You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zunm22.c 28 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle_() continue;
  235. #define myceiling_(w) {ceil(w)}
  236. #define myhuge_(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static doublecomplex c_b1 = {1.,0.};
  487. /* > \brief \b ZUNM22 multiplies a general matrix by a banded unitary matrix. */
  488. /* =========== DOCUMENTATION =========== */
  489. /* Online html documentation available at */
  490. /* http://www.netlib.org/lapack/explore-html/ */
  491. /* > \htmlonly */
  492. /* > Download ZUNM22 + dependencies */
  493. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zunm22.
  494. f"> */
  495. /* > [TGZ]</a> */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zunm22.
  497. f"> */
  498. /* > [ZIP]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zunm22.
  500. f"> */
  501. /* > [TXT]</a> */
  502. /* > \endhtmlonly */
  503. /* Definition: */
  504. /* =========== */
  505. /* SUBROUTINE ZUNM22( SIDE, TRANS, M, N, N1, N2, Q, LDQ, C, LDC, */
  506. /* $ WORK, LWORK, INFO ) */
  507. /* CHARACTER SIDE, TRANS */
  508. /* INTEGER M, N, N1, N2, LDQ, LDC, LWORK, INFO */
  509. /* COMPLEX*16 Q( LDQ, * ), C( LDC, * ), WORK( * ) */
  510. /* > \par Purpose */
  511. /* ============ */
  512. /* > */
  513. /* > \verbatim */
  514. /* > */
  515. /* > ZUNM22 overwrites the general complex M-by-N matrix C with */
  516. /* > */
  517. /* > SIDE = 'L' SIDE = 'R' */
  518. /* > TRANS = 'N': Q * C C * Q */
  519. /* > TRANS = 'C': Q**H * C C * Q**H */
  520. /* > */
  521. /* > where Q is a complex unitary matrix of order NQ, with NQ = M if */
  522. /* > SIDE = 'L' and NQ = N if SIDE = 'R'. */
  523. /* > The unitary matrix Q processes a 2-by-2 block structure */
  524. /* > */
  525. /* > [ Q11 Q12 ] */
  526. /* > Q = [ ] */
  527. /* > [ Q21 Q22 ], */
  528. /* > */
  529. /* > where Q12 is an N1-by-N1 lower triangular matrix and Q21 is an */
  530. /* > N2-by-N2 upper triangular matrix. */
  531. /* > \endverbatim */
  532. /* Arguments: */
  533. /* ========== */
  534. /* > \param[in] SIDE */
  535. /* > \verbatim */
  536. /* > SIDE is CHARACTER*1 */
  537. /* > = 'L': apply Q or Q**H from the Left; */
  538. /* > = 'R': apply Q or Q**H from the Right. */
  539. /* > \endverbatim */
  540. /* > */
  541. /* > \param[in] TRANS */
  542. /* > \verbatim */
  543. /* > TRANS is CHARACTER*1 */
  544. /* > = 'N': apply Q (No transpose); */
  545. /* > = 'C': apply Q**H (Conjugate transpose). */
  546. /* > \endverbatim */
  547. /* > */
  548. /* > \param[in] M */
  549. /* > \verbatim */
  550. /* > M is INTEGER */
  551. /* > The number of rows of the matrix C. M >= 0. */
  552. /* > \endverbatim */
  553. /* > */
  554. /* > \param[in] N */
  555. /* > \verbatim */
  556. /* > N is INTEGER */
  557. /* > The number of columns of the matrix C. N >= 0. */
  558. /* > \endverbatim */
  559. /* > */
  560. /* > \param[in] N1 */
  561. /* > \param[in] N2 */
  562. /* > \verbatim */
  563. /* > N1 is INTEGER */
  564. /* > N2 is INTEGER */
  565. /* > The dimension of Q12 and Q21, respectively. N1, N2 >= 0. */
  566. /* > The following requirement must be satisfied: */
  567. /* > N1 + N2 = M if SIDE = 'L' and N1 + N2 = N if SIDE = 'R'. */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[in] Q */
  571. /* > \verbatim */
  572. /* > Q is COMPLEX*16 array, dimension */
  573. /* > (LDQ,M) if SIDE = 'L' */
  574. /* > (LDQ,N) if SIDE = 'R' */
  575. /* > \endverbatim */
  576. /* > */
  577. /* > \param[in] LDQ */
  578. /* > \verbatim */
  579. /* > LDQ is INTEGER */
  580. /* > The leading dimension of the array Q. */
  581. /* > LDQ >= f2cmax(1,M) if SIDE = 'L'; LDQ >= f2cmax(1,N) if SIDE = 'R'. */
  582. /* > \endverbatim */
  583. /* > */
  584. /* > \param[in,out] C */
  585. /* > \verbatim */
  586. /* > C is COMPLEX*16 array, dimension (LDC,N) */
  587. /* > On entry, the M-by-N matrix C. */
  588. /* > On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q. */
  589. /* > \endverbatim */
  590. /* > */
  591. /* > \param[in] LDC */
  592. /* > \verbatim */
  593. /* > LDC is INTEGER */
  594. /* > The leading dimension of the array C. LDC >= f2cmax(1,M). */
  595. /* > \endverbatim */
  596. /* > */
  597. /* > \param[out] WORK */
  598. /* > \verbatim */
  599. /* > WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) */
  600. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  601. /* > \endverbatim */
  602. /* > */
  603. /* > \param[in] LWORK */
  604. /* > \verbatim */
  605. /* > LWORK is INTEGER */
  606. /* > The dimension of the array WORK. */
  607. /* > If SIDE = 'L', LWORK >= f2cmax(1,N); */
  608. /* > if SIDE = 'R', LWORK >= f2cmax(1,M). */
  609. /* > For optimum performance LWORK >= M*N. */
  610. /* > */
  611. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  612. /* > only calculates the optimal size of the WORK array, returns */
  613. /* > this value as the first entry of the WORK array, and no error */
  614. /* > message related to LWORK is issued by XERBLA. */
  615. /* > \endverbatim */
  616. /* > */
  617. /* > \param[out] INFO */
  618. /* > \verbatim */
  619. /* > INFO is INTEGER */
  620. /* > = 0: successful exit */
  621. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  622. /* > \endverbatim */
  623. /* Authors: */
  624. /* ======== */
  625. /* > \author Univ. of Tennessee */
  626. /* > \author Univ. of California Berkeley */
  627. /* > \author Univ. of Colorado Denver */
  628. /* > \author NAG Ltd. */
  629. /* > \date January 2015 */
  630. /* > \ingroup complexOTHERcomputational */
  631. /* ===================================================================== */
  632. /* Subroutine */ void zunm22_(char *side, char *trans, integer *m, integer *n,
  633. integer *n1, integer *n2, doublecomplex *q, integer *ldq,
  634. doublecomplex *c__, integer *ldc, doublecomplex *work, integer *lwork,
  635. integer *info)
  636. {
  637. /* System generated locals */
  638. integer q_dim1, q_offset, c_dim1, c_offset, i__1, i__2, i__3, i__4;
  639. doublecomplex z__1;
  640. /* Local variables */
  641. logical left;
  642. integer i__;
  643. extern logical lsame_(char *, char *);
  644. extern /* Subroutine */ void zgemm_(char *, char *, integer *, integer *,
  645. integer *, doublecomplex *, doublecomplex *, integer *,
  646. doublecomplex *, integer *, doublecomplex *, doublecomplex *,
  647. integer *), ztrmm_(char *, char *, char *, char *,
  648. integer *, integer *, doublecomplex *, doublecomplex *, integer *
  649. , doublecomplex *, integer *);
  650. integer nb, nq, nw;
  651. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  652. logical notran;
  653. integer ldwork;
  654. extern /* Subroutine */ void zlacpy_(char *, integer *, integer *,
  655. doublecomplex *, integer *, doublecomplex *, integer *);
  656. integer lwkopt;
  657. logical lquery;
  658. integer len;
  659. /* -- LAPACK computational routine (version 3.7.1) -- */
  660. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  661. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  662. /* January 2015 */
  663. /* ===================================================================== */
  664. /* Test the input arguments */
  665. /* Parameter adjustments */
  666. q_dim1 = *ldq;
  667. q_offset = 1 + q_dim1 * 1;
  668. q -= q_offset;
  669. c_dim1 = *ldc;
  670. c_offset = 1 + c_dim1 * 1;
  671. c__ -= c_offset;
  672. --work;
  673. /* Function Body */
  674. *info = 0;
  675. left = lsame_(side, "L");
  676. notran = lsame_(trans, "N");
  677. lquery = *lwork == -1;
  678. /* NQ is the order of Q; */
  679. /* NW is the minimum dimension of WORK. */
  680. if (left) {
  681. nq = *m;
  682. } else {
  683. nq = *n;
  684. }
  685. nw = nq;
  686. if (*n1 == 0 || *n2 == 0) {
  687. nw = 1;
  688. }
  689. if (! left && ! lsame_(side, "R")) {
  690. *info = -1;
  691. } else if (! lsame_(trans, "N") && ! lsame_(trans,
  692. "C")) {
  693. *info = -2;
  694. } else if (*m < 0) {
  695. *info = -3;
  696. } else if (*n < 0) {
  697. *info = -4;
  698. } else if (*n1 < 0 || *n1 + *n2 != nq) {
  699. *info = -5;
  700. } else if (*n2 < 0) {
  701. *info = -6;
  702. } else if (*ldq < f2cmax(1,nq)) {
  703. *info = -8;
  704. } else if (*ldc < f2cmax(1,*m)) {
  705. *info = -10;
  706. } else if (*lwork < nw && ! lquery) {
  707. *info = -12;
  708. }
  709. if (*info == 0) {
  710. lwkopt = *m * *n;
  711. z__1.r = (doublereal) lwkopt, z__1.i = 0.;
  712. work[1].r = z__1.r, work[1].i = z__1.i;
  713. }
  714. if (*info != 0) {
  715. i__1 = -(*info);
  716. xerbla_("ZUNM22", &i__1, (ftnlen)6);
  717. return;
  718. } else if (lquery) {
  719. return;
  720. }
  721. /* Quick return if possible */
  722. if (*m == 0 || *n == 0) {
  723. work[1].r = 1., work[1].i = 0.;
  724. return;
  725. }
  726. /* Degenerate cases (N1 = 0 or N2 = 0) are handled using ZTRMM. */
  727. if (*n1 == 0) {
  728. ztrmm_(side, "Upper", trans, "Non-Unit", m, n, &c_b1, &q[q_offset],
  729. ldq, &c__[c_offset], ldc);
  730. work[1].r = 1., work[1].i = 0.;
  731. return;
  732. } else if (*n2 == 0) {
  733. ztrmm_(side, "Lower", trans, "Non-Unit", m, n, &c_b1, &q[q_offset],
  734. ldq, &c__[c_offset], ldc);
  735. work[1].r = 1., work[1].i = 0.;
  736. return;
  737. }
  738. /* Compute the largest chunk size available from the workspace. */
  739. /* Computing MAX */
  740. i__1 = 1, i__2 = f2cmin(*lwork,lwkopt) / nq;
  741. nb = f2cmax(i__1,i__2);
  742. if (left) {
  743. if (notran) {
  744. i__1 = *n;
  745. i__2 = nb;
  746. for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
  747. /* Computing MIN */
  748. i__3 = nb, i__4 = *n - i__ + 1;
  749. len = f2cmin(i__3,i__4);
  750. ldwork = *m;
  751. /* Multiply bottom part of C by Q12. */
  752. zlacpy_("All", n1, &len, &c__[*n2 + 1 + i__ * c_dim1], ldc, &
  753. work[1], &ldwork);
  754. ztrmm_("Left", "Lower", "No Transpose", "Non-Unit", n1, &len,
  755. &c_b1, &q[(*n2 + 1) * q_dim1 + 1], ldq, &work[1], &
  756. ldwork);
  757. /* Multiply top part of C by Q11. */
  758. zgemm_("No Transpose", "No Transpose", n1, &len, n2, &c_b1, &
  759. q[q_offset], ldq, &c__[i__ * c_dim1 + 1], ldc, &c_b1,
  760. &work[1], &ldwork);
  761. /* Multiply top part of C by Q21. */
  762. zlacpy_("All", n2, &len, &c__[i__ * c_dim1 + 1], ldc, &work[*
  763. n1 + 1], &ldwork);
  764. ztrmm_("Left", "Upper", "No Transpose", "Non-Unit", n2, &len,
  765. &c_b1, &q[*n1 + 1 + q_dim1], ldq, &work[*n1 + 1], &
  766. ldwork);
  767. /* Multiply bottom part of C by Q22. */
  768. zgemm_("No Transpose", "No Transpose", n2, &len, n1, &c_b1, &
  769. q[*n1 + 1 + (*n2 + 1) * q_dim1], ldq, &c__[*n2 + 1 +
  770. i__ * c_dim1], ldc, &c_b1, &work[*n1 + 1], &ldwork);
  771. /* Copy everything back. */
  772. zlacpy_("All", m, &len, &work[1], &ldwork, &c__[i__ * c_dim1
  773. + 1], ldc);
  774. }
  775. } else {
  776. i__2 = *n;
  777. i__1 = nb;
  778. for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) {
  779. /* Computing MIN */
  780. i__3 = nb, i__4 = *n - i__ + 1;
  781. len = f2cmin(i__3,i__4);
  782. ldwork = *m;
  783. /* Multiply bottom part of C by Q21**H. */
  784. zlacpy_("All", n2, &len, &c__[*n1 + 1 + i__ * c_dim1], ldc, &
  785. work[1], &ldwork);
  786. ztrmm_("Left", "Upper", "Conjugate", "Non-Unit", n2, &len, &
  787. c_b1, &q[*n1 + 1 + q_dim1], ldq, &work[1], &ldwork);
  788. /* Multiply top part of C by Q11**H. */
  789. zgemm_("Conjugate", "No Transpose", n2, &len, n1, &c_b1, &q[
  790. q_offset], ldq, &c__[i__ * c_dim1 + 1], ldc, &c_b1, &
  791. work[1], &ldwork);
  792. /* Multiply top part of C by Q12**H. */
  793. zlacpy_("All", n1, &len, &c__[i__ * c_dim1 + 1], ldc, &work[*
  794. n2 + 1], &ldwork);
  795. ztrmm_("Left", "Lower", "Conjugate", "Non-Unit", n1, &len, &
  796. c_b1, &q[(*n2 + 1) * q_dim1 + 1], ldq, &work[*n2 + 1],
  797. &ldwork);
  798. /* Multiply bottom part of C by Q22**H. */
  799. zgemm_("Conjugate", "No Transpose", n1, &len, n2, &c_b1, &q[*
  800. n1 + 1 + (*n2 + 1) * q_dim1], ldq, &c__[*n1 + 1 + i__
  801. * c_dim1], ldc, &c_b1, &work[*n2 + 1], &ldwork);
  802. /* Copy everything back. */
  803. zlacpy_("All", m, &len, &work[1], &ldwork, &c__[i__ * c_dim1
  804. + 1], ldc);
  805. }
  806. }
  807. } else {
  808. if (notran) {
  809. i__1 = *m;
  810. i__2 = nb;
  811. for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
  812. /* Computing MIN */
  813. i__3 = nb, i__4 = *m - i__ + 1;
  814. len = f2cmin(i__3,i__4);
  815. ldwork = len;
  816. /* Multiply right part of C by Q21. */
  817. zlacpy_("All", &len, n2, &c__[i__ + (*n1 + 1) * c_dim1], ldc,
  818. &work[1], &ldwork);
  819. ztrmm_("Right", "Upper", "No Transpose", "Non-Unit", &len, n2,
  820. &c_b1, &q[*n1 + 1 + q_dim1], ldq, &work[1], &ldwork);
  821. /* Multiply left part of C by Q11. */
  822. zgemm_("No Transpose", "No Transpose", &len, n2, n1, &c_b1, &
  823. c__[i__ + c_dim1], ldc, &q[q_offset], ldq, &c_b1, &
  824. work[1], &ldwork);
  825. /* Multiply left part of C by Q12. */
  826. zlacpy_("All", &len, n1, &c__[i__ + c_dim1], ldc, &work[*n2 *
  827. ldwork + 1], &ldwork);
  828. ztrmm_("Right", "Lower", "No Transpose", "Non-Unit", &len, n1,
  829. &c_b1, &q[(*n2 + 1) * q_dim1 + 1], ldq, &work[*n2 *
  830. ldwork + 1], &ldwork);
  831. /* Multiply right part of C by Q22. */
  832. zgemm_("No Transpose", "No Transpose", &len, n1, n2, &c_b1, &
  833. c__[i__ + (*n1 + 1) * c_dim1], ldc, &q[*n1 + 1 + (*n2
  834. + 1) * q_dim1], ldq, &c_b1, &work[*n2 * ldwork + 1], &
  835. ldwork);
  836. /* Copy everything back. */
  837. zlacpy_("All", &len, n, &work[1], &ldwork, &c__[i__ + c_dim1],
  838. ldc);
  839. }
  840. } else {
  841. i__2 = *m;
  842. i__1 = nb;
  843. for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) {
  844. /* Computing MIN */
  845. i__3 = nb, i__4 = *m - i__ + 1;
  846. len = f2cmin(i__3,i__4);
  847. ldwork = len;
  848. /* Multiply right part of C by Q12**H. */
  849. zlacpy_("All", &len, n1, &c__[i__ + (*n2 + 1) * c_dim1], ldc,
  850. &work[1], &ldwork);
  851. ztrmm_("Right", "Lower", "Conjugate", "Non-Unit", &len, n1, &
  852. c_b1, &q[(*n2 + 1) * q_dim1 + 1], ldq, &work[1], &
  853. ldwork);
  854. /* Multiply left part of C by Q11**H. */
  855. zgemm_("No Transpose", "Conjugate", &len, n1, n2, &c_b1, &c__[
  856. i__ + c_dim1], ldc, &q[q_offset], ldq, &c_b1, &work[1]
  857. , &ldwork);
  858. /* Multiply left part of C by Q21**H. */
  859. zlacpy_("All", &len, n2, &c__[i__ + c_dim1], ldc, &work[*n1 *
  860. ldwork + 1], &ldwork);
  861. ztrmm_("Right", "Upper", "Conjugate", "Non-Unit", &len, n2, &
  862. c_b1, &q[*n1 + 1 + q_dim1], ldq, &work[*n1 * ldwork +
  863. 1], &ldwork);
  864. /* Multiply right part of C by Q22**H. */
  865. zgemm_("No Transpose", "Conjugate", &len, n2, n1, &c_b1, &c__[
  866. i__ + (*n2 + 1) * c_dim1], ldc, &q[*n1 + 1 + (*n2 + 1)
  867. * q_dim1], ldq, &c_b1, &work[*n1 * ldwork + 1], &
  868. ldwork);
  869. /* Copy everything back. */
  870. zlacpy_("All", &len, n, &work[1], &ldwork, &c__[i__ + c_dim1],
  871. ldc);
  872. }
  873. }
  874. }
  875. z__1.r = (doublereal) lwkopt, z__1.i = 0.;
  876. work[1].r = z__1.r, work[1].i = z__1.i;
  877. return;
  878. /* End of ZUNM22 */
  879. } /* zunm22_ */