corresponding to the j-th eigenvalue is */
  571. /* > computed if SELECT(j) = .TRUE.. */
  572. /* > Not referenced if HOWMNY = 'A' or 'B'. */
  573. /* > \endverbatim */
  574. /* > */
  575. /* > \param[in] N */
  576. /* > \verbatim */
  577. /* > N is INTEGER */
  578. /* > The order of the matrix T. N >= 0. */
  579. /* > \endverbatim */
  580. /* > */
  581. /* > \param[in,out] T */
  582. /* > \verbatim */
  583. /* > T is COMPLEX array, dimension (LDT,N) */
  584. /* > The upper triangular matrix T. T is modified, but restored */
  585. /* > on exit. */
  586. /* > \endverbatim */
  587. /* > */
  588. /* > \param[in] LDT */
  589. /* > \verbatim */
  590. /* > LDT is INTEGER */
  591. /* > The leading dimension of the array T. LDT >= f2cmax(1,N). */
  592. /* > \endverbatim */
  593. /* > */
  594. /* > \param[in,out] VL */
  595. /* > \verbatim */
  596. /* > VL is COMPLEX array, dimension (LDVL,MM) */
  597. /* > On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must */
  598. /* > contain an N-by-N matrix Q (usually the unitary matrix Q of */
  599. /* > Schur vectors returned by CHSEQR). */
  600. /* > On exit, if SIDE = 'L' or 'B', VL contains: */
  601. /* > if HOWMNY = 'A', the matrix Y of left eigenvectors of T; */
  602. /* > if HOWMNY = 'B', the matrix Q*Y; */
  603. /* > if HOWMNY = 'S', the left eigenvectors of T specified by */
  604. /* > SELECT, stored consecutively in the columns */
  605. /* > of VL, in the same order as their */
  606. /* > eigenvalues. */
  607. /* > Not referenced if SIDE = 'R'. */
  608. /* > \endverbatim */
  609. /* > */
  610. /* > \param[in] LDVL */
  611. /* > \verbatim */
  612. /* > LDVL is INTEGER */
  613. /* > The leading dimension of the array VL. */
  614. /* > LDVL >= 1, and if SIDE = 'L' or 'B', LDVL >= N. */
  615. /* > \endverbatim */
  616. /* > */
  617. /* > \param[in,out] VR */
  618. /* > \verbatim */
  619. /* > VR is COMPLEX array, dimension (LDVR,MM) */
  620. /* > On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must */
  621. /* > contain an N-by-N matrix Q (usually the unitary matrix Q of */
  622. /* > Schur vectors returned by CHSEQR). */
  623. /* > On exit, if SIDE = 'R' or 'B', VR contains: */
  624. /* > if HOWMNY = 'A', the matrix X of right eigenvectors of T; */
  625. /* > if HOWMNY = 'B', the matrix Q*X; */
  626. /* > if HOWMNY = 'S', the right eigenvectors of T specified by */
  627. /* > SELECT, stored consecutively in the columns */
  628. /* > of VR, in the same order as their */
  629. /* > eigenvalues. */
  630. /* > Not referenced if SIDE = 'L'. */
  631. /* > \endverbatim */
  632. /* > */
  633. /* > \param[in] LDVR */
  634. /* > \verbatim */
  635. /* > LDVR is INTEGER */
  636. /* > The leading dimension of the array VR. */
  637. /* > LDVR >= 1, and if SIDE = 'R' or 'B', LDVR >= N. */
  638. /* > \endverbatim */
  639. /* > */
  640. /* > \param[in] MM */
  641. /* > \verbatim */
  642. /* > MM is INTEGER */
  643. /* > The number of columns in the arrays VL and/or VR. MM >= M. */
  644. /* > \endverbatim */
  645. /* > */
  646. /* > \param[out] M */
  647. /* > \verbatim */
  648. /* > M is INTEGER */
  649. /* > The number of columns in the arrays VL and/or VR actually */
  650. /* > used to store the eigenvectors. */
  651. /* > If HOWMNY = 'A' or 'B', M is set to N. */
  652. /* > Each selected eigenvector occupies one column. */
  653. /* > \endverbatim */
  654. /* > */
  655. /* > \param[out] WORK */
  656. /* > \verbatim */
  657. /* > WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
  658. /* > \endverbatim */
  659. /* > */
  660. /* > \param[in] LWORK */
  661. /* > \verbatim */
  662. /* > LWORK is INTEGER */
  663. /* > The dimension of array WORK. LWORK >= f2cmax(1,2*N). */
  664. /* > For optimum performance, LWORK >= N + 2*N*NB, where NB is */
  665. /* > the optimal blocksize. */
  666. /* > */
  667. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  668. /* > only calculates the optimal size of the WORK array, returns */
  669. /* > this value as the first entry of the WORK array, and no error */
  670. /* > message related to LWORK is issued by XERBLA. */
  671. /* > \endverbatim */
  672. /* > */
  673. /* > \param[out] RWORK */
  674. /* > \verbatim */
  675. /* > RWORK is REAL array, dimension (LRWORK) */
  676. /* > \endverbatim */
  677. /* > */
  678. /* > \param[in] LRWORK */
  679. /* > \verbatim */
  680. /* > LRWORK is INTEGER */
  681. /* > The dimension of array RWORK. LRWORK >= f2cmax(1,N). */
  682. /* > */
  683. /* > If LRWORK = -1, then a workspace query is assumed; the routine */
  684. /* > only calculates the optimal size of the RWORK array, returns */
  685. /* > this value as the first entry of the RWORK array, and no error */
  686. /* > message related to LRWORK is issued by XERBLA. */
  687. /* > \endverbatim */
  688. /* > */
  689. /* > \param[out] INFO */
  690. /* > \verbatim */
  691. /* > INFO is INTEGER */
  692. /* > = 0: successful exit */
  693. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  694. /* > \endverbatim */
  695. /* Authors: */
  696. /* ======== */
  697. /* > \author Univ. of Tennessee */
  698. /* > \author Univ. of California Berkeley */
  699. /* > \author Univ. of Colorado Denver */
  700. /* > \author NAG Ltd. */
  701. /* > \date November 2017 */
  702. /* @generated from ztrevc3.f, fortran z -> c, Tue Apr 19 01:47:44 2016 */
  703. /* > \ingroup complexOTHERcomputational */
  704. /* > \par Further Details: */
  705. /* ===================== */
  706. /* > */
  707. /* > \verbatim */
  708. /* > */
  709. /* > The algorithm used in this program is basically backward (forward) */
  710. /* > substitution, with scaling to make the the code robust against */
  711. /* > possible overflow. */
  712. /* > */
  713. /* > Each eigenvector is normalized so that the element of largest */
  714. /* > magnitude has magnitude 1; here the magnitude of a complex number */
  715. /* > (x,y) is taken to be |x| + |y|. */
  716. /* > \endverbatim */
  717. /* > */
  718. /* ===================================================================== */
  719. /* Subroutine */ int ctrevc3_(char *side, char *howmny, logical *select,
  720. integer *n, complex *t, integer *ldt, complex *vl, integer *ldvl,
  721. complex *vr, integer *ldvr, integer *mm, integer *m, complex *work,
  722. integer *lwork, real *rwork, integer *lrwork, integer *info)
  723. {
  724. /* System generated locals */
  725. address a__1[2];
  726. integer t_dim1, t_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1,
  727. i__2[2], i__3, i__4, i__5, i__6;
  728. real r__1, r__2, r__3;
  729. complex q__1, q__2;
  730. char ch__1[2];
  731. /* Local variables */
  732. logical allv;
  733. real unfl, ovfl, smin;
  734. logical over;
  735. integer i__, j, k;
  736. real scale;
  737. extern /* Subroutine */ int cgemm_(char *, char *, integer *, integer *,
  738. integer *, complex *, complex *, integer *, complex *, integer *,
  739. complex *, complex *, integer *);
  740. extern logical lsame_(char *, char *);
  741. extern /* Subroutine */ int cgemv_(char *, integer *, integer *, complex *
  742. , complex *, integer *, complex *, integer *, complex *, complex *
  743. , integer *);
  744. real remax;
  745. extern /* Subroutine */ int ccopy_(integer *, complex *, integer *,
  746. complex *, integer *);
  747. logical leftv, bothv, somev;
  748. integer nb, ii, ki;
  749. extern /* Subroutine */ int slabad_(real *, real *);
  750. integer is, iv;
  751. extern integer icamax_(integer *, complex *, integer *);
  752. extern real slamch_(char *);
  753. extern /* Subroutine */ int csscal_(integer *, real *, complex *, integer
  754. *), claset_(char *, integer *, integer *, complex *, complex *,
  755. complex *, integer *), clacpy_(char *, integer *, integer
  756. *, complex *, integer *, complex *, integer *), xerbla_(
  757. char *, integer *, ftnlen);
  758. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  759. integer *, integer *, ftnlen, ftnlen);
  760. extern /* Subroutine */ int clatrs_(char *, char *, char *, char *,
  761. integer *, complex *, integer *, complex *, real *, real *,
  762. integer *);
  763. extern real scasum_(integer *, complex *, integer *);
  764. logical rightv;
  765. integer maxwrk;
  766. real smlnum;
  767. logical lquery;
  768. real ulp;
  769. /* -- LAPACK computational routine (version 3.8.0) -- */
  770. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  771. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  772. /* November 2017 */
  773. /* ===================================================================== */
  774. /* Decode and test the input parameters */
  775. /* Parameter adjustments */
  776. --select;
  777. t_dim1 = *ldt;
  778. t_offset = 1 + t_dim1 * 1;
  779. t -= t_offset;
  780. vl_dim1 = *ldvl;
  781. vl_offset = 1 + vl_dim1 * 1;
  782. vl -= vl_offset;
  783. vr_dim1 = *ldvr;
  784. vr_offset = 1 + vr_dim1 * 1;
  785. vr -= vr_offset;
  786. --work;
  787. --rwork;
  788. /* Function Body */
  789. bothv = lsame_(side, "B");
  790. rightv = lsame_(side, "R") || bothv;
  791. leftv = lsame_(side, "L") || bothv;
  792. allv = lsame_(howmny, "A");
  793. over = lsame_(howmny, "B");
  794. somev = lsame_(howmny, "S");
  795. /* Set M to the number of columns required to store the selected */
  796. /* eigenvectors. */
  797. if (somev) {
  798. *m = 0;
  799. i__1 = *n;
  800. for (j = 1; j <= i__1; ++j) {
  801. if (select[j]) {
  802. ++(*m);
  803. }
  804. /* L10: */
  805. }
  806. } else {
  807. *m = *n;
  808. }
  809. *info = 0;
  810. /* Writing concatenation */
  811. i__2[0] = 1, a__1[0] = side;
  812. i__2[1] = 1, a__1[1] = howmny;
  813. s_cat(ch__1, a__1, i__2, &c__2, (ftnlen)2);
  814. nb = ilaenv_(&c__1, "CTREVC", ch__1, n, &c_n1, &c_n1, &c_n1, (ftnlen)6, (
  815. ftnlen)2);
  816. maxwrk = *n + (*n << 1) * nb;
  817. work[1].r = (real) maxwrk, work[1].i = 0.f;
  818. rwork[1] = (real) (*n);
  819. lquery = *lwork == -1 || *lrwork == -1;
  820. if (! rightv && ! leftv) {
  821. *info = -1;
  822. } else if (! allv && ! over && ! somev) {
  823. *info = -2;
  824. } else if (*n < 0) {
  825. *info = -4;
  826. } else if (*ldt < f2cmax(1,*n)) {
  827. *info = -6;
  828. } else if (*ldvl < 1 || leftv && *ldvl < *n) {
  829. *info = -8;
  830. } else if (*ldvr < 1 || rightv && *ldvr < *n) {
  831. *info = -10;
  832. } else if (*mm < *m) {
  833. *info = -11;
  834. } else /* if(complicated condition) */ {
  835. /* Computing MAX */
  836. i__1 = 1, i__3 = *n << 1;
  837. if (*lwork < f2cmax(i__1,i__3) && ! lquery) {
  838. *info = -14;
  839. } else if (*lrwork < f2cmax(1,*n) && ! lquery) {
  840. *info = -16;
  841. }
  842. }
  843. if (*info != 0) {
  844. i__1 = -(*info);
  845. xerbla_("CTREVC3", &i__1, (ftnlen)7);
  846. return 0;
  847. } else if (lquery) {
  848. return 0;
  849. }
  850. /* Quick return if possible. */
  851. if (*n == 0) {
  852. return 0;
  853. }
  854. /* Use blocked version of back-transformation if sufficient workspace. */
  855. /* Zero-out the workspace to avoid potential NaN propagation. */
  856. if (over && *lwork >= *n + (*n << 4)) {
  857. nb = (*lwork - *n) / (*n << 1);
  858. nb = f2cmin(nb,128);
  859. i__1 = (nb << 1) + 1;
  860. claset_("F", n, &i__1, &c_b1, &c_b1, &work[1], n);
  861. } else {
  862. nb = 1;
  863. }
  864. /* Set the constants to control overflow. */
  865. unfl = slamch_("Safe minimum");
  866. ovfl = 1.f / unfl;
  867. slabad_(&unfl, &ovfl);
  868. ulp = slamch_("Precision");
  869. smlnum = unfl * (*n / ulp);
  870. /* Store the diagonal elements of T in working array WORK. */
  871. i__1 = *n;
  872. for (i__ = 1; i__ <= i__1; ++i__) {
  873. i__3 = i__;
  874. i__4 = i__ + i__ * t_dim1;
  875. work[i__3].r = t[i__4].r, work[i__3].i = t[i__4].i;
  876. /* L20: */
  877. }
  878. /* Compute 1-norm of each column of strictly upper triangular */
  879. /* part of T to control overflow in triangular solver. */
  880. rwork[1] = 0.f;
  881. i__1 = *n;
  882. for (j = 2; j <= i__1; ++j) {
  883. i__3 = j - 1;
  884. rwork[j] = scasum_(&i__3, &t[j * t_dim1 + 1], &c__1);
  885. /* L30: */
  886. }
  887. if (rightv) {
  888. /* ============================================================ */
  889. /* Compute right eigenvectors. */
  890. /* IV is index of column in current block. */
  891. /* Non-blocked version always uses IV=NB=1; */
  892. /* blocked version starts with IV=NB, goes down to 1. */
  893. /* (Note the "0-th" column is used to store the original diagonal.) */
  894. iv = nb;
  895. is = *m;
  896. for (ki = *n; ki >= 1; --ki) {
  897. if (somev) {
  898. if (! select[ki]) {
  899. goto L80;
  900. }
  901. }
  902. /* Computing MAX */
  903. i__1 = ki + ki * t_dim1;
  904. r__3 = ulp * ((r__1 = t[i__1].r, abs(r__1)) + (r__2 = r_imag(&t[
  905. ki + ki * t_dim1]), abs(r__2)));
  906. smin = f2cmax(r__3,smlnum);
  907. /* -------------------------------------------------------- */
  908. /* Complex right eigenvector */
  909. i__1 = ki + iv * *n;
  910. work[i__1].r = 1.f, work[i__1].i = 0.f;
  911. /* Form right-hand side. */
  912. i__1 = ki - 1;
  913. for (k = 1; k <= i__1; ++k) {
  914. i__3 = k + iv * *n;
  915. i__4 = k + ki * t_dim1;
  916. q__1.r = -t[i__4].r, q__1.i = -t[i__4].i;
  917. work[i__3].r = q__1.r, work[i__3].i = q__1.i;
  918. /* L40: */
  919. }
  920. /* Solve upper triangular system: */
  921. /* [ T(1:KI-1,1:KI-1) - T(KI,KI) ]*X = SCALE*WORK. */
  922. i__1 = ki - 1;
  923. for (k = 1; k <= i__1; ++k) {
  924. i__3 = k + k * t_dim1;
  925. i__4 = k + k * t_dim1;
  926. i__5 = ki + ki * t_dim1;
  927. q__1.r = t[i__4].r - t[i__5].r, q__1.i = t[i__4].i - t[i__5]
  928. .i;
  929. t[i__3].r = q__1.r, t[i__3].i = q__1.i;
  930. i__3 = k + k * t_dim1;
  931. if ((r__1 = t[i__3].r, abs(r__1)) + (r__2 = r_imag(&t[k + k *
  932. t_dim1]), abs(r__2)) < smin) {
  933. i__4 = k + k * t_dim1;
  934. t[i__4].r = smin, t[i__4].i = 0.f;
  935. }
  936. /* L50: */
  937. }
  938. if (ki > 1) {
  939. i__1 = ki - 1;
  940. clatrs_("Upper", "No transpose", "Non-unit", "Y", &i__1, &t[
  941. t_offset], ldt, &work[iv * *n + 1], &scale, &rwork[1],
  942. info);
  943. i__1 = ki + iv * *n;
  944. work[i__1].r = scale, work[i__1].i = 0.f;
  945. }
  946. /* Copy the vector x or Q*x to VR and normalize. */
  947. if (! over) {
  948. /* ------------------------------ */
  949. /* no back-transform: copy x to VR and normalize. */
  950. ccopy_(&ki, &work[iv * *n + 1], &c__1, &vr[is * vr_dim1 + 1],
  951. &c__1);
  952. ii = icamax_(&ki, &vr[is * vr_dim1 + 1], &c__1);
  953. i__1 = ii + is * vr_dim1;
  954. remax = 1.f / ((r__1 = vr[i__1].r, abs(r__1)) + (r__2 =
  955. r_imag(&vr[ii + is * vr_dim1]), abs(r__2)));
  956. csscal_(&ki, &remax, &vr[is * vr_dim1 + 1], &c__1);
  957. i__1 = *n;
  958. for (k = ki + 1; k <= i__1; ++k) {
  959. i__3 = k + is * vr_dim1;
  960. vr[i__3].r = 0.f, vr[i__3].i = 0.f;
  961. /* L60: */
  962. }
  963. } else if (nb == 1) {
  964. /* ------------------------------ */
  965. /* version 1: back-transform each vector with GEMV, Q*x. */
  966. if (ki > 1) {
  967. i__1 = ki - 1;
  968. q__1.r = scale, q__1.i = 0.f;
  969. cgemv_("N", n, &i__1, &c_b2, &vr[vr_offset], ldvr, &work[
  970. iv * *n + 1], &c__1, &q__1, &vr[ki * vr_dim1 + 1],
  971. &c__1);
  972. }
  973. ii = icamax_(n, &vr[ki * vr_dim1 + 1], &c__1);
  974. i__1 = ii + ki * vr_dim1;
  975. remax = 1.f / ((r__1 = vr[i__1].r, abs(r__1)) + (r__2 =
  976. r_imag(&vr[ii + ki * vr_dim1]), abs(r__2)));
  977. csscal_(n, &remax, &vr[ki * vr_dim1 + 1], &c__1);
  978. } else {
  979. /* ------------------------------ */
  980. /* version 2: back-transform block of vectors with GEMM */
  981. /* zero out below vector */
  982. i__1 = *n;
  983. for (k = ki + 1; k <= i__1; ++k) {
  984. i__3 = k + iv * *n;
  985. work[i__3].r = 0.f, work[i__3].i = 0.f;
  986. }
  987. /* Columns IV:NB of work are valid vectors. */
  988. /* When the number of vectors stored reaches NB, */
  989. /* or if this was last vector, do the GEMM */
  990. if (iv == 1 || ki == 1) {
  991. i__1 = nb - iv + 1;
  992. i__3 = ki + nb - iv;
  993. cgemm_("N", "N", n, &i__1, &i__3, &c_b2, &vr[vr_offset],
  994. ldvr, &work[iv * *n + 1], n, &c_b1, &work[(nb +
  995. iv) * *n + 1], n);
  996. /* normalize vectors */
  997. i__1 = nb;
  998. for (k = iv; k <= i__1; ++k) {
  999. ii = icamax_(n, &work[(nb + k) * *n + 1], &c__1);
  1000. i__3 = ii + (nb + k) * *n;
  1001. remax = 1.f / ((r__1 = work[i__3].r, abs(r__1)) + (
  1002. r__2 = r_imag(&work[ii + (nb + k) * *n]), abs(
  1003. r__2)));
  1004. csscal_(n, &remax, &work[(nb + k) * *n + 1], &c__1);
  1005. }
  1006. i__1 = nb - iv + 1;
  1007. clacpy_("F", n, &i__1, &work[(nb + iv) * *n + 1], n, &vr[
  1008. ki * vr_dim1 + 1], ldvr);
  1009. iv = nb;
  1010. } else {
  1011. --iv;
  1012. }
  1013. }
  1014. /* Restore the original diagonal elements of T. */
  1015. i__1 = ki - 1;
  1016. for (k = 1; k <= i__1; ++k) {
  1017. i__3 = k + k * t_dim1;
  1018. i__4 = k;
  1019. t[i__3].r = work[i__4].r, t[i__3].i = work[i__4].i;
  1020. /* L70: */
  1021. }
  1022. --is;
  1023. L80:
  1024. ;
  1025. }
  1026. }
  1027. if (leftv) {
  1028. /* ============================================================ */
  1029. /* Compute left eigenvectors. */
  1030. /* IV is index of column in current block. */
  1031. /* Non-blocked version always uses IV=1; */
  1032. /* blocked version starts with IV=1, goes up to NB. */
  1033. /* (Note the "0-th" column is used to store the original diagonal.) */
  1034. iv = 1;
  1035. is = 1;
  1036. i__1 = *n;
  1037. for (ki = 1; ki <= i__1; ++ki) {
  1038. if (somev) {
  1039. if (! select[ki]) {
  1040. goto L130;
  1041. }
  1042. }
  1043. /* Computing MAX */
  1044. i__3 = ki + ki * t_dim1;
  1045. r__3 = ulp * ((r__1 = t[i__3].r, abs(r__1)) + (r__2 = r_imag(&t[
  1046. ki + ki * t_dim1]), abs(r__2)));
  1047. smin = f2cmax(r__3,smlnum);
  1048. /* -------------------------------------------------------- */
  1049. /* Complex left eigenvector */
  1050. i__3 = ki + iv * *n;
  1051. work[i__3].r = 1.f, work[i__3].i = 0.f;
  1052. /* Form right-hand side. */
  1053. i__3 = *n;
  1054. for (k = ki + 1; k <= i__3; ++k) {
  1055. i__4 = k + iv * *n;
  1056. r_cnjg(&q__2, &t[ki + k * t_dim1]);
  1057. q__1.r = -q__2.r, q__1.i = -q__2.i;
  1058. work[i__4].r = q__1.r, work[i__4].i = q__1.i;
  1059. /* L90: */
  1060. }
  1061. /* Solve conjugate-transposed triangular system: */
  1062. /* [ T(KI+1:N,KI+1:N) - T(KI,KI) ]**H * X = SCALE*WORK. */
  1063. i__3 = *n;
  1064. for (k = ki + 1; k <= i__3; ++k) {
  1065. i__4 = k + k * t_dim1;
  1066. i__5 = k + k * t_dim1;
  1067. i__6 = ki + ki * t_dim1;
  1068. q__1.r = t[i__5].r - t[i__6].r, q__1.i = t[i__5].i - t[i__6]
  1069. .i;
  1070. t[i__4].r = q__1.r, t[i__4].i = q__1.i;
  1071. i__4 = k + k * t_dim1;
  1072. if ((r__1 = t[i__4].r, abs(r__1)) + (r__2 = r_imag(&t[k + k *
  1073. t_dim1]), abs(r__2)) < smin) {
  1074. i__5 = k + k * t_dim1;
  1075. t[i__5].r = smin, t[i__5].i = 0.f;
  1076. }
  1077. /* L100: */
  1078. }
  1079. if (ki < *n) {
  1080. i__3 = *n - ki;
  1081. clatrs_("Upper", "Conjugate transpose", "Non-unit", "Y", &
  1082. i__3, &t[ki + 1 + (ki + 1) * t_dim1], ldt, &work[ki +
  1083. 1 + iv * *n], &scale, &rwork[1], info);
  1084. i__3 = ki + iv * *n;
  1085. work[i__3].r = scale, work[i__3].i = 0.f;
  1086. }
  1087. /* Copy the vector x or Q*x to VL and normalize. */
  1088. if (! over) {
  1089. /* ------------------------------ */
  1090. /* no back-transform: copy x to VL and normalize. */
  1091. i__3 = *n - ki + 1;
  1092. ccopy_(&i__3, &work[ki + iv * *n], &c__1, &vl[ki + is *
  1093. vl_dim1], &c__1);
  1094. i__3 = *n - ki + 1;
  1095. ii = icamax_(&i__3, &vl[ki + is * vl_dim1], &c__1) + ki - 1;
  1096. i__3 = ii + is * vl_dim1;
  1097. remax = 1.f / ((r__1 = vl[i__3].r, abs(r__1)) + (r__2 =
  1098. r_imag(&vl[ii + is * vl_dim1]), abs(r__2)));
  1099. i__3 = *n - ki + 1;
  1100. csscal_(&i__3, &remax, &vl[ki + is * vl_dim1], &c__1);
  1101. i__3 = ki - 1;
  1102. for (k = 1; k <= i__3; ++k) {
  1103. i__4 = k + is * vl_dim1;
  1104. vl[i__4].r = 0.f, vl[i__4].i = 0.f;
  1105. /* L110: */
  1106. }
  1107. } else if (nb == 1) {
  1108. /* ------------------------------ */
  1109. /* version 1: back-transform each vector with GEMV, Q*x. */
  1110. if (ki < *n) {
  1111. i__3 = *n - ki;
  1112. q__1.r = scale, q__1.i = 0.f;
  1113. cgemv_("N", n, &i__3, &c_b2, &vl[(ki + 1) * vl_dim1 + 1],
  1114. ldvl, &work[ki + 1 + iv * *n], &c__1, &q__1, &vl[
  1115. ki * vl_dim1 + 1], &c__1);
  1116. }
  1117. ii = icamax_(n, &vl[ki * vl_dim1 + 1], &c__1);
  1118. i__3 = ii + ki * vl_dim1;
  1119. remax = 1.f / ((r__1 = vl[i__3].r, abs(r__1)) + (r__2 =
  1120. r_imag(&vl[ii + ki * vl_dim1]), abs(r__2)));
  1121. csscal_(n, &remax, &vl[ki * vl_dim1 + 1], &c__1);
  1122. } else {
  1123. /* ------------------------------ */
  1124. /* version 2: back-transform block of vectors with GEMM */
  1125. /* zero out above vector */
  1126. /* could go from KI-NV+1 to KI-1 */
  1127. i__3 = ki - 1;
  1128. for (k = 1; k <= i__3; ++k) {
  1129. i__4 = k + iv * *n;
  1130. work[i__4].r = 0.f, work[i__4].i = 0.f;
  1131. }
  1132. /* Columns 1:IV of work are valid vectors. */
  1133. /* When the number of vectors stored reaches NB, */
  1134. /* or if this was last vector, do the GEMM */
  1135. if (iv == nb || ki == *n) {
  1136. i__3 = *n - ki + iv;
  1137. cgemm_("N", "N", n, &iv, &i__3, &c_b2, &vl[(ki - iv + 1) *
  1138. vl_dim1 + 1], ldvl, &work[ki - iv + 1 + *n], n, &
  1139. c_b1, &work[(nb + 1) * *n + 1], n);
  1140. /* normalize vectors */
  1141. i__3 = iv;
  1142. for (k = 1; k <= i__3; ++k) {
  1143. ii = icamax_(n, &work[(nb + k) * *n + 1], &c__1);
  1144. i__4 = ii + (nb + k) * *n;
  1145. remax = 1.f / ((r__1 = work[i__4].r, abs(r__1)) + (
  1146. r__2 = r_imag(&work[ii + (nb + k) * *n]), abs(
  1147. r__2)));
  1148. csscal_(n, &remax, &work[(nb + k) * *n + 1], &c__1);
  1149. }
  1150. clacpy_("F", n, &iv, &work[(nb + 1) * *n + 1], n, &vl[(ki
  1151. - iv + 1) * vl_dim1 + 1], ldvl);
  1152. iv = 1;
  1153. } else {
  1154. ++iv;
  1155. }
  1156. }
  1157. /* Restore the original diagonal elements of T. */
  1158. i__3 = *n;
  1159. for (k = ki + 1; k <= i__3; ++k) {
  1160. i__4 = k + k * t_dim1;
  1161. i__5 = k;
  1162. t[i__4].r = work[i__5].r, t[i__4].i = work[i__5].i;
  1163. /* L120: */
  1164. }
  1165. ++is;
  1166. L130:
  1167. ;
  1168. }
  1169. }
  1170. return 0;
  1171. /* End of CTREVC3 */
  1172. } /* ctrevc3_ */