You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

csyconvf_rook.c 30 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* > \brief \b CSYCONVF_ROOK */
  486. /* =========== DOCUMENTATION =========== */
  487. /* Online html documentation available at */
  488. /* http://www.netlib.org/lapack/explore-html/ */
  489. /* > \htmlonly */
  490. /* > Download CSYCONVF_ROOK + dependencies */
  491. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/csyconv
  492. f_rook.f"> */
  493. /* > [TGZ]</a> */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/csyconv
  495. f_rook.f"> */
  496. /* > [ZIP]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/csyconv
  498. f_rook.f"> */
  499. /* > [TXT]</a> */
  500. /* > \endhtmlonly */
  501. /* Definition: */
  502. /* =========== */
  503. /* SUBROUTINE CSYCONVF_ROOK( UPLO, WAY, N, A, LDA, E, IPIV, INFO ) */
  504. /* CHARACTER UPLO, WAY */
  505. /* INTEGER INFO, LDA, N */
  506. /* INTEGER IPIV( * ) */
  507. /* COMPLEX A( LDA, * ), E( * ) */
  508. /* > \par Purpose: */
  509. /* ============= */
  510. /* > */
  511. /* > \verbatim */
  512. /* > If parameter WAY = 'C': */
  513. /* > CSYCONVF_ROOK converts the factorization output format used in */
  514. /* > CSYTRF_ROOK provided on entry in parameter A into the factorization */
  515. /* > output format used in CSYTRF_RK (or CSYTRF_BK) that is stored */
  516. /* > on exit in parameters A and E. IPIV format for CSYTRF_ROOK and */
  517. /* > CSYTRF_RK (or CSYTRF_BK) is the same and is not converted. */
  518. /* > */
  519. /* > If parameter WAY = 'R': */
  520. /* > CSYCONVF_ROOK performs the conversion in reverse direction, i.e. */
  521. /* > converts the factorization output format used in CSYTRF_RK */
  522. /* > (or CSYTRF_BK) provided on entry in parameters A and E into */
  523. /* > the factorization output format used in CSYTRF_ROOK that is stored */
  524. /* > on exit in parameter A. IPIV format for CSYTRF_ROOK and */
  525. /* > CSYTRF_RK (or CSYTRF_BK) is the same and is not converted. */
  526. /* > */
  527. /* > CSYCONVF_ROOK can also convert in Hermitian matrix case, i.e. between */
  528. /* > formats used in CHETRF_ROOK and CHETRF_RK (or CHETRF_BK). */
  529. /* > \endverbatim */
  530. /* Arguments: */
  531. /* ========== */
  532. /* > \param[in] UPLO */
  533. /* > \verbatim */
  534. /* > UPLO is CHARACTER*1 */
  535. /* > Specifies whether the details of the factorization are */
  536. /* > stored as an upper or lower triangular matrix A. */
  537. /* > = 'U': Upper triangular */
  538. /* > = 'L': Lower triangular */
  539. /* > \endverbatim */
  540. /* > */
  541. /* > \param[in] WAY */
  542. /* > \verbatim */
  543. /* > WAY is CHARACTER*1 */
  544. /* > = 'C': Convert */
  545. /* > = 'R': Revert */
  546. /* > \endverbatim */
  547. /* > */
  548. /* > \param[in] N */
  549. /* > \verbatim */
  550. /* > N is INTEGER */
  551. /* > The order of the matrix A. N >= 0. */
  552. /* > \endverbatim */
  553. /* > */
  554. /* > \param[in,out] A */
  555. /* > \verbatim */
  556. /* > A is COMPLEX array, dimension (LDA,N) */
  557. /* > */
  558. /* > 1) If WAY ='C': */
  559. /* > */
  560. /* > On entry, contains factorization details in format used in */
  561. /* > CSYTRF_ROOK: */
  562. /* > a) all elements of the symmetric block diagonal */
  563. /* > matrix D on the diagonal of A and on superdiagonal */
  564. /* > (or subdiagonal) of A, and */
  565. /* > b) If UPLO = 'U': multipliers used to obtain factor U */
  566. /* > in the superdiagonal part of A. */
  567. /* > If UPLO = 'L': multipliers used to obtain factor L */
  568. /* > in the superdiagonal part of A. */
  569. /* > */
  570. /* > On exit, contains factorization details in format used in */
  571. /* > CSYTRF_RK or CSYTRF_BK: */
  572. /* > a) ONLY diagonal elements of the symmetric block diagonal */
  573. /* > matrix D on the diagonal of A, i.e. D(k,k) = A(k,k); */
  574. /* > (superdiagonal (or subdiagonal) elements of D */
  575. /* > are stored on exit in array E), and */
  576. /* > b) If UPLO = 'U': factor U in the superdiagonal part of A. */
  577. /* > If UPLO = 'L': factor L in the subdiagonal part of A. */
  578. /* > */
  579. /* > 2) If WAY = 'R': */
  580. /* > */
  581. /* > On entry, contains factorization details in format used in */
  582. /* > CSYTRF_RK or CSYTRF_BK: */
  583. /* > a) ONLY diagonal elements of the symmetric block diagonal */
  584. /* > matrix D on the diagonal of A, i.e. D(k,k) = A(k,k); */
  585. /* > (superdiagonal (or subdiagonal) elements of D */
  586. /* > are stored on exit in array E), and */
  587. /* > b) If UPLO = 'U': factor U in the superdiagonal part of A. */
  588. /* > If UPLO = 'L': factor L in the subdiagonal part of A. */
  589. /* > */
  590. /* > On exit, contains factorization details in format used in */
  591. /* > CSYTRF_ROOK: */
  592. /* > a) all elements of the symmetric block diagonal */
  593. /* > matrix D on the diagonal of A and on superdiagonal */
  594. /* > (or subdiagonal) of A, and */
  595. /* > b) If UPLO = 'U': multipliers used to obtain factor U */
  596. /* > in the superdiagonal part of A. */
  597. /* > If UPLO = 'L': multipliers used to obtain factor L */
  598. /* > in the superdiagonal part of A. */
  599. /* > \endverbatim */
  600. /* > */
  601. /* > \param[in] LDA */
  602. /* > \verbatim */
  603. /* > LDA is INTEGER */
  604. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  605. /* > \endverbatim */
  606. /* > */
  607. /* > \param[in,out] E */
  608. /* > \verbatim */
  609. /* > E is COMPLEX array, dimension (N) */
  610. /* > */
  611. /* > 1) If WAY ='C': */
  612. /* > */
  613. /* > On entry, just a workspace. */
  614. /* > */
  615. /* > On exit, contains the superdiagonal (or subdiagonal) */
  616. /* > elements of the symmetric block diagonal matrix D */
  617. /* > with 1-by-1 or 2-by-2 diagonal blocks, where */
  618. /* > If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0; */
  619. /* > If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0. */
  620. /* > */
  621. /* > 2) If WAY = 'R': */
  622. /* > */
  623. /* > On entry, contains the superdiagonal (or subdiagonal) */
  624. /* > elements of the symmetric block diagonal matrix D */
  625. /* > with 1-by-1 or 2-by-2 diagonal blocks, where */
  626. /* > If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced; */
  627. /* > If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced. */
  628. /* > */
  629. /* > On exit, is not changed */
  630. /* > \endverbatim */
  631. /* . */
  632. /* > \param[in] IPIV */
  633. /* > \verbatim */
  634. /* > IPIV is INTEGER array, dimension (N) */
  635. /* > On entry, details of the interchanges and the block */
  636. /* > structure of D as determined: */
  637. /* > 1) by CSYTRF_ROOK, if WAY ='C'; */
  638. /* > 2) by CSYTRF_RK (or CSYTRF_BK), if WAY ='R'. */
  639. /* > The IPIV format is the same for all these routines. */
  640. /* > */
  641. /* > On exit, is not changed. */
  642. /* > \endverbatim */
  643. /* > */
  644. /* > \param[out] INFO */
  645. /* > \verbatim */
  646. /* > INFO is INTEGER */
  647. /* > = 0: successful exit */
  648. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  649. /* > \endverbatim */
  650. /* Authors: */
  651. /* ======== */
  652. /* > \author Univ. of Tennessee */
  653. /* > \author Univ. of California Berkeley */
  654. /* > \author Univ. of Colorado Denver */
  655. /* > \author NAG Ltd. */
  656. /* > \date November 2017 */
  657. /* > \ingroup complexSYcomputational */
  658. /* > \par Contributors: */
  659. /* ================== */
  660. /* > */
  661. /* > \verbatim */
  662. /* > */
  663. /* > November 2017, Igor Kozachenko, */
  664. /* > Computer Science Division, */
  665. /* > University of California, Berkeley */
  666. /* > */
  667. /* > \endverbatim */
  668. /* ===================================================================== */
  669. /* Subroutine */ int csyconvf_rook_(char *uplo, char *way, integer *n,
  670. complex *a, integer *lda, complex *e, integer *ipiv, integer *info)
  671. {
  672. /* System generated locals */
  673. integer a_dim1, a_offset, i__1, i__2;
  674. /* Local variables */
  675. integer i__;
  676. extern logical lsame_(char *, char *);
  677. extern /* Subroutine */ int cswap_(integer *, complex *, integer *,
  678. complex *, integer *);
  679. logical upper;
  680. integer ip;
  681. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  682. integer ip2;
  683. logical convert;
  684. /* -- LAPACK computational routine (version 3.8.0) -- */
  685. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  686. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  687. /* November 2017 */
  688. /* ===================================================================== */
  689. /* Parameter adjustments */
  690. a_dim1 = *lda;
  691. a_offset = 1 + a_dim1 * 1;
  692. a -= a_offset;
  693. --e;
  694. --ipiv;
  695. /* Function Body */
  696. *info = 0;
  697. upper = lsame_(uplo, "U");
  698. convert = lsame_(way, "C");
  699. if (! upper && ! lsame_(uplo, "L")) {
  700. *info = -1;
  701. } else if (! convert && ! lsame_(way, "R")) {
  702. *info = -2;
  703. } else if (*n < 0) {
  704. *info = -3;
  705. } else if (*lda < f2cmax(1,*n)) {
  706. *info = -5;
  707. }
  708. if (*info != 0) {
  709. i__1 = -(*info);
  710. xerbla_("CSYCONVF_ROOK", &i__1, (ftnlen)13);
  711. return 0;
  712. }
  713. /* Quick return if possible */
  714. if (*n == 0) {
  715. return 0;
  716. }
  717. if (upper) {
  718. /* Begin A is UPPER */
  719. if (convert) {
  720. /* Convert A (A is upper) */
  721. /* Convert VALUE */
  722. /* Assign superdiagonal entries of D to array E and zero out */
  723. /* corresponding entries in input storage A */
  724. i__ = *n;
  725. e[1].r = 0.f, e[1].i = 0.f;
  726. while(i__ > 1) {
  727. if (ipiv[i__] < 0) {
  728. i__1 = i__;
  729. i__2 = i__ - 1 + i__ * a_dim1;
  730. e[i__1].r = a[i__2].r, e[i__1].i = a[i__2].i;
  731. i__1 = i__ - 1;
  732. e[i__1].r = 0.f, e[i__1].i = 0.f;
  733. i__1 = i__ - 1 + i__ * a_dim1;
  734. a[i__1].r = 0.f, a[i__1].i = 0.f;
  735. --i__;
  736. } else {
  737. i__1 = i__;
  738. e[i__1].r = 0.f, e[i__1].i = 0.f;
  739. }
  740. --i__;
  741. }
  742. /* Convert PERMUTATIONS */
  743. /* Apply permutations to submatrices of upper part of A */
  744. /* in factorization order where i decreases from N to 1 */
  745. i__ = *n;
  746. while(i__ >= 1) {
  747. if (ipiv[i__] > 0) {
  748. /* 1-by-1 pivot interchange */
  749. /* Swap rows i and IPIV(i) in A(1:i,N-i:N) */
  750. ip = ipiv[i__];
  751. if (i__ < *n) {
  752. if (ip != i__) {
  753. i__1 = *n - i__;
  754. cswap_(&i__1, &a[i__ + (i__ + 1) * a_dim1], lda, &
  755. a[ip + (i__ + 1) * a_dim1], lda);
  756. }
  757. }
  758. } else {
  759. /* 2-by-2 pivot interchange */
  760. /* Swap rows i and IPIV(i) and i-1 and IPIV(i-1) */
  761. /* in A(1:i,N-i:N) */
  762. ip = -ipiv[i__];
  763. ip2 = -ipiv[i__ - 1];
  764. if (i__ < *n) {
  765. if (ip != i__) {
  766. i__1 = *n - i__;
  767. cswap_(&i__1, &a[i__ + (i__ + 1) * a_dim1], lda, &
  768. a[ip + (i__ + 1) * a_dim1], lda);
  769. }
  770. if (ip2 != i__ - 1) {
  771. i__1 = *n - i__;
  772. cswap_(&i__1, &a[i__ - 1 + (i__ + 1) * a_dim1],
  773. lda, &a[ip2 + (i__ + 1) * a_dim1], lda);
  774. }
  775. }
  776. --i__;
  777. }
  778. --i__;
  779. }
  780. } else {
  781. /* Revert A (A is upper) */
  782. /* Revert PERMUTATIONS */
  783. /* Apply permutations to submatrices of upper part of A */
  784. /* in reverse factorization order where i increases from 1 to N */
  785. i__ = 1;
  786. while(i__ <= *n) {
  787. if (ipiv[i__] > 0) {
  788. /* 1-by-1 pivot interchange */
  789. /* Swap rows i and IPIV(i) in A(1:i,N-i:N) */
  790. ip = ipiv[i__];
  791. if (i__ < *n) {
  792. if (ip != i__) {
  793. i__1 = *n - i__;
  794. cswap_(&i__1, &a[ip + (i__ + 1) * a_dim1], lda, &
  795. a[i__ + (i__ + 1) * a_dim1], lda);
  796. }
  797. }
  798. } else {
  799. /* 2-by-2 pivot interchange */
  800. /* Swap rows i-1 and IPIV(i-1) and i and IPIV(i) */
  801. /* in A(1:i,N-i:N) */
  802. ++i__;
  803. ip = -ipiv[i__];
  804. ip2 = -ipiv[i__ - 1];
  805. if (i__ < *n) {
  806. if (ip2 != i__ - 1) {
  807. i__1 = *n - i__;
  808. cswap_(&i__1, &a[ip2 + (i__ + 1) * a_dim1], lda, &
  809. a[i__ - 1 + (i__ + 1) * a_dim1], lda);
  810. }
  811. if (ip != i__) {
  812. i__1 = *n - i__;
  813. cswap_(&i__1, &a[ip + (i__ + 1) * a_dim1], lda, &
  814. a[i__ + (i__ + 1) * a_dim1], lda);
  815. }
  816. }
  817. }
  818. ++i__;
  819. }
  820. /* Revert VALUE */
  821. /* Assign superdiagonal entries of D from array E to */
  822. /* superdiagonal entries of A. */
  823. i__ = *n;
  824. while(i__ > 1) {
  825. if (ipiv[i__] < 0) {
  826. i__1 = i__ - 1 + i__ * a_dim1;
  827. i__2 = i__;
  828. a[i__1].r = e[i__2].r, a[i__1].i = e[i__2].i;
  829. --i__;
  830. }
  831. --i__;
  832. }
  833. /* End A is UPPER */
  834. }
  835. } else {
  836. /* Begin A is LOWER */
  837. if (convert) {
  838. /* Convert A (A is lower) */
  839. /* Convert VALUE */
  840. /* Assign subdiagonal entries of D to array E and zero out */
  841. /* corresponding entries in input storage A */
  842. i__ = 1;
  843. i__1 = *n;
  844. e[i__1].r = 0.f, e[i__1].i = 0.f;
  845. while(i__ <= *n) {
  846. if (i__ < *n && ipiv[i__] < 0) {
  847. i__1 = i__;
  848. i__2 = i__ + 1 + i__ * a_dim1;
  849. e[i__1].r = a[i__2].r, e[i__1].i = a[i__2].i;
  850. i__1 = i__ + 1;
  851. e[i__1].r = 0.f, e[i__1].i = 0.f;
  852. i__1 = i__ + 1 + i__ * a_dim1;
  853. a[i__1].r = 0.f, a[i__1].i = 0.f;
  854. ++i__;
  855. } else {
  856. i__1 = i__;
  857. e[i__1].r = 0.f, e[i__1].i = 0.f;
  858. }
  859. ++i__;
  860. }
  861. /* Convert PERMUTATIONS */
  862. /* Apply permutations to submatrices of lower part of A */
  863. /* in factorization order where i increases from 1 to N */
  864. i__ = 1;
  865. while(i__ <= *n) {
  866. if (ipiv[i__] > 0) {
  867. /* 1-by-1 pivot interchange */
  868. /* Swap rows i and IPIV(i) in A(i:N,1:i-1) */
  869. ip = ipiv[i__];
  870. if (i__ > 1) {
  871. if (ip != i__) {
  872. i__1 = i__ - 1;
  873. cswap_(&i__1, &a[i__ + a_dim1], lda, &a[ip +
  874. a_dim1], lda);
  875. }
  876. }
  877. } else {
  878. /* 2-by-2 pivot interchange */
  879. /* Swap rows i and IPIV(i) and i+1 and IPIV(i+1) */
  880. /* in A(i:N,1:i-1) */
  881. ip = -ipiv[i__];
  882. ip2 = -ipiv[i__ + 1];
  883. if (i__ > 1) {
  884. if (ip != i__) {
  885. i__1 = i__ - 1;
  886. cswap_(&i__1, &a[i__ + a_dim1], lda, &a[ip +
  887. a_dim1], lda);
  888. }
  889. if (ip2 != i__ + 1) {
  890. i__1 = i__ - 1;
  891. cswap_(&i__1, &a[i__ + 1 + a_dim1], lda, &a[ip2 +
  892. a_dim1], lda);
  893. }
  894. }
  895. ++i__;
  896. }
  897. ++i__;
  898. }
  899. } else {
  900. /* Revert A (A is lower) */
  901. /* Revert PERMUTATIONS */
  902. /* Apply permutations to submatrices of lower part of A */
  903. /* in reverse factorization order where i decreases from N to 1 */
  904. i__ = *n;
  905. while(i__ >= 1) {
  906. if (ipiv[i__] > 0) {
  907. /* 1-by-1 pivot interchange */
  908. /* Swap rows i and IPIV(i) in A(i:N,1:i-1) */
  909. ip = ipiv[i__];
  910. if (i__ > 1) {
  911. if (ip != i__) {
  912. i__1 = i__ - 1;
  913. cswap_(&i__1, &a[ip + a_dim1], lda, &a[i__ +
  914. a_dim1], lda);
  915. }
  916. }
  917. } else {
  918. /* 2-by-2 pivot interchange */
  919. /* Swap rows i+1 and IPIV(i+1) and i and IPIV(i) */
  920. /* in A(i:N,1:i-1) */
  921. --i__;
  922. ip = -ipiv[i__];
  923. ip2 = -ipiv[i__ + 1];
  924. if (i__ > 1) {
  925. if (ip2 != i__ + 1) {
  926. i__1 = i__ - 1;
  927. cswap_(&i__1, &a[ip2 + a_dim1], lda, &a[i__ + 1 +
  928. a_dim1], lda);
  929. }
  930. if (ip != i__) {
  931. i__1 = i__ - 1;
  932. cswap_(&i__1, &a[ip + a_dim1], lda, &a[i__ +
  933. a_dim1], lda);
  934. }
  935. }
  936. }
  937. --i__;
  938. }
  939. /* Revert VALUE */
  940. /* Assign subdiagonal entries of D from array E to */
  941. /* subgiagonal entries of A. */
  942. i__ = 1;
  943. while(i__ <= *n - 1) {
  944. if (ipiv[i__] < 0) {
  945. i__1 = i__ + 1 + i__ * a_dim1;
  946. i__2 = i__;
  947. a[i__1].r = e[i__2].r, a[i__1].i = e[i__2].i;
  948. ++i__;
  949. }
  950. ++i__;
  951. }
  952. }
  953. /* End A is LOWER */
  954. }
  955. return 0;
  956. /* End of CSYCONVF_ROOK */
  957. } /* csyconvf_rook__ */