You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cgelsd.c 40 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static complex c_b1 = {0.f,0.f};
  487. static integer c__9 = 9;
  488. static integer c__0 = 0;
  489. static integer c__6 = 6;
  490. static integer c_n1 = -1;
  491. static integer c__1 = 1;
  492. static real c_b80 = 0.f;
  493. /* > \brief <b> CGELSD computes the minimum-norm solution to a linear least squares problem for GE matrices</b
  494. > */
  495. /* =========== DOCUMENTATION =========== */
  496. /* Online html documentation available at */
  497. /* http://www.netlib.org/lapack/explore-html/ */
  498. /* > \htmlonly */
  499. /* > Download CGELSD + dependencies */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgelsd.
  501. f"> */
  502. /* > [TGZ]</a> */
  503. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgelsd.
  504. f"> */
  505. /* > [ZIP]</a> */
  506. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgelsd.
  507. f"> */
  508. /* > [TXT]</a> */
  509. /* > \endhtmlonly */
  510. /* Definition: */
  511. /* =========== */
  512. /* SUBROUTINE CGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK, */
  513. /* WORK, LWORK, RWORK, IWORK, INFO ) */
  514. /* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS, RANK */
  515. /* REAL RCOND */
  516. /* INTEGER IWORK( * ) */
  517. /* REAL RWORK( * ), S( * ) */
  518. /* COMPLEX A( LDA, * ), B( LDB, * ), WORK( * ) */
  519. /* > \par Purpose: */
  520. /* ============= */
  521. /* > */
  522. /* > \verbatim */
  523. /* > */
  524. /* > CGELSD computes the minimum-norm solution to a real linear least */
  525. /* > squares problem: */
  526. /* > minimize 2-norm(| b - A*x |) */
  527. /* > using the singular value decomposition (SVD) of A. A is an M-by-N */
  528. /* > matrix which may be rank-deficient. */
  529. /* > */
  530. /* > Several right hand side vectors b and solution vectors x can be */
  531. /* > handled in a single call; they are stored as the columns of the */
  532. /* > M-by-NRHS right hand side matrix B and the N-by-NRHS solution */
  533. /* > matrix X. */
  534. /* > */
  535. /* > The problem is solved in three steps: */
  536. /* > (1) Reduce the coefficient matrix A to bidiagonal form with */
  537. /* > Householder transformations, reducing the original problem */
  538. /* > into a "bidiagonal least squares problem" (BLS) */
  539. /* > (2) Solve the BLS using a divide and conquer approach. */
  540. /* > (3) Apply back all the Householder transformations to solve */
  541. /* > the original least squares problem. */
  542. /* > */
  543. /* > The effective rank of A is determined by treating as zero those */
  544. /* > singular values which are less than RCOND times the largest singular */
  545. /* > value. */
  546. /* > */
  547. /* > The divide and conquer algorithm makes very mild assumptions about */
  548. /* > floating point arithmetic. It will work on machines with a guard */
  549. /* > digit in add/subtract, or on those binary machines without guard */
  550. /* > digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */
  551. /* > Cray-2. It could conceivably fail on hexadecimal or decimal machines */
  552. /* > without guard digits, but we know of none. */
  553. /* > \endverbatim */
  554. /* Arguments: */
  555. /* ========== */
  556. /* > \param[in] M */
  557. /* > \verbatim */
  558. /* > M is INTEGER */
  559. /* > The number of rows of the matrix A. M >= 0. */
  560. /* > \endverbatim */
  561. /* > */
  562. /* > \param[in] N */
  563. /* > \verbatim */
  564. /* > N is INTEGER */
  565. /* > The number of columns of the matrix A. N >= 0. */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[in] NRHS */
  569. /* > \verbatim */
  570. /* > NRHS is INTEGER */
  571. /* > The number of right hand sides, i.e., the number of columns */
  572. /* > of the matrices B and X. NRHS >= 0. */
  573. /* > \endverbatim */
  574. /* > */
  575. /* > \param[in,out] A */
  576. /* > \verbatim */
  577. /* > A is COMPLEX array, dimension (LDA,N) */
  578. /* > On entry, the M-by-N matrix A. */
  579. /* > On exit, A has been destroyed. */
  580. /* > \endverbatim */
  581. /* > */
  582. /* > \param[in] LDA */
  583. /* > \verbatim */
  584. /* > LDA is INTEGER */
  585. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  586. /* > \endverbatim */
  587. /* > */
  588. /* > \param[in,out] B */
  589. /* > \verbatim */
  590. /* > B is COMPLEX array, dimension (LDB,NRHS) */
  591. /* > On entry, the M-by-NRHS right hand side matrix B. */
  592. /* > On exit, B is overwritten by the N-by-NRHS solution matrix X. */
  593. /* > If m >= n and RANK = n, the residual sum-of-squares for */
  594. /* > the solution in the i-th column is given by the sum of */
  595. /* > squares of the modulus of elements n+1:m in that column. */
  596. /* > \endverbatim */
  597. /* > */
  598. /* > \param[in] LDB */
  599. /* > \verbatim */
  600. /* > LDB is INTEGER */
  601. /* > The leading dimension of the array B. LDB >= f2cmax(1,M,N). */
  602. /* > \endverbatim */
  603. /* > */
  604. /* > \param[out] S */
  605. /* > \verbatim */
  606. /* > S is REAL array, dimension (f2cmin(M,N)) */
  607. /* > The singular values of A in decreasing order. */
  608. /* > The condition number of A in the 2-norm = S(1)/S(f2cmin(m,n)). */
  609. /* > \endverbatim */
  610. /* > */
  611. /* > \param[in] RCOND */
  612. /* > \verbatim */
  613. /* > RCOND is REAL */
  614. /* > RCOND is used to determine the effective rank of A. */
  615. /* > Singular values S(i) <= RCOND*S(1) are treated as zero. */
  616. /* > If RCOND < 0, machine precision is used instead. */
  617. /* > \endverbatim */
  618. /* > */
  619. /* > \param[out] RANK */
  620. /* > \verbatim */
  621. /* > RANK is INTEGER */
  622. /* > The effective rank of A, i.e., the number of singular values */
  623. /* > which are greater than RCOND*S(1). */
  624. /* > \endverbatim */
  625. /* > */
  626. /* > \param[out] WORK */
  627. /* > \verbatim */
  628. /* > WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
  629. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  630. /* > \endverbatim */
  631. /* > */
  632. /* > \param[in] LWORK */
  633. /* > \verbatim */
  634. /* > LWORK is INTEGER */
  635. /* > The dimension of the array WORK. LWORK must be at least 1. */
  636. /* > The exact minimum amount of workspace needed depends on M, */
  637. /* > N and NRHS. As long as LWORK is at least */
  638. /* > 2 * N + N * NRHS */
  639. /* > if M is greater than or equal to N or */
  640. /* > 2 * M + M * NRHS */
  641. /* > if M is less than N, the code will execute correctly. */
  642. /* > For good performance, LWORK should generally be larger. */
  643. /* > */
  644. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  645. /* > only calculates the optimal size of the array WORK and the */
  646. /* > minimum sizes of the arrays RWORK and IWORK, and returns */
  647. /* > these values as the first entries of the WORK, RWORK and */
  648. /* > IWORK arrays, and no error message related to LWORK is issued */
  649. /* > by XERBLA. */
  650. /* > \endverbatim */
  651. /* > */
  652. /* > \param[out] RWORK */
  653. /* > \verbatim */
  654. /* > RWORK is REAL array, dimension (MAX(1,LRWORK)) */
  655. /* > LRWORK >= */
  656. /* > 10*N + 2*N*SMLSIZ + 8*N*NLVL + 3*SMLSIZ*NRHS + */
  657. /* > MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS ) */
  658. /* > if M is greater than or equal to N or */
  659. /* > 10*M + 2*M*SMLSIZ + 8*M*NLVL + 3*SMLSIZ*NRHS + */
  660. /* > MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS ) */
  661. /* > if M is less than N, the code will execute correctly. */
  662. /* > SMLSIZ is returned by ILAENV and is equal to the maximum */
  663. /* > size of the subproblems at the bottom of the computation */
  664. /* > tree (usually about 25), and */
  665. /* > NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 ) */
  666. /* > On exit, if INFO = 0, RWORK(1) returns the minimum LRWORK. */
  667. /* > \endverbatim */
  668. /* > */
  669. /* > \param[out] IWORK */
  670. /* > \verbatim */
  671. /* > IWORK is INTEGER array, dimension (MAX(1,LIWORK)) */
  672. /* > LIWORK >= f2cmax(1, 3*MINMN*NLVL + 11*MINMN), */
  673. /* > where MINMN = MIN( M,N ). */
  674. /* > On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK. */
  675. /* > \endverbatim */
  676. /* > */
  677. /* > \param[out] INFO */
  678. /* > \verbatim */
  679. /* > INFO is INTEGER */
  680. /* > = 0: successful exit */
  681. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  682. /* > > 0: the algorithm for computing the SVD failed to converge; */
  683. /* > if INFO = i, i off-diagonal elements of an intermediate */
  684. /* > bidiagonal form did not converge to zero. */
  685. /* > \endverbatim */
  686. /* Authors: */
  687. /* ======== */
  688. /* > \author Univ. of Tennessee */
  689. /* > \author Univ. of California Berkeley */
  690. /* > \author Univ. of Colorado Denver */
  691. /* > \author NAG Ltd. */
  692. /* > \date December 2016 */
  693. /* > \ingroup complexGEsolve */
  694. /* > \par Contributors: */
  695. /* ================== */
  696. /* > */
  697. /* > Ming Gu and Ren-Cang Li, Computer Science Division, University of */
  698. /* > California at Berkeley, USA \n */
  699. /* > Osni Marques, LBNL/NERSC, USA \n */
  700. /* ===================================================================== */
  701. /* Subroutine */ int cgelsd_(integer *m, integer *n, integer *nrhs, complex *
  702. a, integer *lda, complex *b, integer *ldb, real *s, real *rcond,
  703. integer *rank, complex *work, integer *lwork, real *rwork, integer *
  704. iwork, integer *info)
  705. {
  706. /* System generated locals */
  707. integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4;
  708. /* Local variables */
  709. real anrm, bnrm;
  710. integer itau, nlvl, iascl, ibscl;
  711. real sfmin;
  712. integer minmn, maxmn, itaup, itauq, mnthr, nwork, ie, il;
  713. extern /* Subroutine */ int cgebrd_(integer *, integer *, complex *,
  714. integer *, real *, real *, complex *, complex *, complex *,
  715. integer *, integer *), slabad_(real *, real *);
  716. extern real clange_(char *, integer *, integer *, complex *, integer *,
  717. real *);
  718. integer mm;
  719. extern /* Subroutine */ int cgelqf_(integer *, integer *, complex *,
  720. integer *, complex *, complex *, integer *, integer *), clalsd_(
  721. char *, integer *, integer *, integer *, real *, real *, complex *
  722. , integer *, real *, integer *, complex *, real *, integer *,
  723. integer *), clascl_(char *, integer *, integer *, real *,
  724. real *, integer *, integer *, complex *, integer *, integer *), cgeqrf_(integer *, integer *, complex *, integer *,
  725. complex *, complex *, integer *, integer *);
  726. extern real slamch_(char *);
  727. extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex
  728. *, integer *, complex *, integer *), claset_(char *,
  729. integer *, integer *, complex *, complex *, complex *, integer *), xerbla_(char *, integer *, ftnlen);
  730. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  731. integer *, integer *, ftnlen, ftnlen);
  732. real bignum;
  733. extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *,
  734. real *, integer *, integer *, real *, integer *, integer *), cunmbr_(char *, char *, char *, integer *, integer *,
  735. integer *, complex *, integer *, complex *, complex *, integer *,
  736. complex *, integer *, integer *), slaset_(
  737. char *, integer *, integer *, real *, real *, real *, integer *), cunmlq_(char *, char *, integer *, integer *, integer *,
  738. complex *, integer *, complex *, complex *, integer *, complex *,
  739. integer *, integer *);
  740. integer ldwork;
  741. extern /* Subroutine */ int cunmqr_(char *, char *, integer *, integer *,
  742. integer *, complex *, integer *, complex *, complex *, integer *,
  743. complex *, integer *, integer *);
  744. integer liwork, minwrk, maxwrk;
  745. real smlnum;
  746. integer lrwork;
  747. logical lquery;
  748. integer nrwork, smlsiz;
  749. real eps;
  750. /* -- LAPACK driver routine (version 3.7.0) -- */
  751. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  752. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  753. /* December 2016 */
  754. /* ===================================================================== */
  755. /* Test the input arguments. */
  756. /* Parameter adjustments */
  757. a_dim1 = *lda;
  758. a_offset = 1 + a_dim1 * 1;
  759. a -= a_offset;
  760. b_dim1 = *ldb;
  761. b_offset = 1 + b_dim1 * 1;
  762. b -= b_offset;
  763. --s;
  764. --work;
  765. --rwork;
  766. --iwork;
  767. /* Function Body */
  768. *info = 0;
  769. minmn = f2cmin(*m,*n);
  770. maxmn = f2cmax(*m,*n);
  771. lquery = *lwork == -1;
  772. if (*m < 0) {
  773. *info = -1;
  774. } else if (*n < 0) {
  775. *info = -2;
  776. } else if (*nrhs < 0) {
  777. *info = -3;
  778. } else if (*lda < f2cmax(1,*m)) {
  779. *info = -5;
  780. } else if (*ldb < f2cmax(1,maxmn)) {
  781. *info = -7;
  782. }
  783. /* Compute workspace. */
  784. /* (Note: Comments in the code beginning "Workspace:" describe the */
  785. /* minimal amount of workspace needed at that point in the code, */
  786. /* as well as the preferred amount for good performance. */
  787. /* NB refers to the optimal block size for the immediately */
  788. /* following subroutine, as returned by ILAENV.) */
  789. if (*info == 0) {
  790. minwrk = 1;
  791. maxwrk = 1;
  792. liwork = 1;
  793. lrwork = 1;
  794. if (minmn > 0) {
  795. smlsiz = ilaenv_(&c__9, "CGELSD", " ", &c__0, &c__0, &c__0, &c__0,
  796. (ftnlen)6, (ftnlen)1);
  797. mnthr = ilaenv_(&c__6, "CGELSD", " ", m, n, nrhs, &c_n1, (ftnlen)
  798. 6, (ftnlen)1);
  799. /* Computing MAX */
  800. i__1 = (integer) (log((real) minmn / (real) (smlsiz + 1)) / log(
  801. 2.f)) + 1;
  802. nlvl = f2cmax(i__1,0);
  803. liwork = minmn * 3 * nlvl + minmn * 11;
  804. mm = *m;
  805. if (*m >= *n && *m >= mnthr) {
  806. /* Path 1a - overdetermined, with many more rows than */
  807. /* columns. */
  808. mm = *n;
  809. /* Computing MAX */
  810. i__1 = maxwrk, i__2 = *n * ilaenv_(&c__1, "CGEQRF", " ", m, n,
  811. &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
  812. maxwrk = f2cmax(i__1,i__2);
  813. /* Computing MAX */
  814. i__1 = maxwrk, i__2 = *nrhs * ilaenv_(&c__1, "CUNMQR", "LC",
  815. m, nrhs, n, &c_n1, (ftnlen)6, (ftnlen)2);
  816. maxwrk = f2cmax(i__1,i__2);
  817. }
  818. if (*m >= *n) {
  819. /* Path 1 - overdetermined or exactly determined. */
  820. /* Computing MAX */
  821. /* Computing 2nd power */
  822. i__3 = smlsiz + 1;
  823. i__1 = i__3 * i__3, i__2 = *n * (*nrhs + 1) + (*nrhs << 1);
  824. lrwork = *n * 10 + (*n << 1) * smlsiz + (*n << 3) * nlvl +
  825. smlsiz * 3 * *nrhs + f2cmax(i__1,i__2);
  826. /* Computing MAX */
  827. i__1 = maxwrk, i__2 = (*n << 1) + (mm + *n) * ilaenv_(&c__1,
  828. "CGEBRD", " ", &mm, n, &c_n1, &c_n1, (ftnlen)6, (
  829. ftnlen)1);
  830. maxwrk = f2cmax(i__1,i__2);
  831. /* Computing MAX */
  832. i__1 = maxwrk, i__2 = (*n << 1) + *nrhs * ilaenv_(&c__1,
  833. "CUNMBR", "QLC", &mm, nrhs, n, &c_n1, (ftnlen)6, (
  834. ftnlen)3);
  835. maxwrk = f2cmax(i__1,i__2);
  836. /* Computing MAX */
  837. i__1 = maxwrk, i__2 = (*n << 1) + (*n - 1) * ilaenv_(&c__1,
  838. "CUNMBR", "PLN", n, nrhs, n, &c_n1, (ftnlen)6, (
  839. ftnlen)3);
  840. maxwrk = f2cmax(i__1,i__2);
  841. /* Computing MAX */
  842. i__1 = maxwrk, i__2 = (*n << 1) + *n * *nrhs;
  843. maxwrk = f2cmax(i__1,i__2);
  844. /* Computing MAX */
  845. i__1 = (*n << 1) + mm, i__2 = (*n << 1) + *n * *nrhs;
  846. minwrk = f2cmax(i__1,i__2);
  847. }
  848. if (*n > *m) {
  849. /* Computing MAX */
  850. /* Computing 2nd power */
  851. i__3 = smlsiz + 1;
  852. i__1 = i__3 * i__3, i__2 = *n * (*nrhs + 1) + (*nrhs << 1);
  853. lrwork = *m * 10 + (*m << 1) * smlsiz + (*m << 3) * nlvl +
  854. smlsiz * 3 * *nrhs + f2cmax(i__1,i__2);
  855. if (*n >= mnthr) {
  856. /* Path 2a - underdetermined, with many more columns */
  857. /* than rows. */
  858. maxwrk = *m + *m * ilaenv_(&c__1, "CGELQF", " ", m, n, &
  859. c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
  860. /* Computing MAX */
  861. i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + (*m << 1) *
  862. ilaenv_(&c__1, "CGEBRD", " ", m, m, &c_n1, &c_n1,
  863. (ftnlen)6, (ftnlen)1);
  864. maxwrk = f2cmax(i__1,i__2);
  865. /* Computing MAX */
  866. i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + *nrhs *
  867. ilaenv_(&c__1, "CUNMBR", "QLC", m, nrhs, m, &c_n1,
  868. (ftnlen)6, (ftnlen)3);
  869. maxwrk = f2cmax(i__1,i__2);
  870. /* Computing MAX */
  871. i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + (*m - 1) *
  872. ilaenv_(&c__1, "CUNMLQ", "LC", n, nrhs, m, &c_n1,
  873. (ftnlen)6, (ftnlen)2);
  874. maxwrk = f2cmax(i__1,i__2);
  875. if (*nrhs > 1) {
  876. /* Computing MAX */
  877. i__1 = maxwrk, i__2 = *m * *m + *m + *m * *nrhs;
  878. maxwrk = f2cmax(i__1,i__2);
  879. } else {
  880. /* Computing MAX */
  881. i__1 = maxwrk, i__2 = *m * *m + (*m << 1);
  882. maxwrk = f2cmax(i__1,i__2);
  883. }
  884. /* Computing MAX */
  885. i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + *m * *nrhs;
  886. maxwrk = f2cmax(i__1,i__2);
  887. /* XXX: Ensure the Path 2a case below is triggered. The workspace */
  888. /* calculation should use queries for all routines eventually. */
  889. /* Computing MAX */
  890. /* Computing MAX */
  891. i__3 = *m, i__4 = (*m << 1) - 4, i__3 = f2cmax(i__3,i__4),
  892. i__3 = f2cmax(i__3,*nrhs), i__4 = *n - *m * 3;
  893. i__1 = maxwrk, i__2 = (*m << 2) + *m * *m + f2cmax(i__3,i__4)
  894. ;
  895. maxwrk = f2cmax(i__1,i__2);
  896. } else {
  897. /* Path 2 - underdetermined. */
  898. maxwrk = (*m << 1) + (*n + *m) * ilaenv_(&c__1, "CGEBRD",
  899. " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
  900. /* Computing MAX */
  901. i__1 = maxwrk, i__2 = (*m << 1) + *nrhs * ilaenv_(&c__1,
  902. "CUNMBR", "QLC", m, nrhs, m, &c_n1, (ftnlen)6, (
  903. ftnlen)3);
  904. maxwrk = f2cmax(i__1,i__2);
  905. /* Computing MAX */
  906. i__1 = maxwrk, i__2 = (*m << 1) + *m * ilaenv_(&c__1,
  907. "CUNMBR", "PLN", n, nrhs, m, &c_n1, (ftnlen)6, (
  908. ftnlen)3);
  909. maxwrk = f2cmax(i__1,i__2);
  910. /* Computing MAX */
  911. i__1 = maxwrk, i__2 = (*m << 1) + *m * *nrhs;
  912. maxwrk = f2cmax(i__1,i__2);
  913. }
  914. /* Computing MAX */
  915. i__1 = (*m << 1) + *n, i__2 = (*m << 1) + *m * *nrhs;
  916. minwrk = f2cmax(i__1,i__2);
  917. }
  918. }
  919. minwrk = f2cmin(minwrk,maxwrk);
  920. work[1].r = (real) maxwrk, work[1].i = 0.f;
  921. iwork[1] = liwork;
  922. rwork[1] = (real) lrwork;
  923. if (*lwork < minwrk && ! lquery) {
  924. *info = -12;
  925. }
  926. }
  927. if (*info != 0) {
  928. i__1 = -(*info);
  929. xerbla_("CGELSD", &i__1, (ftnlen)6);
  930. return 0;
  931. } else if (lquery) {
  932. return 0;
  933. }
  934. /* Quick return if possible. */
  935. if (*m == 0 || *n == 0) {
  936. *rank = 0;
  937. return 0;
  938. }
  939. /* Get machine parameters. */
  940. eps = slamch_("P");
  941. sfmin = slamch_("S");
  942. smlnum = sfmin / eps;
  943. bignum = 1.f / smlnum;
  944. slabad_(&smlnum, &bignum);
  945. /* Scale A if f2cmax entry outside range [SMLNUM,BIGNUM]. */
  946. anrm = clange_("M", m, n, &a[a_offset], lda, &rwork[1]);
  947. iascl = 0;
  948. if (anrm > 0.f && anrm < smlnum) {
  949. /* Scale matrix norm up to SMLNUM */
  950. clascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda,
  951. info);
  952. iascl = 1;
  953. } else if (anrm > bignum) {
  954. /* Scale matrix norm down to BIGNUM. */
  955. clascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda,
  956. info);
  957. iascl = 2;
  958. } else if (anrm == 0.f) {
  959. /* Matrix all zero. Return zero solution. */
  960. i__1 = f2cmax(*m,*n);
  961. claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb);
  962. slaset_("F", &minmn, &c__1, &c_b80, &c_b80, &s[1], &c__1);
  963. *rank = 0;
  964. goto L10;
  965. }
  966. /* Scale B if f2cmax entry outside range [SMLNUM,BIGNUM]. */
  967. bnrm = clange_("M", m, nrhs, &b[b_offset], ldb, &rwork[1]);
  968. ibscl = 0;
  969. if (bnrm > 0.f && bnrm < smlnum) {
  970. /* Scale matrix norm up to SMLNUM. */
  971. clascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb,
  972. info);
  973. ibscl = 1;
  974. } else if (bnrm > bignum) {
  975. /* Scale matrix norm down to BIGNUM. */
  976. clascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb,
  977. info);
  978. ibscl = 2;
  979. }
  980. /* If M < N make sure B(M+1:N,:) = 0 */
  981. if (*m < *n) {
  982. i__1 = *n - *m;
  983. claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[*m + 1 + b_dim1], ldb);
  984. }
  985. /* Overdetermined case. */
  986. if (*m >= *n) {
  987. /* Path 1 - overdetermined or exactly determined. */
  988. mm = *m;
  989. if (*m >= mnthr) {
  990. /* Path 1a - overdetermined, with many more rows than columns */
  991. mm = *n;
  992. itau = 1;
  993. nwork = itau + *n;
  994. /* Compute A=Q*R. */
  995. /* (RWorkspace: need N) */
  996. /* (CWorkspace: need N, prefer N*NB) */
  997. i__1 = *lwork - nwork + 1;
  998. cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &i__1,
  999. info);
  1000. /* Multiply B by transpose(Q). */
  1001. /* (RWorkspace: need N) */
  1002. /* (CWorkspace: need NRHS, prefer NRHS*NB) */
  1003. i__1 = *lwork - nwork + 1;
  1004. cunmqr_("L", "C", m, nrhs, n, &a[a_offset], lda, &work[itau], &b[
  1005. b_offset], ldb, &work[nwork], &i__1, info);
  1006. /* Zero out below R. */
  1007. if (*n > 1) {
  1008. i__1 = *n - 1;
  1009. i__2 = *n - 1;
  1010. claset_("L", &i__1, &i__2, &c_b1, &c_b1, &a[a_dim1 + 2], lda);
  1011. }
  1012. }
  1013. itauq = 1;
  1014. itaup = itauq + *n;
  1015. nwork = itaup + *n;
  1016. ie = 1;
  1017. nrwork = ie + *n;
  1018. /* Bidiagonalize R in A. */
  1019. /* (RWorkspace: need N) */
  1020. /* (CWorkspace: need 2*N+MM, prefer 2*N+(MM+N)*NB) */
  1021. i__1 = *lwork - nwork + 1;
  1022. cgebrd_(&mm, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq], &
  1023. work[itaup], &work[nwork], &i__1, info);
  1024. /* Multiply B by transpose of left bidiagonalizing vectors of R. */
  1025. /* (CWorkspace: need 2*N+NRHS, prefer 2*N+NRHS*NB) */
  1026. i__1 = *lwork - nwork + 1;
  1027. cunmbr_("Q", "L", "C", &mm, nrhs, n, &a[a_offset], lda, &work[itauq],
  1028. &b[b_offset], ldb, &work[nwork], &i__1, info);
  1029. /* Solve the bidiagonal least squares problem. */
  1030. clalsd_("U", &smlsiz, n, nrhs, &s[1], &rwork[ie], &b[b_offset], ldb,
  1031. rcond, rank, &work[nwork], &rwork[nrwork], &iwork[1], info);
  1032. if (*info != 0) {
  1033. goto L10;
  1034. }
  1035. /* Multiply B by right bidiagonalizing vectors of R. */
  1036. i__1 = *lwork - nwork + 1;
  1037. cunmbr_("P", "L", "N", n, nrhs, n, &a[a_offset], lda, &work[itaup], &
  1038. b[b_offset], ldb, &work[nwork], &i__1, info);
  1039. } else /* if(complicated condition) */ {
  1040. /* Computing MAX */
  1041. i__1 = *m, i__2 = (*m << 1) - 4, i__1 = f2cmax(i__1,i__2), i__1 = f2cmax(
  1042. i__1,*nrhs), i__2 = *n - *m * 3;
  1043. if (*n >= mnthr && *lwork >= (*m << 2) + *m * *m + f2cmax(i__1,i__2)) {
  1044. /* Path 2a - underdetermined, with many more columns than rows */
  1045. /* and sufficient workspace for an efficient algorithm. */
  1046. ldwork = *m;
  1047. /* Computing MAX */
  1048. /* Computing MAX */
  1049. i__3 = *m, i__4 = (*m << 1) - 4, i__3 = f2cmax(i__3,i__4), i__3 =
  1050. f2cmax(i__3,*nrhs), i__4 = *n - *m * 3;
  1051. i__1 = (*m << 2) + *m * *lda + f2cmax(i__3,i__4), i__2 = *m * *lda +
  1052. *m + *m * *nrhs;
  1053. if (*lwork >= f2cmax(i__1,i__2)) {
  1054. ldwork = *lda;
  1055. }
  1056. itau = 1;
  1057. nwork = *m + 1;
  1058. /* Compute A=L*Q. */
  1059. /* (CWorkspace: need 2*M, prefer M+M*NB) */
  1060. i__1 = *lwork - nwork + 1;
  1061. cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &i__1,
  1062. info);
  1063. il = nwork;
  1064. /* Copy L to WORK(IL), zeroing out above its diagonal. */
  1065. clacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwork);
  1066. i__1 = *m - 1;
  1067. i__2 = *m - 1;
  1068. claset_("U", &i__1, &i__2, &c_b1, &c_b1, &work[il + ldwork], &
  1069. ldwork);
  1070. itauq = il + ldwork * *m;
  1071. itaup = itauq + *m;
  1072. nwork = itaup + *m;
  1073. ie = 1;
  1074. nrwork = ie + *m;
  1075. /* Bidiagonalize L in WORK(IL). */
  1076. /* (RWorkspace: need M) */
  1077. /* (CWorkspace: need M*M+4*M, prefer M*M+4*M+2*M*NB) */
  1078. i__1 = *lwork - nwork + 1;
  1079. cgebrd_(m, m, &work[il], &ldwork, &s[1], &rwork[ie], &work[itauq],
  1080. &work[itaup], &work[nwork], &i__1, info);
  1081. /* Multiply B by transpose of left bidiagonalizing vectors of L. */
  1082. /* (CWorkspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB) */
  1083. i__1 = *lwork - nwork + 1;
  1084. cunmbr_("Q", "L", "C", m, nrhs, m, &work[il], &ldwork, &work[
  1085. itauq], &b[b_offset], ldb, &work[nwork], &i__1, info);
  1086. /* Solve the bidiagonal least squares problem. */
  1087. clalsd_("U", &smlsiz, m, nrhs, &s[1], &rwork[ie], &b[b_offset],
  1088. ldb, rcond, rank, &work[nwork], &rwork[nrwork], &iwork[1],
  1089. info);
  1090. if (*info != 0) {
  1091. goto L10;
  1092. }
  1093. /* Multiply B by right bidiagonalizing vectors of L. */
  1094. i__1 = *lwork - nwork + 1;
  1095. cunmbr_("P", "L", "N", m, nrhs, m, &work[il], &ldwork, &work[
  1096. itaup], &b[b_offset], ldb, &work[nwork], &i__1, info);
  1097. /* Zero out below first M rows of B. */
  1098. i__1 = *n - *m;
  1099. claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[*m + 1 + b_dim1], ldb);
  1100. nwork = itau + *m;
  1101. /* Multiply transpose(Q) by B. */
  1102. /* (CWorkspace: need NRHS, prefer NRHS*NB) */
  1103. i__1 = *lwork - nwork + 1;
  1104. cunmlq_("L", "C", n, nrhs, m, &a[a_offset], lda, &work[itau], &b[
  1105. b_offset], ldb, &work[nwork], &i__1, info);
  1106. } else {
  1107. /* Path 2 - remaining underdetermined cases. */
  1108. itauq = 1;
  1109. itaup = itauq + *m;
  1110. nwork = itaup + *m;
  1111. ie = 1;
  1112. nrwork = ie + *m;
  1113. /* Bidiagonalize A. */
  1114. /* (RWorkspace: need M) */
  1115. /* (CWorkspace: need 2*M+N, prefer 2*M+(M+N)*NB) */
  1116. i__1 = *lwork - nwork + 1;
  1117. cgebrd_(m, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq],
  1118. &work[itaup], &work[nwork], &i__1, info);
  1119. /* Multiply B by transpose of left bidiagonalizing vectors. */
  1120. /* (CWorkspace: need 2*M+NRHS, prefer 2*M+NRHS*NB) */
  1121. i__1 = *lwork - nwork + 1;
  1122. cunmbr_("Q", "L", "C", m, nrhs, n, &a[a_offset], lda, &work[itauq]
  1123. , &b[b_offset], ldb, &work[nwork], &i__1, info);
  1124. /* Solve the bidiagonal least squares problem. */
  1125. clalsd_("L", &smlsiz, m, nrhs, &s[1], &rwork[ie], &b[b_offset],
  1126. ldb, rcond, rank, &work[nwork], &rwork[nrwork], &iwork[1],
  1127. info);
  1128. if (*info != 0) {
  1129. goto L10;
  1130. }
  1131. /* Multiply B by right bidiagonalizing vectors of A. */
  1132. i__1 = *lwork - nwork + 1;
  1133. cunmbr_("P", "L", "N", n, nrhs, m, &a[a_offset], lda, &work[itaup]
  1134. , &b[b_offset], ldb, &work[nwork], &i__1, info);
  1135. }
  1136. }
  1137. /* Undo scaling. */
  1138. if (iascl == 1) {
  1139. clascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb,
  1140. info);
  1141. slascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], &
  1142. minmn, info);
  1143. } else if (iascl == 2) {
  1144. clascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb,
  1145. info);
  1146. slascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], &
  1147. minmn, info);
  1148. }
  1149. if (ibscl == 1) {
  1150. clascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb,
  1151. info);
  1152. } else if (ibscl == 2) {
  1153. clascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb,
  1154. info);
  1155. }
  1156. L10:
  1157. work[1].r = (real) maxwrk, work[1].i = 0.f;
  1158. iwork[1] = liwork;
  1159. rwork[1] = (real) lrwork;
  1160. return 0;
  1161. /* End of CGELSD */
  1162. } /* cgelsd_ */