You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dbdsdc.c 33 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__9 = 9;
  487. static integer c__0 = 0;
  488. static doublereal c_b15 = 1.;
  489. static integer c__1 = 1;
  490. static doublereal c_b29 = 0.;
  491. /* > \brief \b DBDSDC */
  492. /* =========== DOCUMENTATION =========== */
  493. /* Online html documentation available at */
  494. /* http://www.netlib.org/lapack/explore-html/ */
  495. /* > \htmlonly */
  496. /* > Download DBDSDC + dependencies */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dbdsdc.
  498. f"> */
  499. /* > [TGZ]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dbdsdc.
  501. f"> */
  502. /* > [ZIP]</a> */
  503. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dbdsdc.
  504. f"> */
  505. /* > [TXT]</a> */
  506. /* > \endhtmlonly */
  507. /* Definition: */
  508. /* =========== */
  509. /* SUBROUTINE DBDSDC( UPLO, COMPQ, N, D, E, U, LDU, VT, LDVT, Q, IQ, */
  510. /* WORK, IWORK, INFO ) */
  511. /* CHARACTER COMPQ, UPLO */
  512. /* INTEGER INFO, LDU, LDVT, N */
  513. /* INTEGER IQ( * ), IWORK( * ) */
  514. /* DOUBLE PRECISION D( * ), E( * ), Q( * ), U( LDU, * ), */
  515. /* $ VT( LDVT, * ), WORK( * ) */
  516. /* > \par Purpose: */
  517. /* ============= */
  518. /* > */
  519. /* > \verbatim */
  520. /* > */
  521. /* > DBDSDC computes the singular value decomposition (SVD) of a real */
  522. /* > N-by-N (upper or lower) bidiagonal matrix B: B = U * S * VT, */
  523. /* > using a divide and conquer method, where S is a diagonal matrix */
  524. /* > with non-negative diagonal elements (the singular values of B), and */
  525. /* > U and VT are orthogonal matrices of left and right singular vectors, */
  526. /* > respectively. DBDSDC can be used to compute all singular values, */
  527. /* > and optionally, singular vectors or singular vectors in compact form. */
  528. /* > */
  529. /* > This code makes very mild assumptions about floating point */
  530. /* > arithmetic. It will work on machines with a guard digit in */
  531. /* > add/subtract, or on those binary machines without guard digits */
  532. /* > which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. */
  533. /* > It could conceivably fail on hexadecimal or decimal machines */
  534. /* > without guard digits, but we know of none. See DLASD3 for details. */
  535. /* > */
  536. /* > The code currently calls DLASDQ if singular values only are desired. */
  537. /* > However, it can be slightly modified to compute singular values */
  538. /* > using the divide and conquer method. */
  539. /* > \endverbatim */
  540. /* Arguments: */
  541. /* ========== */
  542. /* > \param[in] UPLO */
  543. /* > \verbatim */
  544. /* > UPLO is CHARACTER*1 */
  545. /* > = 'U': B is upper bidiagonal. */
  546. /* > = 'L': B is lower bidiagonal. */
  547. /* > \endverbatim */
  548. /* > */
  549. /* > \param[in] COMPQ */
  550. /* > \verbatim */
  551. /* > COMPQ is CHARACTER*1 */
  552. /* > Specifies whether singular vectors are to be computed */
  553. /* > as follows: */
  554. /* > = 'N': Compute singular values only; */
  555. /* > = 'P': Compute singular values and compute singular */
  556. /* > vectors in compact form; */
  557. /* > = 'I': Compute singular values and singular vectors. */
  558. /* > \endverbatim */
  559. /* > */
  560. /* > \param[in] N */
  561. /* > \verbatim */
  562. /* > N is INTEGER */
  563. /* > The order of the matrix B. N >= 0. */
  564. /* > \endverbatim */
  565. /* > */
  566. /* > \param[in,out] D */
  567. /* > \verbatim */
  568. /* > D is DOUBLE PRECISION array, dimension (N) */
  569. /* > On entry, the n diagonal elements of the bidiagonal matrix B. */
  570. /* > On exit, if INFO=0, the singular values of B. */
  571. /* > \endverbatim */
  572. /* > */
  573. /* > \param[in,out] E */
  574. /* > \verbatim */
  575. /* > E is DOUBLE PRECISION array, dimension (N-1) */
  576. /* > On entry, the elements of E contain the offdiagonal */
  577. /* > elements of the bidiagonal matrix whose SVD is desired. */
  578. /* > On exit, E has been destroyed. */
  579. /* > \endverbatim */
  580. /* > */
  581. /* > \param[out] U */
  582. /* > \verbatim */
  583. /* > U is DOUBLE PRECISION array, dimension (LDU,N) */
  584. /* > If COMPQ = 'I', then: */
  585. /* > On exit, if INFO = 0, U contains the left singular vectors */
  586. /* > of the bidiagonal matrix. */
  587. /* > For other values of COMPQ, U is not referenced. */
  588. /* > \endverbatim */
  589. /* > */
  590. /* > \param[in] LDU */
  591. /* > \verbatim */
  592. /* > LDU is INTEGER */
  593. /* > The leading dimension of the array U. LDU >= 1. */
  594. /* > If singular vectors are desired, then LDU >= f2cmax( 1, N ). */
  595. /* > \endverbatim */
  596. /* > */
  597. /* > \param[out] VT */
  598. /* > \verbatim */
  599. /* > VT is DOUBLE PRECISION array, dimension (LDVT,N) */
  600. /* > If COMPQ = 'I', then: */
  601. /* > On exit, if INFO = 0, VT**T contains the right singular */
  602. /* > vectors of the bidiagonal matrix. */
  603. /* > For other values of COMPQ, VT is not referenced. */
  604. /* > \endverbatim */
  605. /* > */
  606. /* > \param[in] LDVT */
  607. /* > \verbatim */
  608. /* > LDVT is INTEGER */
  609. /* > The leading dimension of the array VT. LDVT >= 1. */
  610. /* > If singular vectors are desired, then LDVT >= f2cmax( 1, N ). */
  611. /* > \endverbatim */
  612. /* > */
  613. /* > \param[out] Q */
  614. /* > \verbatim */
  615. /* > Q is DOUBLE PRECISION array, dimension (LDQ) */
  616. /* > If COMPQ = 'P', then: */
  617. /* > On exit, if INFO = 0, Q and IQ contain the left */
  618. /* > and right singular vectors in a compact form, */
  619. /* > requiring O(N log N) space instead of 2*N**2. */
  620. /* > In particular, Q contains all the DOUBLE PRECISION data in */
  621. /* > LDQ >= N*(11 + 2*SMLSIZ + 8*INT(LOG_2(N/(SMLSIZ+1)))) */
  622. /* > words of memory, where SMLSIZ is returned by ILAENV and */
  623. /* > is equal to the maximum size of the subproblems at the */
  624. /* > bottom of the computation tree (usually about 25). */
  625. /* > For other values of COMPQ, Q is not referenced. */
  626. /* > \endverbatim */
  627. /* > */
  628. /* > \param[out] IQ */
  629. /* > \verbatim */
  630. /* > IQ is INTEGER array, dimension (LDIQ) */
  631. /* > If COMPQ = 'P', then: */
  632. /* > On exit, if INFO = 0, Q and IQ contain the left */
  633. /* > and right singular vectors in a compact form, */
  634. /* > requiring O(N log N) space instead of 2*N**2. */
  635. /* > In particular, IQ contains all INTEGER data in */
  636. /* > LDIQ >= N*(3 + 3*INT(LOG_2(N/(SMLSIZ+1)))) */
  637. /* > words of memory, where SMLSIZ is returned by ILAENV and */
  638. /* > is equal to the maximum size of the subproblems at the */
  639. /* > bottom of the computation tree (usually about 25). */
  640. /* > For other values of COMPQ, IQ is not referenced. */
  641. /* > \endverbatim */
  642. /* > */
  643. /* > \param[out] WORK */
  644. /* > \verbatim */
  645. /* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
  646. /* > If COMPQ = 'N' then LWORK >= (4 * N). */
  647. /* > If COMPQ = 'P' then LWORK >= (6 * N). */
  648. /* > If COMPQ = 'I' then LWORK >= (3 * N**2 + 4 * N). */
  649. /* > \endverbatim */
  650. /* > */
  651. /* > \param[out] IWORK */
  652. /* > \verbatim */
  653. /* > IWORK is INTEGER array, dimension (8*N) */
  654. /* > \endverbatim */
  655. /* > */
  656. /* > \param[out] INFO */
  657. /* > \verbatim */
  658. /* > INFO is INTEGER */
  659. /* > = 0: successful exit. */
  660. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  661. /* > > 0: The algorithm failed to compute a singular value. */
  662. /* > The update process of divide and conquer failed. */
  663. /* > \endverbatim */
  664. /* Authors: */
  665. /* ======== */
  666. /* > \author Univ. of Tennessee */
  667. /* > \author Univ. of California Berkeley */
  668. /* > \author Univ. of Colorado Denver */
  669. /* > \author NAG Ltd. */
  670. /* > \date June 2016 */
  671. /* > \ingroup auxOTHERcomputational */
  672. /* > \par Contributors: */
  673. /* ================== */
  674. /* > */
  675. /* > Ming Gu and Huan Ren, Computer Science Division, University of */
  676. /* > California at Berkeley, USA */
  677. /* > */
  678. /* ===================================================================== */
  679. /* Subroutine */ void dbdsdc_(char *uplo, char *compq, integer *n, doublereal *
  680. d__, doublereal *e, doublereal *u, integer *ldu, doublereal *vt,
  681. integer *ldvt, doublereal *q, integer *iq, doublereal *work, integer *
  682. iwork, integer *info)
  683. {
  684. /* System generated locals */
  685. integer u_dim1, u_offset, vt_dim1, vt_offset, i__1, i__2;
  686. doublereal d__1;
  687. /* Local variables */
  688. integer difl, difr, ierr, perm, mlvl, sqre, i__, j, k;
  689. doublereal p, r__;
  690. integer z__;
  691. extern logical lsame_(char *, char *);
  692. extern /* Subroutine */ void dlasr_(char *, char *, char *, integer *,
  693. integer *, doublereal *, doublereal *, doublereal *, integer *), dcopy_(integer *, doublereal *, integer *
  694. , doublereal *, integer *), dswap_(integer *, doublereal *,
  695. integer *, doublereal *, integer *);
  696. integer poles, iuplo, nsize, start;
  697. extern /* Subroutine */ void dlasd0_(integer *, integer *, doublereal *,
  698. doublereal *, doublereal *, integer *, doublereal *, integer *,
  699. integer *, integer *, doublereal *, integer *);
  700. integer ic, ii, kk;
  701. doublereal cs;
  702. extern doublereal dlamch_(char *);
  703. extern /* Subroutine */ void dlasda_(integer *, integer *, integer *,
  704. integer *, doublereal *, doublereal *, doublereal *, integer *,
  705. doublereal *, integer *, doublereal *, doublereal *, doublereal *,
  706. doublereal *, integer *, integer *, integer *, integer *,
  707. doublereal *, doublereal *, doublereal *, doublereal *, integer *,
  708. integer *);
  709. integer is, iu;
  710. doublereal sn;
  711. extern /* Subroutine */ void dlascl_(char *, integer *, integer *,
  712. doublereal *, doublereal *, integer *, integer *, doublereal *,
  713. integer *, integer *), dlasdq_(char *, integer *, integer
  714. *, integer *, integer *, integer *, doublereal *, doublereal *,
  715. doublereal *, integer *, doublereal *, integer *, doublereal *,
  716. integer *, doublereal *, integer *), dlaset_(char *,
  717. integer *, integer *, doublereal *, doublereal *, doublereal *,
  718. integer *), dlartg_(doublereal *, doublereal *,
  719. doublereal *, doublereal *, doublereal *);
  720. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  721. integer *, integer *, ftnlen, ftnlen);
  722. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  723. integer givcol;
  724. extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
  725. integer icompq;
  726. doublereal orgnrm;
  727. integer givnum, givptr, nm1, qstart, smlsiz, wstart, smlszp;
  728. doublereal eps;
  729. integer ivt;
  730. /* -- LAPACK computational routine (version 3.7.1) -- */
  731. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  732. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  733. /* June 2016 */
  734. /* ===================================================================== */
  735. /* Changed dimension statement in comment describing E from (N) to */
  736. /* (N-1). Sven, 17 Feb 05. */
  737. /* ===================================================================== */
  738. /* Test the input parameters. */
  739. /* Parameter adjustments */
  740. --d__;
  741. --e;
  742. u_dim1 = *ldu;
  743. u_offset = 1 + u_dim1 * 1;
  744. u -= u_offset;
  745. vt_dim1 = *ldvt;
  746. vt_offset = 1 + vt_dim1 * 1;
  747. vt -= vt_offset;
  748. --q;
  749. --iq;
  750. --work;
  751. --iwork;
  752. /* Function Body */
  753. *info = 0;
  754. iuplo = 0;
  755. if (lsame_(uplo, "U")) {
  756. iuplo = 1;
  757. }
  758. if (lsame_(uplo, "L")) {
  759. iuplo = 2;
  760. }
  761. if (lsame_(compq, "N")) {
  762. icompq = 0;
  763. } else if (lsame_(compq, "P")) {
  764. icompq = 1;
  765. } else if (lsame_(compq, "I")) {
  766. icompq = 2;
  767. } else {
  768. icompq = -1;
  769. }
  770. if (iuplo == 0) {
  771. *info = -1;
  772. } else if (icompq < 0) {
  773. *info = -2;
  774. } else if (*n < 0) {
  775. *info = -3;
  776. } else if (*ldu < 1 || icompq == 2 && *ldu < *n) {
  777. *info = -7;
  778. } else if (*ldvt < 1 || icompq == 2 && *ldvt < *n) {
  779. *info = -9;
  780. }
  781. if (*info != 0) {
  782. i__1 = -(*info);
  783. xerbla_("DBDSDC", &i__1, (ftnlen)6);
  784. return;
  785. }
  786. /* Quick return if possible */
  787. if (*n == 0) {
  788. return;
  789. }
  790. smlsiz = ilaenv_(&c__9, "DBDSDC", " ", &c__0, &c__0, &c__0, &c__0, (
  791. ftnlen)6, (ftnlen)1);
  792. if (*n == 1) {
  793. if (icompq == 1) {
  794. q[1] = d_sign(&c_b15, &d__[1]);
  795. q[smlsiz * *n + 1] = 1.;
  796. } else if (icompq == 2) {
  797. u[u_dim1 + 1] = d_sign(&c_b15, &d__[1]);
  798. vt[vt_dim1 + 1] = 1.;
  799. }
  800. d__[1] = abs(d__[1]);
  801. return;
  802. }
  803. nm1 = *n - 1;
  804. /* If matrix lower bidiagonal, rotate to be upper bidiagonal */
  805. /* by applying Givens rotations on the left */
  806. wstart = 1;
  807. qstart = 3;
  808. if (icompq == 1) {
  809. dcopy_(n, &d__[1], &c__1, &q[1], &c__1);
  810. i__1 = *n - 1;
  811. dcopy_(&i__1, &e[1], &c__1, &q[*n + 1], &c__1);
  812. }
  813. if (iuplo == 2) {
  814. qstart = 5;
  815. if (icompq == 2) {
  816. wstart = (*n << 1) - 1;
  817. }
  818. i__1 = *n - 1;
  819. for (i__ = 1; i__ <= i__1; ++i__) {
  820. dlartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
  821. d__[i__] = r__;
  822. e[i__] = sn * d__[i__ + 1];
  823. d__[i__ + 1] = cs * d__[i__ + 1];
  824. if (icompq == 1) {
  825. q[i__ + (*n << 1)] = cs;
  826. q[i__ + *n * 3] = sn;
  827. } else if (icompq == 2) {
  828. work[i__] = cs;
  829. work[nm1 + i__] = -sn;
  830. }
  831. /* L10: */
  832. }
  833. }
  834. /* If ICOMPQ = 0, use DLASDQ to compute the singular values. */
  835. if (icompq == 0) {
  836. /* Ignore WSTART, instead using WORK( 1 ), since the two vectors */
  837. /* for CS and -SN above are added only if ICOMPQ == 2, */
  838. /* and adding them exceeds documented WORK size of 4*n. */
  839. dlasdq_("U", &c__0, n, &c__0, &c__0, &c__0, &d__[1], &e[1], &vt[
  840. vt_offset], ldvt, &u[u_offset], ldu, &u[u_offset], ldu, &work[
  841. 1], info);
  842. goto L40;
  843. }
  844. /* If N is smaller than the minimum divide size SMLSIZ, then solve */
  845. /* the problem with another solver. */
  846. if (*n <= smlsiz) {
  847. if (icompq == 2) {
  848. dlaset_("A", n, n, &c_b29, &c_b15, &u[u_offset], ldu);
  849. dlaset_("A", n, n, &c_b29, &c_b15, &vt[vt_offset], ldvt);
  850. dlasdq_("U", &c__0, n, n, n, &c__0, &d__[1], &e[1], &vt[vt_offset]
  851. , ldvt, &u[u_offset], ldu, &u[u_offset], ldu, &work[
  852. wstart], info);
  853. } else if (icompq == 1) {
  854. iu = 1;
  855. ivt = iu + *n;
  856. dlaset_("A", n, n, &c_b29, &c_b15, &q[iu + (qstart - 1) * *n], n);
  857. dlaset_("A", n, n, &c_b29, &c_b15, &q[ivt + (qstart - 1) * *n], n);
  858. dlasdq_("U", &c__0, n, n, n, &c__0, &d__[1], &e[1], &q[ivt + (
  859. qstart - 1) * *n], n, &q[iu + (qstart - 1) * *n], n, &q[
  860. iu + (qstart - 1) * *n], n, &work[wstart], info);
  861. }
  862. goto L40;
  863. }
  864. if (icompq == 2) {
  865. dlaset_("A", n, n, &c_b29, &c_b15, &u[u_offset], ldu);
  866. dlaset_("A", n, n, &c_b29, &c_b15, &vt[vt_offset], ldvt);
  867. }
  868. /* Scale. */
  869. orgnrm = dlanst_("M", n, &d__[1], &e[1]);
  870. if (orgnrm == 0.) {
  871. return;
  872. }
  873. dlascl_("G", &c__0, &c__0, &orgnrm, &c_b15, n, &c__1, &d__[1], n, &ierr);
  874. dlascl_("G", &c__0, &c__0, &orgnrm, &c_b15, &nm1, &c__1, &e[1], &nm1, &
  875. ierr);
  876. eps = dlamch_("Epsilon") * .9;
  877. mlvl = (integer) (log((doublereal) (*n) / (doublereal) (smlsiz + 1)) /
  878. log(2.)) + 1;
  879. smlszp = smlsiz + 1;
  880. if (icompq == 1) {
  881. iu = 1;
  882. ivt = smlsiz + 1;
  883. difl = ivt + smlszp;
  884. difr = difl + mlvl;
  885. z__ = difr + (mlvl << 1);
  886. ic = z__ + mlvl;
  887. is = ic + 1;
  888. poles = is + 1;
  889. givnum = poles + (mlvl << 1);
  890. k = 1;
  891. givptr = 2;
  892. perm = 3;
  893. givcol = perm + mlvl;
  894. }
  895. i__1 = *n;
  896. for (i__ = 1; i__ <= i__1; ++i__) {
  897. if ((d__1 = d__[i__], abs(d__1)) < eps) {
  898. d__[i__] = d_sign(&eps, &d__[i__]);
  899. }
  900. /* L20: */
  901. }
  902. start = 1;
  903. sqre = 0;
  904. i__1 = nm1;
  905. for (i__ = 1; i__ <= i__1; ++i__) {
  906. if ((d__1 = e[i__], abs(d__1)) < eps || i__ == nm1) {
  907. /* Subproblem found. First determine its size and then */
  908. /* apply divide and conquer on it. */
  909. if (i__ < nm1) {
  910. /* A subproblem with E(I) small for I < NM1. */
  911. nsize = i__ - start + 1;
  912. } else if ((d__1 = e[i__], abs(d__1)) >= eps) {
  913. /* A subproblem with E(NM1) not too small but I = NM1. */
  914. nsize = *n - start + 1;
  915. } else {
  916. /* A subproblem with E(NM1) small. This implies an */
  917. /* 1-by-1 subproblem at D(N). Solve this 1-by-1 problem */
  918. /* first. */
  919. nsize = i__ - start + 1;
  920. if (icompq == 2) {
  921. u[*n + *n * u_dim1] = d_sign(&c_b15, &d__[*n]);
  922. vt[*n + *n * vt_dim1] = 1.;
  923. } else if (icompq == 1) {
  924. q[*n + (qstart - 1) * *n] = d_sign(&c_b15, &d__[*n]);
  925. q[*n + (smlsiz + qstart - 1) * *n] = 1.;
  926. }
  927. d__[*n] = (d__1 = d__[*n], abs(d__1));
  928. }
  929. if (icompq == 2) {
  930. dlasd0_(&nsize, &sqre, &d__[start], &e[start], &u[start +
  931. start * u_dim1], ldu, &vt[start + start * vt_dim1],
  932. ldvt, &smlsiz, &iwork[1], &work[wstart], info);
  933. } else {
  934. dlasda_(&icompq, &smlsiz, &nsize, &sqre, &d__[start], &e[
  935. start], &q[start + (iu + qstart - 2) * *n], n, &q[
  936. start + (ivt + qstart - 2) * *n], &iq[start + k * *n],
  937. &q[start + (difl + qstart - 2) * *n], &q[start + (
  938. difr + qstart - 2) * *n], &q[start + (z__ + qstart -
  939. 2) * *n], &q[start + (poles + qstart - 2) * *n], &iq[
  940. start + givptr * *n], &iq[start + givcol * *n], n, &
  941. iq[start + perm * *n], &q[start + (givnum + qstart -
  942. 2) * *n], &q[start + (ic + qstart - 2) * *n], &q[
  943. start + (is + qstart - 2) * *n], &work[wstart], &
  944. iwork[1], info);
  945. }
  946. if (*info != 0) {
  947. return;
  948. }
  949. start = i__ + 1;
  950. }
  951. /* L30: */
  952. }
  953. /* Unscale */
  954. dlascl_("G", &c__0, &c__0, &c_b15, &orgnrm, n, &c__1, &d__[1], n, &ierr);
  955. L40:
  956. /* Use Selection Sort to minimize swaps of singular vectors */
  957. i__1 = *n;
  958. for (ii = 2; ii <= i__1; ++ii) {
  959. i__ = ii - 1;
  960. kk = i__;
  961. p = d__[i__];
  962. i__2 = *n;
  963. for (j = ii; j <= i__2; ++j) {
  964. if (d__[j] > p) {
  965. kk = j;
  966. p = d__[j];
  967. }
  968. /* L50: */
  969. }
  970. if (kk != i__) {
  971. d__[kk] = d__[i__];
  972. d__[i__] = p;
  973. if (icompq == 1) {
  974. iq[i__] = kk;
  975. } else if (icompq == 2) {
  976. dswap_(n, &u[i__ * u_dim1 + 1], &c__1, &u[kk * u_dim1 + 1], &
  977. c__1);
  978. dswap_(n, &vt[i__ + vt_dim1], ldvt, &vt[kk + vt_dim1], ldvt);
  979. }
  980. } else if (icompq == 1) {
  981. iq[i__] = i__;
  982. }
  983. /* L60: */
  984. }
  985. /* If ICOMPQ = 1, use IQ(N,1) as the indicator for UPLO */
  986. if (icompq == 1) {
  987. if (iuplo == 1) {
  988. iq[*n] = 1;
  989. } else {
  990. iq[*n] = 0;
  991. }
  992. }
  993. /* If B is lower bidiagonal, update U by those Givens rotations */
  994. /* which rotated B to be upper bidiagonal */
  995. if (iuplo == 2 && icompq == 2) {
  996. dlasr_("L", "V", "B", n, n, &work[1], &work[*n], &u[u_offset], ldu);
  997. }
  998. return;
  999. /* End of DBDSDC */
  1000. } /* dbdsdc_ */