You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cbbcsd.c 55 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* -- translated by f2c (version 20000121).
  486. You must link the resulting object file with the libraries:
  487. -lf2c -lm (in that order)
  488. */
  489. /* Table of constant values */
  490. static complex c_b1 = {-1.f,0.f};
  491. static doublereal c_b11 = -.125;
  492. static integer c__1 = 1;
  493. /* > \brief \b CBBCSD */
  494. /* =========== DOCUMENTATION =========== */
  495. /* Online html documentation available at */
  496. /* http://www.netlib.org/lapack/explore-html/ */
  497. /* > \htmlonly */
  498. /* > Download CBBCSD + dependencies */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cbbcsd.
  500. f"> */
  501. /* > [TGZ]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cbbcsd.
  503. f"> */
  504. /* > [ZIP]</a> */
  505. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cbbcsd.
  506. f"> */
  507. /* > [TXT]</a> */
  508. /* > \endhtmlonly */
  509. /* Definition: */
  510. /* =========== */
  511. /* SUBROUTINE CBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q, */
  512. /* THETA, PHI, U1, LDU1, U2, LDU2, V1T, LDV1T, */
  513. /* V2T, LDV2T, B11D, B11E, B12D, B12E, B21D, B21E, */
  514. /* B22D, B22E, RWORK, LRWORK, INFO ) */
  515. /* CHARACTER JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS */
  516. /* INTEGER INFO, LDU1, LDU2, LDV1T, LDV2T, LRWORK, M, P, Q */
  517. /* REAL B11D( * ), B11E( * ), B12D( * ), B12E( * ), */
  518. /* $ B21D( * ), B21E( * ), B22D( * ), B22E( * ), */
  519. /* $ PHI( * ), THETA( * ), RWORK( * ) */
  520. /* COMPLEX U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ), */
  521. /* $ V2T( LDV2T, * ) */
  522. /* > \par Purpose: */
  523. /* ============= */
  524. /* > */
  525. /* > \verbatim */
  526. /* > */
  527. /* > CBBCSD computes the CS decomposition of a unitary matrix in */
  528. /* > bidiagonal-block form, */
  529. /* > */
  530. /* > */
  531. /* > [ B11 | B12 0 0 ] */
  532. /* > [ 0 | 0 -I 0 ] */
  533. /* > X = [----------------] */
  534. /* > [ B21 | B22 0 0 ] */
  535. /* > [ 0 | 0 0 I ] */
  536. /* > */
  537. /* > [ C | -S 0 0 ] */
  538. /* > [ U1 | ] [ 0 | 0 -I 0 ] [ V1 | ]**H */
  539. /* > = [---------] [---------------] [---------] . */
  540. /* > [ | U2 ] [ S | C 0 0 ] [ | V2 ] */
  541. /* > [ 0 | 0 0 I ] */
  542. /* > */
  543. /* > X is M-by-M, its top-left block is P-by-Q, and Q must be no larger */
  544. /* > than P, M-P, or M-Q. (If Q is not the smallest index, then X must be */
  545. /* > transposed and/or permuted. This can be done in constant time using */
  546. /* > the TRANS and SIGNS options. See CUNCSD for details.) */
  547. /* > */
  548. /* > The bidiagonal matrices B11, B12, B21, and B22 are represented */
  549. /* > implicitly by angles THETA(1:Q) and PHI(1:Q-1). */
  550. /* > */
  551. /* > The unitary matrices U1, U2, V1T, and V2T are input/output. */
  552. /* > The input matrices are pre- or post-multiplied by the appropriate */
  553. /* > singular vector matrices. */
  554. /* > \endverbatim */
  555. /* Arguments: */
  556. /* ========== */
  557. /* > \param[in] JOBU1 */
  558. /* > \verbatim */
  559. /* > JOBU1 is CHARACTER */
  560. /* > = 'Y': U1 is updated; */
  561. /* > otherwise: U1 is not updated. */
  562. /* > \endverbatim */
  563. /* > */
  564. /* > \param[in] JOBU2 */
  565. /* > \verbatim */
  566. /* > JOBU2 is CHARACTER */
  567. /* > = 'Y': U2 is updated; */
  568. /* > otherwise: U2 is not updated. */
  569. /* > \endverbatim */
  570. /* > */
  571. /* > \param[in] JOBV1T */
  572. /* > \verbatim */
  573. /* > JOBV1T is CHARACTER */
  574. /* > = 'Y': V1T is updated; */
  575. /* > otherwise: V1T is not updated. */
  576. /* > \endverbatim */
  577. /* > */
  578. /* > \param[in] JOBV2T */
  579. /* > \verbatim */
  580. /* > JOBV2T is CHARACTER */
  581. /* > = 'Y': V2T is updated; */
  582. /* > otherwise: V2T is not updated. */
  583. /* > \endverbatim */
  584. /* > */
  585. /* > \param[in] TRANS */
  586. /* > \verbatim */
  587. /* > TRANS is CHARACTER */
  588. /* > = 'T': X, U1, U2, V1T, and V2T are stored in row-major */
  589. /* > order; */
  590. /* > otherwise: X, U1, U2, V1T, and V2T are stored in column- */
  591. /* > major order. */
  592. /* > \endverbatim */
  593. /* > */
  594. /* > \param[in] M */
  595. /* > \verbatim */
  596. /* > M is INTEGER */
  597. /* > The number of rows and columns in X, the unitary matrix in */
  598. /* > bidiagonal-block form. */
  599. /* > \endverbatim */
  600. /* > */
  601. /* > \param[in] P */
  602. /* > \verbatim */
  603. /* > P is INTEGER */
  604. /* > The number of rows in the top-left block of X. 0 <= P <= M. */
  605. /* > \endverbatim */
  606. /* > */
  607. /* > \param[in] Q */
  608. /* > \verbatim */
  609. /* > Q is INTEGER */
  610. /* > The number of columns in the top-left block of X. */
  611. /* > 0 <= Q <= MIN(P,M-P,M-Q). */
  612. /* > \endverbatim */
  613. /* > */
  614. /* > \param[in,out] THETA */
  615. /* > \verbatim */
  616. /* > THETA is REAL array, dimension (Q) */
  617. /* > On entry, the angles THETA(1),...,THETA(Q) that, along with */
  618. /* > PHI(1), ...,PHI(Q-1), define the matrix in bidiagonal-block */
  619. /* > form. On exit, the angles whose cosines and sines define the */
  620. /* > diagonal blocks in the CS decomposition. */
  621. /* > \endverbatim */
  622. /* > */
  623. /* > \param[in,out] PHI */
  624. /* > \verbatim */
  625. /* > PHI is REAL array, dimension (Q-1) */
  626. /* > The angles PHI(1),...,PHI(Q-1) that, along with THETA(1),..., */
  627. /* > THETA(Q), define the matrix in bidiagonal-block form. */
  628. /* > \endverbatim */
  629. /* > */
  630. /* > \param[in,out] U1 */
  631. /* > \verbatim */
  632. /* > U1 is COMPLEX array, dimension (LDU1,P) */
  633. /* > On entry, a P-by-P matrix. On exit, U1 is postmultiplied */
  634. /* > by the left singular vector matrix common to [ B11 ; 0 ] and */
  635. /* > [ B12 0 0 ; 0 -I 0 0 ]. */
  636. /* > \endverbatim */
  637. /* > */
  638. /* > \param[in] LDU1 */
  639. /* > \verbatim */
  640. /* > LDU1 is INTEGER */
  641. /* > The leading dimension of the array U1, LDU1 >= MAX(1,P). */
  642. /* > \endverbatim */
  643. /* > */
  644. /* > \param[in,out] U2 */
  645. /* > \verbatim */
  646. /* > U2 is COMPLEX array, dimension (LDU2,M-P) */
  647. /* > On entry, an (M-P)-by-(M-P) matrix. On exit, U2 is */
  648. /* > postmultiplied by the left singular vector matrix common to */
  649. /* > [ B21 ; 0 ] and [ B22 0 0 ; 0 0 I ]. */
  650. /* > \endverbatim */
  651. /* > */
  652. /* > \param[in] LDU2 */
  653. /* > \verbatim */
  654. /* > LDU2 is INTEGER */
  655. /* > The leading dimension of the array U2, LDU2 >= MAX(1,M-P). */
  656. /* > \endverbatim */
  657. /* > */
  658. /* > \param[in,out] V1T */
  659. /* > \verbatim */
  660. /* > V1T is COMPLEX array, dimension (LDV1T,Q) */
  661. /* > On entry, a Q-by-Q matrix. On exit, V1T is premultiplied */
  662. /* > by the conjugate transpose of the right singular vector */
  663. /* > matrix common to [ B11 ; 0 ] and [ B21 ; 0 ]. */
  664. /* > \endverbatim */
  665. /* > */
  666. /* > \param[in] LDV1T */
  667. /* > \verbatim */
  668. /* > LDV1T is INTEGER */
  669. /* > The leading dimension of the array V1T, LDV1T >= MAX(1,Q). */
  670. /* > \endverbatim */
  671. /* > */
  672. /* > \param[in,out] V2T */
  673. /* > \verbatim */
  674. /* > V2T is COMPLEX array, dimension (LDV2T,M-Q) */
  675. /* > On entry, an (M-Q)-by-(M-Q) matrix. On exit, V2T is */
  676. /* > premultiplied by the conjugate transpose of the right */
  677. /* > singular vector matrix common to [ B12 0 0 ; 0 -I 0 ] and */
  678. /* > [ B22 0 0 ; 0 0 I ]. */
  679. /* > \endverbatim */
  680. /* > */
  681. /* > \param[in] LDV2T */
  682. /* > \verbatim */
  683. /* > LDV2T is INTEGER */
  684. /* > The leading dimension of the array V2T, LDV2T >= MAX(1,M-Q). */
  685. /* > \endverbatim */
  686. /* > */
  687. /* > \param[out] B11D */
  688. /* > \verbatim */
  689. /* > B11D is REAL array, dimension (Q) */
  690. /* > When CBBCSD converges, B11D contains the cosines of THETA(1), */
  691. /* > ..., THETA(Q). If CBBCSD fails to converge, then B11D */
  692. /* > contains the diagonal of the partially reduced top-left */
  693. /* > block. */
  694. /* > \endverbatim */
  695. /* > */
  696. /* > \param[out] B11E */
  697. /* > \verbatim */
  698. /* > B11E is REAL array, dimension (Q-1) */
  699. /* > When CBBCSD converges, B11E contains zeros. If CBBCSD fails */
  700. /* > to converge, then B11E contains the superdiagonal of the */
  701. /* > partially reduced top-left block. */
  702. /* > \endverbatim */
  703. /* > */
  704. /* > \param[out] B12D */
  705. /* > \verbatim */
  706. /* > B12D is REAL array, dimension (Q) */
  707. /* > When CBBCSD converges, B12D contains the negative sines of */
  708. /* > THETA(1), ..., THETA(Q). If CBBCSD fails to converge, then */
  709. /* > B12D contains the diagonal of the partially reduced top-right */
  710. /* > block. */
  711. /* > \endverbatim */
  712. /* > */
  713. /* > \param[out] B12E */
  714. /* > \verbatim */
  715. /* > B12E is REAL array, dimension (Q-1) */
  716. /* > When CBBCSD converges, B12E contains zeros. If CBBCSD fails */
  717. /* > to converge, then B12E contains the subdiagonal of the */
  718. /* > partially reduced top-right block. */
  719. /* > \endverbatim */
  720. /* > */
  721. /* > \param[out] B21D */
  722. /* > \verbatim */
  723. /* > B21D is REAL array, dimension (Q) */
  724. /* > When CBBCSD converges, B21D contains the negative sines of */
  725. /* > THETA(1), ..., THETA(Q). If CBBCSD fails to converge, then */
  726. /* > B21D contains the diagonal of the partially reduced bottom-left */
  727. /* > block. */
  728. /* > \endverbatim */
  729. /* > */
  730. /* > \param[out] B21E */
  731. /* > \verbatim */
  732. /* > B21E is REAL array, dimension (Q-1) */
  733. /* > When CBBCSD converges, B21E contains zeros. If CBBCSD fails */
  734. /* > to converge, then B21E contains the subdiagonal of the */
  735. /* > partially reduced bottom-left block. */
  736. /* > \endverbatim */
  737. /* > */
  738. /* > \param[out] B22D */
  739. /* > \verbatim */
  740. /* > B22D is REAL array, dimension (Q) */
  741. /* > When CBBCSD converges, B22D contains the negative sines of */
  742. /* > THETA(1), ..., THETA(Q). If CBBCSD fails to converge, then */
  743. /* > B22D contains the diagonal of the partially reduced bottom-right */
  744. /* > block. */
  745. /* > \endverbatim */
  746. /* > */
  747. /* > \param[out] B22E */
  748. /* > \verbatim */
  749. /* > B22E is REAL array, dimension (Q-1) */
  750. /* > When CBBCSD converges, B22E contains zeros. If CBBCSD fails */
  751. /* > to converge, then B22E contains the subdiagonal of the */
  752. /* > partially reduced bottom-right block. */
  753. /* > \endverbatim */
  754. /* > */
  755. /* > \param[out] RWORK */
  756. /* > \verbatim */
  757. /* > RWORK is REAL array, dimension (MAX(1,LRWORK)) */
  758. /* > On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK. */
  759. /* > \endverbatim */
  760. /* > */
  761. /* > \param[in] LRWORK */
  762. /* > \verbatim */
  763. /* > LRWORK is INTEGER */
  764. /* > The dimension of the array RWORK. LRWORK >= MAX(1,8*Q). */
  765. /* > */
  766. /* > If LRWORK = -1, then a workspace query is assumed; the */
  767. /* > routine only calculates the optimal size of the RWORK array, */
  768. /* > returns this value as the first entry of the work array, and */
  769. /* > no error message related to LRWORK is issued by XERBLA. */
  770. /* > \endverbatim */
  771. /* > */
  772. /* > \param[out] INFO */
  773. /* > \verbatim */
  774. /* > INFO is INTEGER */
  775. /* > = 0: successful exit. */
  776. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  777. /* > > 0: if CBBCSD did not converge, INFO specifies the number */
  778. /* > of nonzero entries in PHI, and B11D, B11E, etc., */
  779. /* > contain the partially reduced matrix. */
  780. /* > \endverbatim */
  781. /* > \par Internal Parameters: */
  782. /* ========================= */
  783. /* > */
  784. /* > \verbatim */
  785. /* > TOLMUL REAL, default = MAX(10,MIN(100,EPS**(-1/8))) */
  786. /* > TOLMUL controls the convergence criterion of the QR loop. */
  787. /* > Angles THETA(i), PHI(i) are rounded to 0 or PI/2 when they */
  788. /* > are within TOLMUL*EPS of either bound. */
  789. /* > \endverbatim */
  790. /* > \par References: */
  791. /* ================ */
  792. /* > */
  793. /* > [1] Brian D. Sutton. Computing the complete CS decomposition. Numer. */
  794. /* > Algorithms, 50(1):33-65, 2009. */
  795. /* Authors: */
  796. /* ======== */
  797. /* > \author Univ. of Tennessee */
  798. /* > \author Univ. of California Berkeley */
  799. /* > \author Univ. of Colorado Denver */
  800. /* > \author NAG Ltd. */
  801. /* > \date June 2016 */
  802. /* > \ingroup complexOTHERcomputational */
  803. /* ===================================================================== */
  804. /* Subroutine */ int cbbcsd_(char *jobu1, char *jobu2, char *jobv1t, char *
  805. jobv2t, char *trans, integer *m, integer *p, integer *q, real *theta,
  806. real *phi, complex *u1, integer *ldu1, complex *u2, integer *ldu2,
  807. complex *v1t, integer *ldv1t, complex *v2t, integer *ldv2t, real *
  808. b11d, real *b11e, real *b12d, real *b12e, real *b21d, real *b21e,
  809. real *b22d, real *b22e, real *rwork, integer *lrwork, integer *info)
  810. {
  811. /* System generated locals */
  812. integer u1_dim1, u1_offset, u2_dim1, u2_offset, v1t_dim1, v1t_offset,
  813. v2t_dim1, v2t_offset, i__1, i__2;
  814. real r__1, r__2, r__3, r__4;
  815. doublereal d__1;
  816. /* Local variables */
  817. integer imin, mini, imax, iter;
  818. real unfl, temp;
  819. logical colmajor;
  820. real thetamin, thetamax;
  821. logical restart11, restart12, restart21, restart22;
  822. integer iu1cs, iu2cs;
  823. extern /* Subroutine */ int slas2_(real *, real *, real *, real *, real *)
  824. ;
  825. integer iu1sn, iu2sn, i__, j;
  826. real r__;
  827. extern /* Subroutine */ int cscal_(integer *, complex *, complex *,
  828. integer *);
  829. extern logical lsame_(char *, char *);
  830. extern /* Subroutine */ int clasr_(char *, char *, char *, integer *,
  831. integer *, real *, real *, complex *, integer *), cswap_(integer *, complex *, integer *, complex *,
  832. integer *);
  833. integer maxit;
  834. real dummy, x1, x2, y1, y2;
  835. integer lrworkmin, iv1tcs, iv2tcs;
  836. logical wantu1, wantu2;
  837. integer lrworkopt, iv1tsn, iv2tsn;
  838. real mu, nu, sigma11, sigma21;
  839. extern real slamch_(char *);
  840. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  841. real thresh, tolmul;
  842. extern /* Subroutine */ int mecago_();
  843. logical lquery;
  844. real b11bulge;
  845. logical wantv1t, wantv2t;
  846. real b12bulge, b21bulge, b22bulge, eps, tol;
  847. extern /* Subroutine */ int slartgp_(real *, real *, real *, real *, real
  848. *), slartgs_(real *, real *, real *, real *, real *);
  849. /* -- LAPACK computational routine (version 3.7.1) -- */
  850. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  851. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  852. /* June 2016 */
  853. /* =================================================================== */
  854. /* Test input arguments */
  855. /* Parameter adjustments */
  856. --theta;
  857. --phi;
  858. u1_dim1 = *ldu1;
  859. u1_offset = 1 + u1_dim1 * 1;
  860. u1 -= u1_offset;
  861. u2_dim1 = *ldu2;
  862. u2_offset = 1 + u2_dim1 * 1;
  863. u2 -= u2_offset;
  864. v1t_dim1 = *ldv1t;
  865. v1t_offset = 1 + v1t_dim1 * 1;
  866. v1t -= v1t_offset;
  867. v2t_dim1 = *ldv2t;
  868. v2t_offset = 1 + v2t_dim1 * 1;
  869. v2t -= v2t_offset;
  870. --b11d;
  871. --b11e;
  872. --b12d;
  873. --b12e;
  874. --b21d;
  875. --b21e;
  876. --b22d;
  877. --b22e;
  878. --rwork;
  879. /* Function Body */
  880. *info = 0;
  881. lquery = *lrwork == -1;
  882. wantu1 = lsame_(jobu1, "Y");
  883. wantu2 = lsame_(jobu2, "Y");
  884. wantv1t = lsame_(jobv1t, "Y");
  885. wantv2t = lsame_(jobv2t, "Y");
  886. colmajor = ! lsame_(trans, "T");
  887. if (*m < 0) {
  888. *info = -6;
  889. } else if (*p < 0 || *p > *m) {
  890. *info = -7;
  891. } else if (*q < 0 || *q > *m) {
  892. *info = -8;
  893. } else if (*q > *p || *q > *m - *p || *q > *m - *q) {
  894. *info = -8;
  895. } else if (wantu1 && *ldu1 < *p) {
  896. *info = -12;
  897. } else if (wantu2 && *ldu2 < *m - *p) {
  898. *info = -14;
  899. } else if (wantv1t && *ldv1t < *q) {
  900. *info = -16;
  901. } else if (wantv2t && *ldv2t < *m - *q) {
  902. *info = -18;
  903. }
  904. /* Quick return if Q = 0 */
  905. if (*info == 0 && *q == 0) {
  906. lrworkmin = 1;
  907. rwork[1] = (real) lrworkmin;
  908. return 0;
  909. }
  910. /* Compute workspace */
  911. if (*info == 0) {
  912. iu1cs = 1;
  913. iu1sn = iu1cs + *q;
  914. iu2cs = iu1sn + *q;
  915. iu2sn = iu2cs + *q;
  916. iv1tcs = iu2sn + *q;
  917. iv1tsn = iv1tcs + *q;
  918. iv2tcs = iv1tsn + *q;
  919. iv2tsn = iv2tcs + *q;
  920. lrworkopt = iv2tsn + *q - 1;
  921. lrworkmin = lrworkopt;
  922. rwork[1] = (real) lrworkopt;
  923. if (*lrwork < lrworkmin && ! lquery) {
  924. *info = -28;
  925. }
  926. }
  927. if (*info != 0) {
  928. i__1 = -(*info);
  929. xerbla_("CBBCSD", &i__1, (ftnlen)6);
  930. return 0;
  931. } else if (lquery) {
  932. return 0;
  933. }
  934. /* Get machine constants */
  935. eps = slamch_("Epsilon");
  936. unfl = slamch_("Safe minimum");
  937. /* Computing MAX */
  938. /* Computing MIN */
  939. d__1 = (doublereal) eps;
  940. r__3 = 100.f, r__4 = pow_dd(&d__1, &c_b11);
  941. r__1 = 10.f, r__2 = f2cmin(r__3,r__4);
  942. tolmul = f2cmax(r__1,r__2);
  943. tol = tolmul * eps;
  944. /* Computing MAX */
  945. r__1 = tol, r__2 = *q * 6 * *q * unfl;
  946. thresh = f2cmax(r__1,r__2);
  947. /* Test for negligible sines or cosines */
  948. i__1 = *q;
  949. for (i__ = 1; i__ <= i__1; ++i__) {
  950. if (theta[i__] < thresh) {
  951. theta[i__] = 0.f;
  952. } else if (theta[i__] > 1.57079632679489662f - thresh) {
  953. theta[i__] = 1.57079632679489662f;
  954. }
  955. }
  956. i__1 = *q - 1;
  957. for (i__ = 1; i__ <= i__1; ++i__) {
  958. if (phi[i__] < thresh) {
  959. phi[i__] = 0.f;
  960. } else if (phi[i__] > 1.57079632679489662f - thresh) {
  961. phi[i__] = 1.57079632679489662f;
  962. }
  963. }
  964. /* Initial deflation */
  965. imax = *q;
  966. while(imax > 1) {
  967. if (phi[imax - 1] != 0.f) {
  968. myexit_();
  969. }
  970. --imax;
  971. }
  972. imin = imax - 1;
  973. if (imin > 1) {
  974. while(phi[imin - 1] != 0.f) {
  975. --imin;
  976. if (imin <= 1) {
  977. myexit_();
  978. }
  979. }
  980. }
  981. /* Initialize iteration counter */
  982. maxit = *q * 6 * *q;
  983. iter = 0;
  984. /* Begin main iteration loop */
  985. while(imax > 1) {
  986. /* Compute the matrix entries */
  987. b11d[imin] = cos(theta[imin]);
  988. b21d[imin] = -sin(theta[imin]);
  989. i__1 = imax - 1;
  990. for (i__ = imin; i__ <= i__1; ++i__) {
  991. b11e[i__] = -sin(theta[i__]) * sin(phi[i__]);
  992. b11d[i__ + 1] = cos(theta[i__ + 1]) * cos(phi[i__]);
  993. b12d[i__] = sin(theta[i__]) * cos(phi[i__]);
  994. b12e[i__] = cos(theta[i__ + 1]) * sin(phi[i__]);
  995. b21e[i__] = -cos(theta[i__]) * sin(phi[i__]);
  996. b21d[i__ + 1] = -sin(theta[i__ + 1]) * cos(phi[i__]);
  997. b22d[i__] = cos(theta[i__]) * cos(phi[i__]);
  998. b22e[i__] = -sin(theta[i__ + 1]) * sin(phi[i__]);
  999. }
  1000. b12d[imax] = sin(theta[imax]);
  1001. b22d[imax] = cos(theta[imax]);
  1002. /* Abort if not converging; otherwise, increment ITER */
  1003. if (iter > maxit) {
  1004. *info = 0;
  1005. i__1 = *q;
  1006. for (i__ = 1; i__ <= i__1; ++i__) {
  1007. if (phi[i__] != 0.f) {
  1008. ++(*info);
  1009. }
  1010. }
  1011. return 0;
  1012. }
  1013. iter = iter + imax - imin;
  1014. /* Compute shifts */
  1015. thetamax = theta[imin];
  1016. thetamin = theta[imin];
  1017. i__1 = imax;
  1018. for (i__ = imin + 1; i__ <= i__1; ++i__) {
  1019. if (theta[i__] > thetamax) {
  1020. thetamax = theta[i__];
  1021. }
  1022. if (theta[i__] < thetamin) {
  1023. thetamin = theta[i__];
  1024. }
  1025. }
  1026. if (thetamax > 1.57079632679489662f - thresh) {
  1027. /* Zero on diagonals of B11 and B22; induce deflation with a */
  1028. /* zero shift */
  1029. mu = 0.f;
  1030. nu = 1.f;
  1031. } else if (thetamin < thresh) {
  1032. /* Zero on diagonals of B12 and B22; induce deflation with a */
  1033. /* zero shift */
  1034. mu = 1.f;
  1035. nu = 0.f;
  1036. } else {
  1037. /* Compute shifts for B11 and B21 and use the lesser */
  1038. slas2_(&b11d[imax - 1], &b11e[imax - 1], &b11d[imax], &sigma11, &
  1039. dummy);
  1040. slas2_(&b21d[imax - 1], &b21e[imax - 1], &b21d[imax], &sigma21, &
  1041. dummy);
  1042. if (sigma11 <= sigma21) {
  1043. mu = sigma11;
  1044. /* Computing 2nd power */
  1045. r__1 = mu;
  1046. nu = sqrt(1.f - r__1 * r__1);
  1047. if (mu < thresh) {
  1048. mu = 0.f;
  1049. nu = 1.f;
  1050. }
  1051. } else {
  1052. nu = sigma21;
  1053. /* Computing 2nd power */
  1054. r__1 = nu;
  1055. mu = sqrt(1.f - r__1 * r__1);
  1056. if (nu < thresh) {
  1057. mu = 1.f;
  1058. nu = 0.f;
  1059. }
  1060. }
  1061. }
  1062. /* Rotate to produce bulges in B11 and B21 */
  1063. if (mu <= nu) {
  1064. slartgs_(&b11d[imin], &b11e[imin], &mu, &rwork[iv1tcs + imin - 1],
  1065. &rwork[iv1tsn + imin - 1]);
  1066. } else {
  1067. slartgs_(&b21d[imin], &b21e[imin], &nu, &rwork[iv1tcs + imin - 1],
  1068. &rwork[iv1tsn + imin - 1]);
  1069. }
  1070. temp = rwork[iv1tcs + imin - 1] * b11d[imin] + rwork[iv1tsn + imin -
  1071. 1] * b11e[imin];
  1072. b11e[imin] = rwork[iv1tcs + imin - 1] * b11e[imin] - rwork[iv1tsn +
  1073. imin - 1] * b11d[imin];
  1074. b11d[imin] = temp;
  1075. b11bulge = rwork[iv1tsn + imin - 1] * b11d[imin + 1];
  1076. b11d[imin + 1] = rwork[iv1tcs + imin - 1] * b11d[imin + 1];
  1077. temp = rwork[iv1tcs + imin - 1] * b21d[imin] + rwork[iv1tsn + imin -
  1078. 1] * b21e[imin];
  1079. b21e[imin] = rwork[iv1tcs + imin - 1] * b21e[imin] - rwork[iv1tsn +
  1080. imin - 1] * b21d[imin];
  1081. b21d[imin] = temp;
  1082. b21bulge = rwork[iv1tsn + imin - 1] * b21d[imin + 1];
  1083. b21d[imin + 1] = rwork[iv1tcs + imin - 1] * b21d[imin + 1];
  1084. /* Compute THETA(IMIN) */
  1085. /* Computing 2nd power */
  1086. r__1 = b21d[imin];
  1087. /* Computing 2nd power */
  1088. r__2 = b21bulge;
  1089. /* Computing 2nd power */
  1090. r__3 = b11d[imin];
  1091. /* Computing 2nd power */
  1092. r__4 = b11bulge;
  1093. theta[imin] = atan2(sqrt(r__1 * r__1 + r__2 * r__2), sqrt(r__3 * r__3
  1094. + r__4 * r__4));
  1095. /* Chase the bulges in B11(IMIN+1,IMIN) and B21(IMIN+1,IMIN) */
  1096. /* Computing 2nd power */
  1097. r__1 = b11d[imin];
  1098. /* Computing 2nd power */
  1099. r__2 = b11bulge;
  1100. /* Computing 2nd power */
  1101. r__3 = thresh;
  1102. if (r__1 * r__1 + r__2 * r__2 > r__3 * r__3) {
  1103. slartgp_(&b11bulge, &b11d[imin], &rwork[iu1sn + imin - 1], &rwork[
  1104. iu1cs + imin - 1], &r__);
  1105. } else if (mu <= nu) {
  1106. slartgs_(&b11e[imin], &b11d[imin + 1], &mu, &rwork[iu1cs + imin -
  1107. 1], &rwork[iu1sn + imin - 1]);
  1108. } else {
  1109. slartgs_(&b12d[imin], &b12e[imin], &nu, &rwork[iu1cs + imin - 1],
  1110. &rwork[iu1sn + imin - 1]);
  1111. }
  1112. /* Computing 2nd power */
  1113. r__1 = b21d[imin];
  1114. /* Computing 2nd power */
  1115. r__2 = b21bulge;
  1116. /* Computing 2nd power */
  1117. r__3 = thresh;
  1118. if (r__1 * r__1 + r__2 * r__2 > r__3 * r__3) {
  1119. slartgp_(&b21bulge, &b21d[imin], &rwork[iu2sn + imin - 1], &rwork[
  1120. iu2cs + imin - 1], &r__);
  1121. } else if (nu < mu) {
  1122. slartgs_(&b21e[imin], &b21d[imin + 1], &nu, &rwork[iu2cs + imin -
  1123. 1], &rwork[iu2sn + imin - 1]);
  1124. } else {
  1125. slartgs_(&b22d[imin], &b22e[imin], &mu, &rwork[iu2cs + imin - 1],
  1126. &rwork[iu2sn + imin - 1]);
  1127. }
  1128. rwork[iu2cs + imin - 1] = -rwork[iu2cs + imin - 1];
  1129. rwork[iu2sn + imin - 1] = -rwork[iu2sn + imin - 1];
  1130. temp = rwork[iu1cs + imin - 1] * b11e[imin] + rwork[iu1sn + imin - 1]
  1131. * b11d[imin + 1];
  1132. b11d[imin + 1] = rwork[iu1cs + imin - 1] * b11d[imin + 1] - rwork[
  1133. iu1sn + imin - 1] * b11e[imin];
  1134. b11e[imin] = temp;
  1135. if (imax > imin + 1) {
  1136. b11bulge = rwork[iu1sn + imin - 1] * b11e[imin + 1];
  1137. b11e[imin + 1] = rwork[iu1cs + imin - 1] * b11e[imin + 1];
  1138. }
  1139. temp = rwork[iu1cs + imin - 1] * b12d[imin] + rwork[iu1sn + imin - 1]
  1140. * b12e[imin];
  1141. b12e[imin] = rwork[iu1cs + imin - 1] * b12e[imin] - rwork[iu1sn +
  1142. imin - 1] * b12d[imin];
  1143. b12d[imin] = temp;
  1144. b12bulge = rwork[iu1sn + imin - 1] * b12d[imin + 1];
  1145. b12d[imin + 1] = rwork[iu1cs + imin - 1] * b12d[imin + 1];
  1146. temp = rwork[iu2cs + imin - 1] * b21e[imin] + rwork[iu2sn + imin - 1]
  1147. * b21d[imin + 1];
  1148. b21d[imin + 1] = rwork[iu2cs + imin - 1] * b21d[imin + 1] - rwork[
  1149. iu2sn + imin - 1] * b21e[imin];
  1150. b21e[imin] = temp;
  1151. if (imax > imin + 1) {
  1152. b21bulge = rwork[iu2sn + imin - 1] * b21e[imin + 1];
  1153. b21e[imin + 1] = rwork[iu2cs + imin - 1] * b21e[imin + 1];
  1154. }
  1155. temp = rwork[iu2cs + imin - 1] * b22d[imin] + rwork[iu2sn + imin - 1]
  1156. * b22e[imin];
  1157. b22e[imin] = rwork[iu2cs + imin - 1] * b22e[imin] - rwork[iu2sn +
  1158. imin - 1] * b22d[imin];
  1159. b22d[imin] = temp;
  1160. b22bulge = rwork[iu2sn + imin - 1] * b22d[imin + 1];
  1161. b22d[imin + 1] = rwork[iu2cs + imin - 1] * b22d[imin + 1];
  1162. /* Inner loop: chase bulges from B11(IMIN,IMIN+2), */
  1163. /* B12(IMIN,IMIN+1), B21(IMIN,IMIN+2), and B22(IMIN,IMIN+1) to */
  1164. /* bottom-right */
  1165. i__1 = imax - 1;
  1166. for (i__ = imin + 1; i__ <= i__1; ++i__) {
  1167. /* Compute PHI(I-1) */
  1168. x1 = sin(theta[i__ - 1]) * b11e[i__ - 1] + cos(theta[i__ - 1]) *
  1169. b21e[i__ - 1];
  1170. x2 = sin(theta[i__ - 1]) * b11bulge + cos(theta[i__ - 1]) *
  1171. b21bulge;
  1172. y1 = sin(theta[i__ - 1]) * b12d[i__ - 1] + cos(theta[i__ - 1]) *
  1173. b22d[i__ - 1];
  1174. y2 = sin(theta[i__ - 1]) * b12bulge + cos(theta[i__ - 1]) *
  1175. b22bulge;
  1176. /* Computing 2nd power */
  1177. r__1 = x1;
  1178. /* Computing 2nd power */
  1179. r__2 = x2;
  1180. /* Computing 2nd power */
  1181. r__3 = y1;
  1182. /* Computing 2nd power */
  1183. r__4 = y2;
  1184. phi[i__ - 1] = atan2(sqrt(r__1 * r__1 + r__2 * r__2), sqrt(r__3 *
  1185. r__3 + r__4 * r__4));
  1186. /* Determine if there are bulges to chase or if a new direct */
  1187. /* summand has been reached */
  1188. /* Computing 2nd power */
  1189. r__1 = b11e[i__ - 1];
  1190. /* Computing 2nd power */
  1191. r__2 = b11bulge;
  1192. /* Computing 2nd power */
  1193. r__3 = thresh;
  1194. restart11 = r__1 * r__1 + r__2 * r__2 <= r__3 * r__3;
  1195. /* Computing 2nd power */
  1196. r__1 = b21e[i__ - 1];
  1197. /* Computing 2nd power */
  1198. r__2 = b21bulge;
  1199. /* Computing 2nd power */
  1200. r__3 = thresh;
  1201. restart21 = r__1 * r__1 + r__2 * r__2 <= r__3 * r__3;
  1202. /* Computing 2nd power */
  1203. r__1 = b12d[i__ - 1];
  1204. /* Computing 2nd power */
  1205. r__2 = b12bulge;
  1206. /* Computing 2nd power */
  1207. r__3 = thresh;
  1208. restart12 = r__1 * r__1 + r__2 * r__2 <= r__3 * r__3;
  1209. /* Computing 2nd power */
  1210. r__1 = b22d[i__ - 1];
  1211. /* Computing 2nd power */
  1212. r__2 = b22bulge;
  1213. /* Computing 2nd power */
  1214. r__3 = thresh;
  1215. restart22 = r__1 * r__1 + r__2 * r__2 <= r__3 * r__3;
  1216. /* If possible, chase bulges from B11(I-1,I+1), B12(I-1,I), */
  1217. /* B21(I-1,I+1), and B22(I-1,I). If necessary, restart bulge- */
  1218. /* chasing by applying the original shift again. */
  1219. if (! restart11 && ! restart21) {
  1220. slartgp_(&x2, &x1, &rwork[iv1tsn + i__ - 1], &rwork[iv1tcs +
  1221. i__ - 1], &r__);
  1222. } else if (! restart11 && restart21) {
  1223. slartgp_(&b11bulge, &b11e[i__ - 1], &rwork[iv1tsn + i__ - 1],
  1224. &rwork[iv1tcs + i__ - 1], &r__);
  1225. } else if (restart11 && ! restart21) {
  1226. slartgp_(&b21bulge, &b21e[i__ - 1], &rwork[iv1tsn + i__ - 1],
  1227. &rwork[iv1tcs + i__ - 1], &r__);
  1228. } else if (mu <= nu) {
  1229. slartgs_(&b11d[i__], &b11e[i__], &mu, &rwork[iv1tcs + i__ - 1]
  1230. , &rwork[iv1tsn + i__ - 1]);
  1231. } else {
  1232. slartgs_(&b21d[i__], &b21e[i__], &nu, &rwork[iv1tcs + i__ - 1]
  1233. , &rwork[iv1tsn + i__ - 1]);
  1234. }
  1235. rwork[iv1tcs + i__ - 1] = -rwork[iv1tcs + i__ - 1];
  1236. rwork[iv1tsn + i__ - 1] = -rwork[iv1tsn + i__ - 1];
  1237. if (! restart12 && ! restart22) {
  1238. slartgp_(&y2, &y1, &rwork[iv2tsn + i__ - 2], &rwork[iv2tcs +
  1239. i__ - 2], &r__);
  1240. } else if (! restart12 && restart22) {
  1241. slartgp_(&b12bulge, &b12d[i__ - 1], &rwork[iv2tsn + i__ - 2],
  1242. &rwork[iv2tcs + i__ - 2], &r__);
  1243. } else if (restart12 && ! restart22) {
  1244. slartgp_(&b22bulge, &b22d[i__ - 1], &rwork[iv2tsn + i__ - 2],
  1245. &rwork[iv2tcs + i__ - 2], &r__);
  1246. } else if (nu < mu) {
  1247. slartgs_(&b12e[i__ - 1], &b12d[i__], &nu, &rwork[iv2tcs + i__
  1248. - 2], &rwork[iv2tsn + i__ - 2]);
  1249. } else {
  1250. slartgs_(&b22e[i__ - 1], &b22d[i__], &mu, &rwork[iv2tcs + i__
  1251. - 2], &rwork[iv2tsn + i__ - 2]);
  1252. }
  1253. temp = rwork[iv1tcs + i__ - 1] * b11d[i__] + rwork[iv1tsn + i__ -
  1254. 1] * b11e[i__];
  1255. b11e[i__] = rwork[iv1tcs + i__ - 1] * b11e[i__] - rwork[iv1tsn +
  1256. i__ - 1] * b11d[i__];
  1257. b11d[i__] = temp;
  1258. b11bulge = rwork[iv1tsn + i__ - 1] * b11d[i__ + 1];
  1259. b11d[i__ + 1] = rwork[iv1tcs + i__ - 1] * b11d[i__ + 1];
  1260. temp = rwork[iv1tcs + i__ - 1] * b21d[i__] + rwork[iv1tsn + i__ -
  1261. 1] * b21e[i__];
  1262. b21e[i__] = rwork[iv1tcs + i__ - 1] * b21e[i__] - rwork[iv1tsn +
  1263. i__ - 1] * b21d[i__];
  1264. b21d[i__] = temp;
  1265. b21bulge = rwork[iv1tsn + i__ - 1] * b21d[i__ + 1];
  1266. b21d[i__ + 1] = rwork[iv1tcs + i__ - 1] * b21d[i__ + 1];
  1267. temp = rwork[iv2tcs + i__ - 2] * b12e[i__ - 1] + rwork[iv2tsn +
  1268. i__ - 2] * b12d[i__];
  1269. b12d[i__] = rwork[iv2tcs + i__ - 2] * b12d[i__] - rwork[iv2tsn +
  1270. i__ - 2] * b12e[i__ - 1];
  1271. b12e[i__ - 1] = temp;
  1272. b12bulge = rwork[iv2tsn + i__ - 2] * b12e[i__];
  1273. b12e[i__] = rwork[iv2tcs + i__ - 2] * b12e[i__];
  1274. temp = rwork[iv2tcs + i__ - 2] * b22e[i__ - 1] + rwork[iv2tsn +
  1275. i__ - 2] * b22d[i__];
  1276. b22d[i__] = rwork[iv2tcs + i__ - 2] * b22d[i__] - rwork[iv2tsn +
  1277. i__ - 2] * b22e[i__ - 1];
  1278. b22e[i__ - 1] = temp;
  1279. b22bulge = rwork[iv2tsn + i__ - 2] * b22e[i__];
  1280. b22e[i__] = rwork[iv2tcs + i__ - 2] * b22e[i__];
  1281. /* Compute THETA(I) */
  1282. x1 = cos(phi[i__ - 1]) * b11d[i__] + sin(phi[i__ - 1]) * b12e[i__
  1283. - 1];
  1284. x2 = cos(phi[i__ - 1]) * b11bulge + sin(phi[i__ - 1]) * b12bulge;
  1285. y1 = cos(phi[i__ - 1]) * b21d[i__] + sin(phi[i__ - 1]) * b22e[i__
  1286. - 1];
  1287. y2 = cos(phi[i__ - 1]) * b21bulge + sin(phi[i__ - 1]) * b22bulge;
  1288. /* Computing 2nd power */
  1289. r__1 = y1;
  1290. /* Computing 2nd power */
  1291. r__2 = y2;
  1292. /* Computing 2nd power */
  1293. r__3 = x1;
  1294. /* Computing 2nd power */
  1295. r__4 = x2;
  1296. theta[i__] = atan2(sqrt(r__1 * r__1 + r__2 * r__2), sqrt(r__3 *
  1297. r__3 + r__4 * r__4));
  1298. /* Determine if there are bulges to chase or if a new direct */
  1299. /* summand has been reached */
  1300. /* Computing 2nd power */
  1301. r__1 = b11d[i__];
  1302. /* Computing 2nd power */
  1303. r__2 = b11bulge;
  1304. /* Computing 2nd power */
  1305. r__3 = thresh;
  1306. restart11 = r__1 * r__1 + r__2 * r__2 <= r__3 * r__3;
  1307. /* Computing 2nd power */
  1308. r__1 = b12e[i__ - 1];
  1309. /* Computing 2nd power */
  1310. r__2 = b12bulge;
  1311. /* Computing 2nd power */
  1312. r__3 = thresh;
  1313. restart12 = r__1 * r__1 + r__2 * r__2 <= r__3 * r__3;
  1314. /* Computing 2nd power */
  1315. r__1 = b21d[i__];
  1316. /* Computing 2nd power */
  1317. r__2 = b21bulge;
  1318. /* Computing 2nd power */
  1319. r__3 = thresh;
  1320. restart21 = r__1 * r__1 + r__2 * r__2 <= r__3 * r__3;
  1321. /* Computing 2nd power */
  1322. r__1 = b22e[i__ - 1];
  1323. /* Computing 2nd power */
  1324. r__2 = b22bulge;
  1325. /* Computing 2nd power */
  1326. r__3 = thresh;
  1327. restart22 = r__1 * r__1 + r__2 * r__2 <= r__3 * r__3;
  1328. /* If possible, chase bulges from B11(I+1,I), B12(I+1,I-1), */
  1329. /* B21(I+1,I), and B22(I+1,I-1). If necessary, restart bulge- */
  1330. /* chasing by applying the original shift again. */
  1331. if (! restart11 && ! restart12) {
  1332. slartgp_(&x2, &x1, &rwork[iu1sn + i__ - 1], &rwork[iu1cs +
  1333. i__ - 1], &r__);
  1334. } else if (! restart11 && restart12) {
  1335. slartgp_(&b11bulge, &b11d[i__], &rwork[iu1sn + i__ - 1], &
  1336. rwork[iu1cs + i__ - 1], &r__);
  1337. } else if (restart11 && ! restart12) {
  1338. slartgp_(&b12bulge, &b12e[i__ - 1], &rwork[iu1sn + i__ - 1], &
  1339. rwork[iu1cs + i__ - 1], &r__);
  1340. } else if (mu <= nu) {
  1341. slartgs_(&b11e[i__], &b11d[i__ + 1], &mu, &rwork[iu1cs + i__
  1342. - 1], &rwork[iu1sn + i__ - 1]);
  1343. } else {
  1344. slartgs_(&b12d[i__], &b12e[i__], &nu, &rwork[iu1cs + i__ - 1],
  1345. &rwork[iu1sn + i__ - 1]);
  1346. }
  1347. if (! restart21 && ! restart22) {
  1348. slartgp_(&y2, &y1, &rwork[iu2sn + i__ - 1], &rwork[iu2cs +
  1349. i__ - 1], &r__);
  1350. } else if (! restart21 && restart22) {
  1351. slartgp_(&b21bulge, &b21d[i__], &rwork[iu2sn + i__ - 1], &
  1352. rwork[iu2cs + i__ - 1], &r__);
  1353. } else if (restart21 && ! restart22) {
  1354. slartgp_(&b22bulge, &b22e[i__ - 1], &rwork[iu2sn + i__ - 1], &
  1355. rwork[iu2cs + i__ - 1], &r__);
  1356. } else if (nu < mu) {
  1357. slartgs_(&b21e[i__], &b21e[i__ + 1], &nu, &rwork[iu2cs + i__
  1358. - 1], &rwork[iu2sn + i__ - 1]);
  1359. } else {
  1360. slartgs_(&b22d[i__], &b22e[i__], &mu, &rwork[iu2cs + i__ - 1],
  1361. &rwork[iu2sn + i__ - 1]);
  1362. }
  1363. rwork[iu2cs + i__ - 1] = -rwork[iu2cs + i__ - 1];
  1364. rwork[iu2sn + i__ - 1] = -rwork[iu2sn + i__ - 1];
  1365. temp = rwork[iu1cs + i__ - 1] * b11e[i__] + rwork[iu1sn + i__ - 1]
  1366. * b11d[i__ + 1];
  1367. b11d[i__ + 1] = rwork[iu1cs + i__ - 1] * b11d[i__ + 1] - rwork[
  1368. iu1sn + i__ - 1] * b11e[i__];
  1369. b11e[i__] = temp;
  1370. if (i__ < imax - 1) {
  1371. b11bulge = rwork[iu1sn + i__ - 1] * b11e[i__ + 1];
  1372. b11e[i__ + 1] = rwork[iu1cs + i__ - 1] * b11e[i__ + 1];
  1373. }
  1374. temp = rwork[iu2cs + i__ - 1] * b21e[i__] + rwork[iu2sn + i__ - 1]
  1375. * b21d[i__ + 1];
  1376. b21d[i__ + 1] = rwork[iu2cs + i__ - 1] * b21d[i__ + 1] - rwork[
  1377. iu2sn + i__ - 1] * b21e[i__];
  1378. b21e[i__] = temp;
  1379. if (i__ < imax - 1) {
  1380. b21bulge = rwork[iu2sn + i__ - 1] * b21e[i__ + 1];
  1381. b21e[i__ + 1] = rwork[iu2cs + i__ - 1] * b21e[i__ + 1];
  1382. }
  1383. temp = rwork[iu1cs + i__ - 1] * b12d[i__] + rwork[iu1sn + i__ - 1]
  1384. * b12e[i__];
  1385. b12e[i__] = rwork[iu1cs + i__ - 1] * b12e[i__] - rwork[iu1sn +
  1386. i__ - 1] * b12d[i__];
  1387. b12d[i__] = temp;
  1388. b12bulge = rwork[iu1sn + i__ - 1] * b12d[i__ + 1];
  1389. b12d[i__ + 1] = rwork[iu1cs + i__ - 1] * b12d[i__ + 1];
  1390. temp = rwork[iu2cs + i__ - 1] * b22d[i__] + rwork[iu2sn + i__ - 1]
  1391. * b22e[i__];
  1392. b22e[i__] = rwork[iu2cs + i__ - 1] * b22e[i__] - rwork[iu2sn +
  1393. i__ - 1] * b22d[i__];
  1394. b22d[i__] = temp;
  1395. b22bulge = rwork[iu2sn + i__ - 1] * b22d[i__ + 1];
  1396. b22d[i__ + 1] = rwork[iu2cs + i__ - 1] * b22d[i__ + 1];
  1397. }
  1398. /* Compute PHI(IMAX-1) */
  1399. x1 = sin(theta[imax - 1]) * b11e[imax - 1] + cos(theta[imax - 1]) *
  1400. b21e[imax - 1];
  1401. y1 = sin(theta[imax - 1]) * b12d[imax - 1] + cos(theta[imax - 1]) *
  1402. b22d[imax - 1];
  1403. y2 = sin(theta[imax - 1]) * b12bulge + cos(theta[imax - 1]) *
  1404. b22bulge;
  1405. /* Computing 2nd power */
  1406. r__1 = y1;
  1407. /* Computing 2nd power */
  1408. r__2 = y2;
  1409. phi[imax - 1] = atan2((abs(x1)), sqrt(r__1 * r__1 + r__2 * r__2));
  1410. /* Chase bulges from B12(IMAX-1,IMAX) and B22(IMAX-1,IMAX) */
  1411. /* Computing 2nd power */
  1412. r__1 = b12d[imax - 1];
  1413. /* Computing 2nd power */
  1414. r__2 = b12bulge;
  1415. /* Computing 2nd power */
  1416. r__3 = thresh;
  1417. restart12 = r__1 * r__1 + r__2 * r__2 <= r__3 * r__3;
  1418. /* Computing 2nd power */
  1419. r__1 = b22d[imax - 1];
  1420. /* Computing 2nd power */
  1421. r__2 = b22bulge;
  1422. /* Computing 2nd power */
  1423. r__3 = thresh;
  1424. restart22 = r__1 * r__1 + r__2 * r__2 <= r__3 * r__3;
  1425. if (! restart12 && ! restart22) {
  1426. slartgp_(&y2, &y1, &rwork[iv2tsn + imax - 2], &rwork[iv2tcs +
  1427. imax - 2], &r__);
  1428. } else if (! restart12 && restart22) {
  1429. slartgp_(&b12bulge, &b12d[imax - 1], &rwork[iv2tsn + imax - 2], &
  1430. rwork[iv2tcs + imax - 2], &r__);
  1431. } else if (restart12 && ! restart22) {
  1432. slartgp_(&b22bulge, &b22d[imax - 1], &rwork[iv2tsn + imax - 2], &
  1433. rwork[iv2tcs + imax - 2], &r__);
  1434. } else if (nu < mu) {
  1435. slartgs_(&b12e[imax - 1], &b12d[imax], &nu, &rwork[iv2tcs + imax
  1436. - 2], &rwork[iv2tsn + imax - 2]);
  1437. } else {
  1438. slartgs_(&b22e[imax - 1], &b22d[imax], &mu, &rwork[iv2tcs + imax
  1439. - 2], &rwork[iv2tsn + imax - 2]);
  1440. }
  1441. temp = rwork[iv2tcs + imax - 2] * b12e[imax - 1] + rwork[iv2tsn +
  1442. imax - 2] * b12d[imax];
  1443. b12d[imax] = rwork[iv2tcs + imax - 2] * b12d[imax] - rwork[iv2tsn +
  1444. imax - 2] * b12e[imax - 1];
  1445. b12e[imax - 1] = temp;
  1446. temp = rwork[iv2tcs + imax - 2] * b22e[imax - 1] + rwork[iv2tsn +
  1447. imax - 2] * b22d[imax];
  1448. b22d[imax] = rwork[iv2tcs + imax - 2] * b22d[imax] - rwork[iv2tsn +
  1449. imax - 2] * b22e[imax - 1];
  1450. b22e[imax - 1] = temp;
  1451. /* Update singular vectors */
  1452. if (wantu1) {
  1453. if (colmajor) {
  1454. i__1 = imax - imin + 1;
  1455. clasr_("R", "V", "F", p, &i__1, &rwork[iu1cs + imin - 1], &
  1456. rwork[iu1sn + imin - 1], &u1[imin * u1_dim1 + 1],
  1457. ldu1);
  1458. } else {
  1459. i__1 = imax - imin + 1;
  1460. clasr_("L", "V", "F", &i__1, p, &rwork[iu1cs + imin - 1], &
  1461. rwork[iu1sn + imin - 1], &u1[imin + u1_dim1], ldu1);
  1462. }
  1463. }
  1464. if (wantu2) {
  1465. if (colmajor) {
  1466. i__1 = *m - *p;
  1467. i__2 = imax - imin + 1;
  1468. clasr_("R", "V", "F", &i__1, &i__2, &rwork[iu2cs + imin - 1],
  1469. &rwork[iu2sn + imin - 1], &u2[imin * u2_dim1 + 1],
  1470. ldu2);
  1471. } else {
  1472. i__1 = imax - imin + 1;
  1473. i__2 = *m - *p;
  1474. clasr_("L", "V", "F", &i__1, &i__2, &rwork[iu2cs + imin - 1],
  1475. &rwork[iu2sn + imin - 1], &u2[imin + u2_dim1], ldu2);
  1476. }
  1477. }
  1478. if (wantv1t) {
  1479. if (colmajor) {
  1480. i__1 = imax - imin + 1;
  1481. clasr_("L", "V", "F", &i__1, q, &rwork[iv1tcs + imin - 1], &
  1482. rwork[iv1tsn + imin - 1], &v1t[imin + v1t_dim1],
  1483. ldv1t);
  1484. } else {
  1485. i__1 = imax - imin + 1;
  1486. clasr_("R", "V", "F", q, &i__1, &rwork[iv1tcs + imin - 1], &
  1487. rwork[iv1tsn + imin - 1], &v1t[imin * v1t_dim1 + 1],
  1488. ldv1t);
  1489. }
  1490. }
  1491. if (wantv2t) {
  1492. if (colmajor) {
  1493. i__1 = imax - imin + 1;
  1494. i__2 = *m - *q;
  1495. clasr_("L", "V", "F", &i__1, &i__2, &rwork[iv2tcs + imin - 1],
  1496. &rwork[iv2tsn + imin - 1], &v2t[imin + v2t_dim1],
  1497. ldv2t);
  1498. } else {
  1499. i__1 = *m - *q;
  1500. i__2 = imax - imin + 1;
  1501. clasr_("R", "V", "F", &i__1, &i__2, &rwork[iv2tcs + imin - 1],
  1502. &rwork[iv2tsn + imin - 1], &v2t[imin * v2t_dim1 + 1],
  1503. ldv2t);
  1504. }
  1505. }
  1506. /* Fix signs on B11(IMAX-1,IMAX) and B21(IMAX-1,IMAX) */
  1507. if (b11e[imax - 1] + b21e[imax - 1] > 0.f) {
  1508. b11d[imax] = -b11d[imax];
  1509. b21d[imax] = -b21d[imax];
  1510. if (wantv1t) {
  1511. if (colmajor) {
  1512. cscal_(q, &c_b1, &v1t[imax + v1t_dim1], ldv1t);
  1513. } else {
  1514. cscal_(q, &c_b1, &v1t[imax * v1t_dim1 + 1], &c__1);
  1515. }
  1516. }
  1517. }
  1518. /* Compute THETA(IMAX) */
  1519. x1 = cos(phi[imax - 1]) * b11d[imax] + sin(phi[imax - 1]) * b12e[imax
  1520. - 1];
  1521. y1 = cos(phi[imax - 1]) * b21d[imax] + sin(phi[imax - 1]) * b22e[imax
  1522. - 1];
  1523. theta[imax] = atan2((abs(y1)), (abs(x1)));
  1524. /* Fix signs on B11(IMAX,IMAX), B12(IMAX,IMAX-1), B21(IMAX,IMAX), */
  1525. /* and B22(IMAX,IMAX-1) */
  1526. if (b11d[imax] + b12e[imax - 1] < 0.f) {
  1527. b12d[imax] = -b12d[imax];
  1528. if (wantu1) {
  1529. if (colmajor) {
  1530. cscal_(p, &c_b1, &u1[imax * u1_dim1 + 1], &c__1);
  1531. } else {
  1532. cscal_(p, &c_b1, &u1[imax + u1_dim1], ldu1);
  1533. }
  1534. }
  1535. }
  1536. if (b21d[imax] + b22e[imax - 1] > 0.f) {
  1537. b22d[imax] = -b22d[imax];
  1538. if (wantu2) {
  1539. if (colmajor) {
  1540. i__1 = *m - *p;
  1541. cscal_(&i__1, &c_b1, &u2[imax * u2_dim1 + 1], &c__1);
  1542. } else {
  1543. i__1 = *m - *p;
  1544. cscal_(&i__1, &c_b1, &u2[imax + u2_dim1], ldu2);
  1545. }
  1546. }
  1547. }
  1548. /* Fix signs on B12(IMAX,IMAX) and B22(IMAX,IMAX) */
  1549. if (b12d[imax] + b22d[imax] < 0.f) {
  1550. if (wantv2t) {
  1551. if (colmajor) {
  1552. i__1 = *m - *q;
  1553. cscal_(&i__1, &c_b1, &v2t[imax + v2t_dim1], ldv2t);
  1554. } else {
  1555. i__1 = *m - *q;
  1556. cscal_(&i__1, &c_b1, &v2t[imax * v2t_dim1 + 1], &c__1);
  1557. }
  1558. }
  1559. }
  1560. /* Test for negligible sines or cosines */
  1561. i__1 = imax;
  1562. for (i__ = imin; i__ <= i__1; ++i__) {
  1563. if (theta[i__] < thresh) {
  1564. theta[i__] = 0.f;
  1565. } else if (theta[i__] > 1.57079632679489662f - thresh) {
  1566. theta[i__] = 1.57079632679489662f;
  1567. }
  1568. }
  1569. i__1 = imax - 1;
  1570. for (i__ = imin; i__ <= i__1; ++i__) {
  1571. if (phi[i__] < thresh) {
  1572. phi[i__] = 0.f;
  1573. } else if (phi[i__] > 1.57079632679489662f - thresh) {
  1574. phi[i__] = 1.57079632679489662f;
  1575. }
  1576. }
  1577. /* Deflate */
  1578. if (imax > 1) {
  1579. while(phi[imax - 1] == 0.f) {
  1580. --imax;
  1581. if (imax <= 1) {
  1582. myexit_();
  1583. }
  1584. }
  1585. }
  1586. if (imin > imax - 1) {
  1587. imin = imax - 1;
  1588. }
  1589. if (imin > 1) {
  1590. while(phi[imin - 1] != 0.f) {
  1591. --imin;
  1592. if (imin <= 1) {
  1593. myexit_();
  1594. }
  1595. }
  1596. }
  1597. /* Repeat main iteration loop */
  1598. }
  1599. /* Postprocessing: order THETA from least to greatest */
  1600. i__1 = *q;
  1601. for (i__ = 1; i__ <= i__1; ++i__) {
  1602. mini = i__;
  1603. thetamin = theta[i__];
  1604. i__2 = *q;
  1605. for (j = i__ + 1; j <= i__2; ++j) {
  1606. if (theta[j] < thetamin) {
  1607. mini = j;
  1608. thetamin = theta[j];
  1609. }
  1610. }
  1611. if (mini != i__) {
  1612. theta[mini] = theta[i__];
  1613. theta[i__] = thetamin;
  1614. if (colmajor) {
  1615. if (wantu1) {
  1616. cswap_(p, &u1[i__ * u1_dim1 + 1], &c__1, &u1[mini *
  1617. u1_dim1 + 1], &c__1);
  1618. }
  1619. if (wantu2) {
  1620. i__2 = *m - *p;
  1621. cswap_(&i__2, &u2[i__ * u2_dim1 + 1], &c__1, &u2[mini *
  1622. u2_dim1 + 1], &c__1);
  1623. }
  1624. if (wantv1t) {
  1625. cswap_(q, &v1t[i__ + v1t_dim1], ldv1t, &v1t[mini +
  1626. v1t_dim1], ldv1t);
  1627. }
  1628. if (wantv2t) {
  1629. i__2 = *m - *q;
  1630. cswap_(&i__2, &v2t[i__ + v2t_dim1], ldv2t, &v2t[mini +
  1631. v2t_dim1], ldv2t);
  1632. }
  1633. } else {
  1634. if (wantu1) {
  1635. cswap_(p, &u1[i__ + u1_dim1], ldu1, &u1[mini + u1_dim1],
  1636. ldu1);
  1637. }
  1638. if (wantu2) {
  1639. i__2 = *m - *p;
  1640. cswap_(&i__2, &u2[i__ + u2_dim1], ldu2, &u2[mini +
  1641. u2_dim1], ldu2);
  1642. }
  1643. if (wantv1t) {
  1644. cswap_(q, &v1t[i__ * v1t_dim1 + 1], &c__1, &v1t[mini *
  1645. v1t_dim1 + 1], &c__1);
  1646. }
  1647. if (wantv2t) {
  1648. i__2 = *m - *q;
  1649. cswap_(&i__2, &v2t[i__ * v2t_dim1 + 1], &c__1, &v2t[mini *
  1650. v2t_dim1 + 1], &c__1);
  1651. }
  1652. }
  1653. }
  1654. }
  1655. return 0;
  1656. /* End of CBBCSD */
  1657. } /* cbbcsd_ */