You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clagtm.c 36 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* > \brief \b CLAGTM performs a matrix-matrix product of the form C = αAB+βC, where A is a tridiagonal matr
  486. ix, B and C are rectangular matrices, and α and β are scalars, which may be 0, 1, or -1. */
  487. /* =========== DOCUMENTATION =========== */
  488. /* Online html documentation available at */
  489. /* http://www.netlib.org/lapack/explore-html/ */
  490. /* > \htmlonly */
  491. /* > Download CLAGTM + dependencies */
  492. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clagtm.
  493. f"> */
  494. /* > [TGZ]</a> */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clagtm.
  496. f"> */
  497. /* > [ZIP]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clagtm.
  499. f"> */
  500. /* > [TXT]</a> */
  501. /* > \endhtmlonly */
  502. /* Definition: */
  503. /* =========== */
  504. /* SUBROUTINE CLAGTM( TRANS, N, NRHS, ALPHA, DL, D, DU, X, LDX, BETA, */
  505. /* B, LDB ) */
  506. /* CHARACTER TRANS */
  507. /* INTEGER LDB, LDX, N, NRHS */
  508. /* REAL ALPHA, BETA */
  509. /* COMPLEX B( LDB, * ), D( * ), DL( * ), DU( * ), */
  510. /* $ X( LDX, * ) */
  511. /* > \par Purpose: */
  512. /* ============= */
  513. /* > */
  514. /* > \verbatim */
  515. /* > */
  516. /* > CLAGTM performs a matrix-vector product of the form */
  517. /* > */
  518. /* > B := alpha * A * X + beta * B */
  519. /* > */
  520. /* > where A is a tridiagonal matrix of order N, B and X are N by NRHS */
  521. /* > matrices, and alpha and beta are real scalars, each of which may be */
  522. /* > 0., 1., or -1. */
  523. /* > \endverbatim */
  524. /* Arguments: */
  525. /* ========== */
  526. /* > \param[in] TRANS */
  527. /* > \verbatim */
  528. /* > TRANS is CHARACTER*1 */
  529. /* > Specifies the operation applied to A. */
  530. /* > = 'N': No transpose, B := alpha * A * X + beta * B */
  531. /* > = 'T': Transpose, B := alpha * A**T * X + beta * B */
  532. /* > = 'C': Conjugate transpose, B := alpha * A**H * X + beta * B */
  533. /* > \endverbatim */
  534. /* > */
  535. /* > \param[in] N */
  536. /* > \verbatim */
  537. /* > N is INTEGER */
  538. /* > The order of the matrix A. N >= 0. */
  539. /* > \endverbatim */
  540. /* > */
  541. /* > \param[in] NRHS */
  542. /* > \verbatim */
  543. /* > NRHS is INTEGER */
  544. /* > The number of right hand sides, i.e., the number of columns */
  545. /* > of the matrices X and B. */
  546. /* > \endverbatim */
  547. /* > */
  548. /* > \param[in] ALPHA */
  549. /* > \verbatim */
  550. /* > ALPHA is REAL */
  551. /* > The scalar alpha. ALPHA must be 0., 1., or -1.; otherwise, */
  552. /* > it is assumed to be 0. */
  553. /* > \endverbatim */
  554. /* > */
  555. /* > \param[in] DL */
  556. /* > \verbatim */
  557. /* > DL is COMPLEX array, dimension (N-1) */
  558. /* > The (n-1) sub-diagonal elements of T. */
  559. /* > \endverbatim */
  560. /* > */
  561. /* > \param[in] D */
  562. /* > \verbatim */
  563. /* > D is COMPLEX array, dimension (N) */
  564. /* > The diagonal elements of T. */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[in] DU */
  568. /* > \verbatim */
  569. /* > DU is COMPLEX array, dimension (N-1) */
  570. /* > The (n-1) super-diagonal elements of T. */
  571. /* > \endverbatim */
  572. /* > */
  573. /* > \param[in] X */
  574. /* > \verbatim */
  575. /* > X is COMPLEX array, dimension (LDX,NRHS) */
  576. /* > The N by NRHS matrix X. */
  577. /* > \endverbatim */
  578. /* > */
  579. /* > \param[in] LDX */
  580. /* > \verbatim */
  581. /* > LDX is INTEGER */
  582. /* > The leading dimension of the array X. LDX >= f2cmax(N,1). */
  583. /* > \endverbatim */
  584. /* > */
  585. /* > \param[in] BETA */
  586. /* > \verbatim */
  587. /* > BETA is REAL */
  588. /* > The scalar beta. BETA must be 0., 1., or -1.; otherwise, */
  589. /* > it is assumed to be 1. */
  590. /* > \endverbatim */
  591. /* > */
  592. /* > \param[in,out] B */
  593. /* > \verbatim */
  594. /* > B is COMPLEX array, dimension (LDB,NRHS) */
  595. /* > On entry, the N by NRHS matrix B. */
  596. /* > On exit, B is overwritten by the matrix expression */
  597. /* > B := alpha * A * X + beta * B. */
  598. /* > \endverbatim */
  599. /* > */
  600. /* > \param[in] LDB */
  601. /* > \verbatim */
  602. /* > LDB is INTEGER */
  603. /* > The leading dimension of the array B. LDB >= f2cmax(N,1). */
  604. /* > \endverbatim */
  605. /* Authors: */
  606. /* ======== */
  607. /* > \author Univ. of Tennessee */
  608. /* > \author Univ. of California Berkeley */
  609. /* > \author Univ. of Colorado Denver */
  610. /* > \author NAG Ltd. */
  611. /* > \date December 2016 */
  612. /* > \ingroup complexOTHERauxiliary */
  613. /* ===================================================================== */
  614. /* Subroutine */ int clagtm_(char *trans, integer *n, integer *nrhs, real *
  615. alpha, complex *dl, complex *d__, complex *du, complex *x, integer *
  616. ldx, real *beta, complex *b, integer *ldb)
  617. {
  618. /* System generated locals */
  619. integer b_dim1, b_offset, x_dim1, x_offset, i__1, i__2, i__3, i__4, i__5,
  620. i__6, i__7, i__8, i__9, i__10;
  621. complex q__1, q__2, q__3, q__4, q__5, q__6, q__7, q__8, q__9;
  622. /* Local variables */
  623. integer i__, j;
  624. extern logical lsame_(char *, char *);
  625. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  626. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  627. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  628. /* December 2016 */
  629. /* ===================================================================== */
  630. /* Parameter adjustments */
  631. --dl;
  632. --d__;
  633. --du;
  634. x_dim1 = *ldx;
  635. x_offset = 1 + x_dim1 * 1;
  636. x -= x_offset;
  637. b_dim1 = *ldb;
  638. b_offset = 1 + b_dim1 * 1;
  639. b -= b_offset;
  640. /* Function Body */
  641. if (*n == 0) {
  642. return 0;
  643. }
  644. /* Multiply B by BETA if BETA.NE.1. */
  645. if (*beta == 0.f) {
  646. i__1 = *nrhs;
  647. for (j = 1; j <= i__1; ++j) {
  648. i__2 = *n;
  649. for (i__ = 1; i__ <= i__2; ++i__) {
  650. i__3 = i__ + j * b_dim1;
  651. b[i__3].r = 0.f, b[i__3].i = 0.f;
  652. /* L10: */
  653. }
  654. /* L20: */
  655. }
  656. } else if (*beta == -1.f) {
  657. i__1 = *nrhs;
  658. for (j = 1; j <= i__1; ++j) {
  659. i__2 = *n;
  660. for (i__ = 1; i__ <= i__2; ++i__) {
  661. i__3 = i__ + j * b_dim1;
  662. i__4 = i__ + j * b_dim1;
  663. q__1.r = -b[i__4].r, q__1.i = -b[i__4].i;
  664. b[i__3].r = q__1.r, b[i__3].i = q__1.i;
  665. /* L30: */
  666. }
  667. /* L40: */
  668. }
  669. }
  670. if (*alpha == 1.f) {
  671. if (lsame_(trans, "N")) {
  672. /* Compute B := B + A*X */
  673. i__1 = *nrhs;
  674. for (j = 1; j <= i__1; ++j) {
  675. if (*n == 1) {
  676. i__2 = j * b_dim1 + 1;
  677. i__3 = j * b_dim1 + 1;
  678. i__4 = j * x_dim1 + 1;
  679. q__2.r = d__[1].r * x[i__4].r - d__[1].i * x[i__4].i,
  680. q__2.i = d__[1].r * x[i__4].i + d__[1].i * x[i__4]
  681. .r;
  682. q__1.r = b[i__3].r + q__2.r, q__1.i = b[i__3].i + q__2.i;
  683. b[i__2].r = q__1.r, b[i__2].i = q__1.i;
  684. } else {
  685. i__2 = j * b_dim1 + 1;
  686. i__3 = j * b_dim1 + 1;
  687. i__4 = j * x_dim1 + 1;
  688. q__3.r = d__[1].r * x[i__4].r - d__[1].i * x[i__4].i,
  689. q__3.i = d__[1].r * x[i__4].i + d__[1].i * x[i__4]
  690. .r;
  691. q__2.r = b[i__3].r + q__3.r, q__2.i = b[i__3].i + q__3.i;
  692. i__5 = j * x_dim1 + 2;
  693. q__4.r = du[1].r * x[i__5].r - du[1].i * x[i__5].i,
  694. q__4.i = du[1].r * x[i__5].i + du[1].i * x[i__5]
  695. .r;
  696. q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
  697. b[i__2].r = q__1.r, b[i__2].i = q__1.i;
  698. i__2 = *n + j * b_dim1;
  699. i__3 = *n + j * b_dim1;
  700. i__4 = *n - 1;
  701. i__5 = *n - 1 + j * x_dim1;
  702. q__3.r = dl[i__4].r * x[i__5].r - dl[i__4].i * x[i__5].i,
  703. q__3.i = dl[i__4].r * x[i__5].i + dl[i__4].i * x[
  704. i__5].r;
  705. q__2.r = b[i__3].r + q__3.r, q__2.i = b[i__3].i + q__3.i;
  706. i__6 = *n;
  707. i__7 = *n + j * x_dim1;
  708. q__4.r = d__[i__6].r * x[i__7].r - d__[i__6].i * x[i__7]
  709. .i, q__4.i = d__[i__6].r * x[i__7].i + d__[i__6]
  710. .i * x[i__7].r;
  711. q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
  712. b[i__2].r = q__1.r, b[i__2].i = q__1.i;
  713. i__2 = *n - 1;
  714. for (i__ = 2; i__ <= i__2; ++i__) {
  715. i__3 = i__ + j * b_dim1;
  716. i__4 = i__ + j * b_dim1;
  717. i__5 = i__ - 1;
  718. i__6 = i__ - 1 + j * x_dim1;
  719. q__4.r = dl[i__5].r * x[i__6].r - dl[i__5].i * x[i__6]
  720. .i, q__4.i = dl[i__5].r * x[i__6].i + dl[i__5]
  721. .i * x[i__6].r;
  722. q__3.r = b[i__4].r + q__4.r, q__3.i = b[i__4].i +
  723. q__4.i;
  724. i__7 = i__;
  725. i__8 = i__ + j * x_dim1;
  726. q__5.r = d__[i__7].r * x[i__8].r - d__[i__7].i * x[
  727. i__8].i, q__5.i = d__[i__7].r * x[i__8].i +
  728. d__[i__7].i * x[i__8].r;
  729. q__2.r = q__3.r + q__5.r, q__2.i = q__3.i + q__5.i;
  730. i__9 = i__;
  731. i__10 = i__ + 1 + j * x_dim1;
  732. q__6.r = du[i__9].r * x[i__10].r - du[i__9].i * x[
  733. i__10].i, q__6.i = du[i__9].r * x[i__10].i +
  734. du[i__9].i * x[i__10].r;
  735. q__1.r = q__2.r + q__6.r, q__1.i = q__2.i + q__6.i;
  736. b[i__3].r = q__1.r, b[i__3].i = q__1.i;
  737. /* L50: */
  738. }
  739. }
  740. /* L60: */
  741. }
  742. } else if (lsame_(trans, "T")) {
  743. /* Compute B := B + A**T * X */
  744. i__1 = *nrhs;
  745. for (j = 1; j <= i__1; ++j) {
  746. if (*n == 1) {
  747. i__2 = j * b_dim1 + 1;
  748. i__3 = j * b_dim1 + 1;
  749. i__4 = j * x_dim1 + 1;
  750. q__2.r = d__[1].r * x[i__4].r - d__[1].i * x[i__4].i,
  751. q__2.i = d__[1].r * x[i__4].i + d__[1].i * x[i__4]
  752. .r;
  753. q__1.r = b[i__3].r + q__2.r, q__1.i = b[i__3].i + q__2.i;
  754. b[i__2].r = q__1.r, b[i__2].i = q__1.i;
  755. } else {
  756. i__2 = j * b_dim1 + 1;
  757. i__3 = j * b_dim1 + 1;
  758. i__4 = j * x_dim1 + 1;
  759. q__3.r = d__[1].r * x[i__4].r - d__[1].i * x[i__4].i,
  760. q__3.i = d__[1].r * x[i__4].i + d__[1].i * x[i__4]
  761. .r;
  762. q__2.r = b[i__3].r + q__3.r, q__2.i = b[i__3].i + q__3.i;
  763. i__5 = j * x_dim1 + 2;
  764. q__4.r = dl[1].r * x[i__5].r - dl[1].i * x[i__5].i,
  765. q__4.i = dl[1].r * x[i__5].i + dl[1].i * x[i__5]
  766. .r;
  767. q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
  768. b[i__2].r = q__1.r, b[i__2].i = q__1.i;
  769. i__2 = *n + j * b_dim1;
  770. i__3 = *n + j * b_dim1;
  771. i__4 = *n - 1;
  772. i__5 = *n - 1 + j * x_dim1;
  773. q__3.r = du[i__4].r * x[i__5].r - du[i__4].i * x[i__5].i,
  774. q__3.i = du[i__4].r * x[i__5].i + du[i__4].i * x[
  775. i__5].r;
  776. q__2.r = b[i__3].r + q__3.r, q__2.i = b[i__3].i + q__3.i;
  777. i__6 = *n;
  778. i__7 = *n + j * x_dim1;
  779. q__4.r = d__[i__6].r * x[i__7].r - d__[i__6].i * x[i__7]
  780. .i, q__4.i = d__[i__6].r * x[i__7].i + d__[i__6]
  781. .i * x[i__7].r;
  782. q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
  783. b[i__2].r = q__1.r, b[i__2].i = q__1.i;
  784. i__2 = *n - 1;
  785. for (i__ = 2; i__ <= i__2; ++i__) {
  786. i__3 = i__ + j * b_dim1;
  787. i__4 = i__ + j * b_dim1;
  788. i__5 = i__ - 1;
  789. i__6 = i__ - 1 + j * x_dim1;
  790. q__4.r = du[i__5].r * x[i__6].r - du[i__5].i * x[i__6]
  791. .i, q__4.i = du[i__5].r * x[i__6].i + du[i__5]
  792. .i * x[i__6].r;
  793. q__3.r = b[i__4].r + q__4.r, q__3.i = b[i__4].i +
  794. q__4.i;
  795. i__7 = i__;
  796. i__8 = i__ + j * x_dim1;
  797. q__5.r = d__[i__7].r * x[i__8].r - d__[i__7].i * x[
  798. i__8].i, q__5.i = d__[i__7].r * x[i__8].i +
  799. d__[i__7].i * x[i__8].r;
  800. q__2.r = q__3.r + q__5.r, q__2.i = q__3.i + q__5.i;
  801. i__9 = i__;
  802. i__10 = i__ + 1 + j * x_dim1;
  803. q__6.r = dl[i__9].r * x[i__10].r - dl[i__9].i * x[
  804. i__10].i, q__6.i = dl[i__9].r * x[i__10].i +
  805. dl[i__9].i * x[i__10].r;
  806. q__1.r = q__2.r + q__6.r, q__1.i = q__2.i + q__6.i;
  807. b[i__3].r = q__1.r, b[i__3].i = q__1.i;
  808. /* L70: */
  809. }
  810. }
  811. /* L80: */
  812. }
  813. } else if (lsame_(trans, "C")) {
  814. /* Compute B := B + A**H * X */
  815. i__1 = *nrhs;
  816. for (j = 1; j <= i__1; ++j) {
  817. if (*n == 1) {
  818. i__2 = j * b_dim1 + 1;
  819. i__3 = j * b_dim1 + 1;
  820. r_cnjg(&q__3, &d__[1]);
  821. i__4 = j * x_dim1 + 1;
  822. q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i, q__2.i =
  823. q__3.r * x[i__4].i + q__3.i * x[i__4].r;
  824. q__1.r = b[i__3].r + q__2.r, q__1.i = b[i__3].i + q__2.i;
  825. b[i__2].r = q__1.r, b[i__2].i = q__1.i;
  826. } else {
  827. i__2 = j * b_dim1 + 1;
  828. i__3 = j * b_dim1 + 1;
  829. r_cnjg(&q__4, &d__[1]);
  830. i__4 = j * x_dim1 + 1;
  831. q__3.r = q__4.r * x[i__4].r - q__4.i * x[i__4].i, q__3.i =
  832. q__4.r * x[i__4].i + q__4.i * x[i__4].r;
  833. q__2.r = b[i__3].r + q__3.r, q__2.i = b[i__3].i + q__3.i;
  834. r_cnjg(&q__6, &dl[1]);
  835. i__5 = j * x_dim1 + 2;
  836. q__5.r = q__6.r * x[i__5].r - q__6.i * x[i__5].i, q__5.i =
  837. q__6.r * x[i__5].i + q__6.i * x[i__5].r;
  838. q__1.r = q__2.r + q__5.r, q__1.i = q__2.i + q__5.i;
  839. b[i__2].r = q__1.r, b[i__2].i = q__1.i;
  840. i__2 = *n + j * b_dim1;
  841. i__3 = *n + j * b_dim1;
  842. r_cnjg(&q__4, &du[*n - 1]);
  843. i__4 = *n - 1 + j * x_dim1;
  844. q__3.r = q__4.r * x[i__4].r - q__4.i * x[i__4].i, q__3.i =
  845. q__4.r * x[i__4].i + q__4.i * x[i__4].r;
  846. q__2.r = b[i__3].r + q__3.r, q__2.i = b[i__3].i + q__3.i;
  847. r_cnjg(&q__6, &d__[*n]);
  848. i__5 = *n + j * x_dim1;
  849. q__5.r = q__6.r * x[i__5].r - q__6.i * x[i__5].i, q__5.i =
  850. q__6.r * x[i__5].i + q__6.i * x[i__5].r;
  851. q__1.r = q__2.r + q__5.r, q__1.i = q__2.i + q__5.i;
  852. b[i__2].r = q__1.r, b[i__2].i = q__1.i;
  853. i__2 = *n - 1;
  854. for (i__ = 2; i__ <= i__2; ++i__) {
  855. i__3 = i__ + j * b_dim1;
  856. i__4 = i__ + j * b_dim1;
  857. r_cnjg(&q__5, &du[i__ - 1]);
  858. i__5 = i__ - 1 + j * x_dim1;
  859. q__4.r = q__5.r * x[i__5].r - q__5.i * x[i__5].i,
  860. q__4.i = q__5.r * x[i__5].i + q__5.i * x[i__5]
  861. .r;
  862. q__3.r = b[i__4].r + q__4.r, q__3.i = b[i__4].i +
  863. q__4.i;
  864. r_cnjg(&q__7, &d__[i__]);
  865. i__6 = i__ + j * x_dim1;
  866. q__6.r = q__7.r * x[i__6].r - q__7.i * x[i__6].i,
  867. q__6.i = q__7.r * x[i__6].i + q__7.i * x[i__6]
  868. .r;
  869. q__2.r = q__3.r + q__6.r, q__2.i = q__3.i + q__6.i;
  870. r_cnjg(&q__9, &dl[i__]);
  871. i__7 = i__ + 1 + j * x_dim1;
  872. q__8.r = q__9.r * x[i__7].r - q__9.i * x[i__7].i,
  873. q__8.i = q__9.r * x[i__7].i + q__9.i * x[i__7]
  874. .r;
  875. q__1.r = q__2.r + q__8.r, q__1.i = q__2.i + q__8.i;
  876. b[i__3].r = q__1.r, b[i__3].i = q__1.i;
  877. /* L90: */
  878. }
  879. }
  880. /* L100: */
  881. }
  882. }
  883. } else if (*alpha == -1.f) {
  884. if (lsame_(trans, "N")) {
  885. /* Compute B := B - A*X */
  886. i__1 = *nrhs;
  887. for (j = 1; j <= i__1; ++j) {
  888. if (*n == 1) {
  889. i__2 = j * b_dim1 + 1;
  890. i__3 = j * b_dim1 + 1;
  891. i__4 = j * x_dim1 + 1;
  892. q__2.r = d__[1].r * x[i__4].r - d__[1].i * x[i__4].i,
  893. q__2.i = d__[1].r * x[i__4].i + d__[1].i * x[i__4]
  894. .r;
  895. q__1.r = b[i__3].r - q__2.r, q__1.i = b[i__3].i - q__2.i;
  896. b[i__2].r = q__1.r, b[i__2].i = q__1.i;
  897. } else {
  898. i__2 = j * b_dim1 + 1;
  899. i__3 = j * b_dim1 + 1;
  900. i__4 = j * x_dim1 + 1;
  901. q__3.r = d__[1].r * x[i__4].r - d__[1].i * x[i__4].i,
  902. q__3.i = d__[1].r * x[i__4].i + d__[1].i * x[i__4]
  903. .r;
  904. q__2.r = b[i__3].r - q__3.r, q__2.i = b[i__3].i - q__3.i;
  905. i__5 = j * x_dim1 + 2;
  906. q__4.r = du[1].r * x[i__5].r - du[1].i * x[i__5].i,
  907. q__4.i = du[1].r * x[i__5].i + du[1].i * x[i__5]
  908. .r;
  909. q__1.r = q__2.r - q__4.r, q__1.i = q__2.i - q__4.i;
  910. b[i__2].r = q__1.r, b[i__2].i = q__1.i;
  911. i__2 = *n + j * b_dim1;
  912. i__3 = *n + j * b_dim1;
  913. i__4 = *n - 1;
  914. i__5 = *n - 1 + j * x_dim1;
  915. q__3.r = dl[i__4].r * x[i__5].r - dl[i__4].i * x[i__5].i,
  916. q__3.i = dl[i__4].r * x[i__5].i + dl[i__4].i * x[
  917. i__5].r;
  918. q__2.r = b[i__3].r - q__3.r, q__2.i = b[i__3].i - q__3.i;
  919. i__6 = *n;
  920. i__7 = *n + j * x_dim1;
  921. q__4.r = d__[i__6].r * x[i__7].r - d__[i__6].i * x[i__7]
  922. .i, q__4.i = d__[i__6].r * x[i__7].i + d__[i__6]
  923. .i * x[i__7].r;
  924. q__1.r = q__2.r - q__4.r, q__1.i = q__2.i - q__4.i;
  925. b[i__2].r = q__1.r, b[i__2].i = q__1.i;
  926. i__2 = *n - 1;
  927. for (i__ = 2; i__ <= i__2; ++i__) {
  928. i__3 = i__ + j * b_dim1;
  929. i__4 = i__ + j * b_dim1;
  930. i__5 = i__ - 1;
  931. i__6 = i__ - 1 + j * x_dim1;
  932. q__4.r = dl[i__5].r * x[i__6].r - dl[i__5].i * x[i__6]
  933. .i, q__4.i = dl[i__5].r * x[i__6].i + dl[i__5]
  934. .i * x[i__6].r;
  935. q__3.r = b[i__4].r - q__4.r, q__3.i = b[i__4].i -
  936. q__4.i;
  937. i__7 = i__;
  938. i__8 = i__ + j * x_dim1;
  939. q__5.r = d__[i__7].r * x[i__8].r - d__[i__7].i * x[
  940. i__8].i, q__5.i = d__[i__7].r * x[i__8].i +
  941. d__[i__7].i * x[i__8].r;
  942. q__2.r = q__3.r - q__5.r, q__2.i = q__3.i - q__5.i;
  943. i__9 = i__;
  944. i__10 = i__ + 1 + j * x_dim1;
  945. q__6.r = du[i__9].r * x[i__10].r - du[i__9].i * x[
  946. i__10].i, q__6.i = du[i__9].r * x[i__10].i +
  947. du[i__9].i * x[i__10].r;
  948. q__1.r = q__2.r - q__6.r, q__1.i = q__2.i - q__6.i;
  949. b[i__3].r = q__1.r, b[i__3].i = q__1.i;
  950. /* L110: */
  951. }
  952. }
  953. /* L120: */
  954. }
  955. } else if (lsame_(trans, "T")) {
  956. /* Compute B := B - A**T*X */
  957. i__1 = *nrhs;
  958. for (j = 1; j <= i__1; ++j) {
  959. if (*n == 1) {
  960. i__2 = j * b_dim1 + 1;
  961. i__3 = j * b_dim1 + 1;
  962. i__4 = j * x_dim1 + 1;
  963. q__2.r = d__[1].r * x[i__4].r - d__[1].i * x[i__4].i,
  964. q__2.i = d__[1].r * x[i__4].i + d__[1].i * x[i__4]
  965. .r;
  966. q__1.r = b[i__3].r - q__2.r, q__1.i = b[i__3].i - q__2.i;
  967. b[i__2].r = q__1.r, b[i__2].i = q__1.i;
  968. } else {
  969. i__2 = j * b_dim1 + 1;
  970. i__3 = j * b_dim1 + 1;
  971. i__4 = j * x_dim1 + 1;
  972. q__3.r = d__[1].r * x[i__4].r - d__[1].i * x[i__4].i,
  973. q__3.i = d__[1].r * x[i__4].i + d__[1].i * x[i__4]
  974. .r;
  975. q__2.r = b[i__3].r - q__3.r, q__2.i = b[i__3].i - q__3.i;
  976. i__5 = j * x_dim1 + 2;
  977. q__4.r = dl[1].r * x[i__5].r - dl[1].i * x[i__5].i,
  978. q__4.i = dl[1].r * x[i__5].i + dl[1].i * x[i__5]
  979. .r;
  980. q__1.r = q__2.r - q__4.r, q__1.i = q__2.i - q__4.i;
  981. b[i__2].r = q__1.r, b[i__2].i = q__1.i;
  982. i__2 = *n + j * b_dim1;
  983. i__3 = *n + j * b_dim1;
  984. i__4 = *n - 1;
  985. i__5 = *n - 1 + j * x_dim1;
  986. q__3.r = du[i__4].r * x[i__5].r - du[i__4].i * x[i__5].i,
  987. q__3.i = du[i__4].r * x[i__5].i + du[i__4].i * x[
  988. i__5].r;
  989. q__2.r = b[i__3].r - q__3.r, q__2.i = b[i__3].i - q__3.i;
  990. i__6 = *n;
  991. i__7 = *n + j * x_dim1;
  992. q__4.r = d__[i__6].r * x[i__7].r - d__[i__6].i * x[i__7]
  993. .i, q__4.i = d__[i__6].r * x[i__7].i + d__[i__6]
  994. .i * x[i__7].r;
  995. q__1.r = q__2.r - q__4.r, q__1.i = q__2.i - q__4.i;
  996. b[i__2].r = q__1.r, b[i__2].i = q__1.i;
  997. i__2 = *n - 1;
  998. for (i__ = 2; i__ <= i__2; ++i__) {
  999. i__3 = i__ + j * b_dim1;
  1000. i__4 = i__ + j * b_dim1;
  1001. i__5 = i__ - 1;
  1002. i__6 = i__ - 1 + j * x_dim1;
  1003. q__4.r = du[i__5].r * x[i__6].r - du[i__5].i * x[i__6]
  1004. .i, q__4.i = du[i__5].r * x[i__6].i + du[i__5]
  1005. .i * x[i__6].r;
  1006. q__3.r = b[i__4].r - q__4.r, q__3.i = b[i__4].i -
  1007. q__4.i;
  1008. i__7 = i__;
  1009. i__8 = i__ + j * x_dim1;
  1010. q__5.r = d__[i__7].r * x[i__8].r - d__[i__7].i * x[
  1011. i__8].i, q__5.i = d__[i__7].r * x[i__8].i +
  1012. d__[i__7].i * x[i__8].r;
  1013. q__2.r = q__3.r - q__5.r, q__2.i = q__3.i - q__5.i;
  1014. i__9 = i__;
  1015. i__10 = i__ + 1 + j * x_dim1;
  1016. q__6.r = dl[i__9].r * x[i__10].r - dl[i__9].i * x[
  1017. i__10].i, q__6.i = dl[i__9].r * x[i__10].i +
  1018. dl[i__9].i * x[i__10].r;
  1019. q__1.r = q__2.r - q__6.r, q__1.i = q__2.i - q__6.i;
  1020. b[i__3].r = q__1.r, b[i__3].i = q__1.i;
  1021. /* L130: */
  1022. }
  1023. }
  1024. /* L140: */
  1025. }
  1026. } else if (lsame_(trans, "C")) {
  1027. /* Compute B := B - A**H*X */
  1028. i__1 = *nrhs;
  1029. for (j = 1; j <= i__1; ++j) {
  1030. if (*n == 1) {
  1031. i__2 = j * b_dim1 + 1;
  1032. i__3 = j * b_dim1 + 1;
  1033. r_cnjg(&q__3, &d__[1]);
  1034. i__4 = j * x_dim1 + 1;
  1035. q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i, q__2.i =
  1036. q__3.r * x[i__4].i + q__3.i * x[i__4].r;
  1037. q__1.r = b[i__3].r - q__2.r, q__1.i = b[i__3].i - q__2.i;
  1038. b[i__2].r = q__1.r, b[i__2].i = q__1.i;
  1039. } else {
  1040. i__2 = j * b_dim1 + 1;
  1041. i__3 = j * b_dim1 + 1;
  1042. r_cnjg(&q__4, &d__[1]);
  1043. i__4 = j * x_dim1 + 1;
  1044. q__3.r = q__4.r * x[i__4].r - q__4.i * x[i__4].i, q__3.i =
  1045. q__4.r * x[i__4].i + q__4.i * x[i__4].r;
  1046. q__2.r = b[i__3].r - q__3.r, q__2.i = b[i__3].i - q__3.i;
  1047. r_cnjg(&q__6, &dl[1]);
  1048. i__5 = j * x_dim1 + 2;
  1049. q__5.r = q__6.r * x[i__5].r - q__6.i * x[i__5].i, q__5.i =
  1050. q__6.r * x[i__5].i + q__6.i * x[i__5].r;
  1051. q__1.r = q__2.r - q__5.r, q__1.i = q__2.i - q__5.i;
  1052. b[i__2].r = q__1.r, b[i__2].i = q__1.i;
  1053. i__2 = *n + j * b_dim1;
  1054. i__3 = *n + j * b_dim1;
  1055. r_cnjg(&q__4, &du[*n - 1]);
  1056. i__4 = *n - 1 + j * x_dim1;
  1057. q__3.r = q__4.r * x[i__4].r - q__4.i * x[i__4].i, q__3.i =
  1058. q__4.r * x[i__4].i + q__4.i * x[i__4].r;
  1059. q__2.r = b[i__3].r - q__3.r, q__2.i = b[i__3].i - q__3.i;
  1060. r_cnjg(&q__6, &d__[*n]);
  1061. i__5 = *n + j * x_dim1;
  1062. q__5.r = q__6.r * x[i__5].r - q__6.i * x[i__5].i, q__5.i =
  1063. q__6.r * x[i__5].i + q__6.i * x[i__5].r;
  1064. q__1.r = q__2.r - q__5.r, q__1.i = q__2.i - q__5.i;
  1065. b[i__2].r = q__1.r, b[i__2].i = q__1.i;
  1066. i__2 = *n - 1;
  1067. for (i__ = 2; i__ <= i__2; ++i__) {
  1068. i__3 = i__ + j * b_dim1;
  1069. i__4 = i__ + j * b_dim1;
  1070. r_cnjg(&q__5, &du[i__ - 1]);
  1071. i__5 = i__ - 1 + j * x_dim1;
  1072. q__4.r = q__5.r * x[i__5].r - q__5.i * x[i__5].i,
  1073. q__4.i = q__5.r * x[i__5].i + q__5.i * x[i__5]
  1074. .r;
  1075. q__3.r = b[i__4].r - q__4.r, q__3.i = b[i__4].i -
  1076. q__4.i;
  1077. r_cnjg(&q__7, &d__[i__]);
  1078. i__6 = i__ + j * x_dim1;
  1079. q__6.r = q__7.r * x[i__6].r - q__7.i * x[i__6].i,
  1080. q__6.i = q__7.r * x[i__6].i + q__7.i * x[i__6]
  1081. .r;
  1082. q__2.r = q__3.r - q__6.r, q__2.i = q__3.i - q__6.i;
  1083. r_cnjg(&q__9, &dl[i__]);
  1084. i__7 = i__ + 1 + j * x_dim1;
  1085. q__8.r = q__9.r * x[i__7].r - q__9.i * x[i__7].i,
  1086. q__8.i = q__9.r * x[i__7].i + q__9.i * x[i__7]
  1087. .r;
  1088. q__1.r = q__2.r - q__8.r, q__1.i = q__2.i - q__8.i;
  1089. b[i__3].r = q__1.r, b[i__3].i = q__1.i;
  1090. /* L150: */
  1091. }
  1092. }
  1093. /* L160: */
  1094. }
  1095. }
  1096. }
  1097. return 0;
  1098. /* End of CLAGTM */
  1099. } /* clagtm_ */