You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ztrevc.c 32 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle_() continue;
  234. #define myceiling_(w) {ceil(w)}
  235. #define myhuge_(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static doublecomplex c_b2 = {1.,0.};
  485. static integer c__1 = 1;
  486. /* > \brief \b ZTREVC */
  487. /* =========== DOCUMENTATION =========== */
  488. /* Online html documentation available at */
  489. /* http://www.netlib.org/lapack/explore-html/ */
  490. /* > \htmlonly */
  491. /* > Download ZTREVC + dependencies */
  492. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztrevc.
  493. f"> */
  494. /* > [TGZ]</a> */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztrevc.
  496. f"> */
  497. /* > [ZIP]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztrevc.
  499. f"> */
  500. /* > [TXT]</a> */
  501. /* > \endhtmlonly */
  502. /* Definition: */
  503. /* =========== */
  504. /* SUBROUTINE ZTREVC( SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR, */
  505. /* LDVR, MM, M, WORK, RWORK, INFO ) */
  506. /* CHARACTER HOWMNY, SIDE */
  507. /* INTEGER INFO, LDT, LDVL, LDVR, M, MM, N */
  508. /* LOGICAL SELECT( * ) */
  509. /* DOUBLE PRECISION RWORK( * ) */
  510. /* COMPLEX*16 T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ), */
  511. /* $ WORK( * ) */
  512. /* > \par Purpose: */
  513. /* ============= */
  514. /* > */
  515. /* > \verbatim */
  516. /* > */
  517. /* > ZTREVC computes some or all of the right and/or left eigenvectors of */
  518. /* > a complex upper triangular matrix T. */
  519. /* > Matrices of this type are produced by the Schur factorization of */
  520. /* > a complex general matrix: A = Q*T*Q**H, as computed by ZHSEQR. */
  521. /* > */
  522. /* > The right eigenvector x and the left eigenvector y of T corresponding */
  523. /* > to an eigenvalue w are defined by: */
  524. /* > */
  525. /* > T*x = w*x, (y**H)*T = w*(y**H) */
  526. /* > */
  527. /* > where y**H denotes the conjugate transpose of the vector y. */
  528. /* > The eigenvalues are not input to this routine, but are read directly */
  529. /* > from the diagonal of T. */
  530. /* > */
  531. /* > This routine returns the matrices X and/or Y of right and left */
  532. /* > eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an */
  533. /* > input matrix. If Q is the unitary factor that reduces a matrix A to */
  534. /* > Schur form T, then Q*X and Q*Y are the matrices of right and left */
  535. /* > eigenvectors of A. */
  536. /* > \endverbatim */
  537. /* Arguments: */
  538. /* ========== */
  539. /* > \param[in] SIDE */
  540. /* > \verbatim */
  541. /* > SIDE is CHARACTER*1 */
  542. /* > = 'R': compute right eigenvectors only; */
  543. /* > = 'L': compute left eigenvectors only; */
  544. /* > = 'B': compute both right and left eigenvectors. */
  545. /* > \endverbatim */
  546. /* > */
  547. /* > \param[in] HOWMNY */
  548. /* > \verbatim */
  549. /* > HOWMNY is CHARACTER*1 */
  550. /* > = 'A': compute all right and/or left eigenvectors; */
  551. /* > = 'B': compute all right and/or left eigenvectors, */
  552. /* > backtransformed using the matrices supplied in */
  553. /* > VR and/or VL; */
  554. /* > = 'S': compute selected right and/or left eigenvectors, */
  555. /* > as indicated by the logical array SELECT. */
  556. /* > \endverbatim */
  557. /* > */
  558. /* > \param[in] SELECT */
  559. /* > \verbatim */
  560. /* > SELECT is LOGICAL array, dimension (N) */
  561. /* > If HOWMNY = 'S', SELECT specifies the eigenvectors to be */
  562. /* > computed. */
  563. /* > The eigenvector corresponding to the j-th eigenvalue is */
  564. /* > computed if SELECT(j) = .TRUE.. */
  565. /* > Not referenced if HOWMNY = 'A' or 'B'. */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[in] N */
  569. /* > \verbatim */
  570. /* > N is INTEGER */
  571. /* > The order of the matrix T. N >= 0. */
  572. /* > \endverbatim */
  573. /* > */
  574. /* > \param[in,out] T */
  575. /* > \verbatim */
  576. /* > T is COMPLEX*16 array, dimension (LDT,N) */
  577. /* > The upper triangular matrix T. T is modified, but restored */
  578. /* > on exit. */
  579. /* > \endverbatim */
  580. /* > */
  581. /* > \param[in] LDT */
  582. /* > \verbatim */
  583. /* > LDT is INTEGER */
  584. /* > The leading dimension of the array T. LDT >= f2cmax(1,N). */
  585. /* > \endverbatim */
  586. /* > */
  587. /* > \param[in,out] VL */
  588. /* > \verbatim */
  589. /* > VL is COMPLEX*16 array, dimension (LDVL,MM) */
  590. /* > On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must */
  591. /* > contain an N-by-N matrix Q (usually the unitary matrix Q of */
  592. /* > Schur vectors returned by ZHSEQR). */
  593. /* > On exit, if SIDE = 'L' or 'B', VL contains: */
  594. /* > if HOWMNY = 'A', the matrix Y of left eigenvectors of T; */
  595. /* > if HOWMNY = 'B', the matrix Q*Y; */
  596. /* > if HOWMNY = 'S', the left eigenvectors of T specified by */
  597. /* > SELECT, stored consecutively in the columns */
  598. /* > of VL, in the same order as their */
  599. /* > eigenvalues. */
  600. /* > Not referenced if SIDE = 'R'. */
  601. /* > \endverbatim */
  602. /* > */
  603. /* > \param[in] LDVL */
  604. /* > \verbatim */
  605. /* > LDVL is INTEGER */
  606. /* > The leading dimension of the array VL. LDVL >= 1, and if */
  607. /* > SIDE = 'L' or 'B', LDVL >= N. */
  608. /* > \endverbatim */
  609. /* > */
  610. /* > \param[in,out] VR */
  611. /* > \verbatim */
  612. /* > VR is COMPLEX*16 array, dimension (LDVR,MM) */
  613. /* > On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must */
  614. /* > contain an N-by-N matrix Q (usually the unitary matrix Q of */
  615. /* > Schur vectors returned by ZHSEQR). */
  616. /* > On exit, if SIDE = 'R' or 'B', VR contains: */
  617. /* > if HOWMNY = 'A', the matrix X of right eigenvectors of T; */
  618. /* > if HOWMNY = 'B', the matrix Q*X; */
  619. /* > if HOWMNY = 'S', the right eigenvectors of T specified by */
  620. /* > SELECT, stored consecutively in the columns */
  621. /* > of VR, in the same order as their */
  622. /* > eigenvalues. */
  623. /* > Not referenced if SIDE = 'L'. */
  624. /* > \endverbatim */
  625. /* > */
  626. /* > \param[in] LDVR */
  627. /* > \verbatim */
  628. /* > LDVR is INTEGER */
  629. /* > The leading dimension of the array VR. LDVR >= 1, and if */
  630. /* > SIDE = 'R' or 'B'; LDVR >= N. */
  631. /* > \endverbatim */
  632. /* > */
  633. /* > \param[in] MM */
  634. /* > \verbatim */
  635. /* > MM is INTEGER */
  636. /* > The number of columns in the arrays VL and/or VR. MM >= M. */
  637. /* > \endverbatim */
  638. /* > */
  639. /* > \param[out] M */
  640. /* > \verbatim */
  641. /* > M is INTEGER */
  642. /* > The number of columns in the arrays VL and/or VR actually */
  643. /* > used to store the eigenvectors. If HOWMNY = 'A' or 'B', M */
  644. /* > is set to N. Each selected eigenvector occupies one */
  645. /* > column. */
  646. /* > \endverbatim */
  647. /* > */
  648. /* > \param[out] WORK */
  649. /* > \verbatim */
  650. /* > WORK is COMPLEX*16 array, dimension (2*N) */
  651. /* > \endverbatim */
  652. /* > */
  653. /* > \param[out] RWORK */
  654. /* > \verbatim */
  655. /* > RWORK is DOUBLE PRECISION array, dimension (N) */
  656. /* > \endverbatim */
  657. /* > */
  658. /* > \param[out] INFO */
  659. /* > \verbatim */
  660. /* > INFO is INTEGER */
  661. /* > = 0: successful exit */
  662. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  663. /* > \endverbatim */
  664. /* Authors: */
  665. /* ======== */
  666. /* > \author Univ. of Tennessee */
  667. /* > \author Univ. of California Berkeley */
  668. /* > \author Univ. of Colorado Denver */
  669. /* > \author NAG Ltd. */
  670. /* > \date November 2017 */
  671. /* > \ingroup complex16OTHERcomputational */
  672. /* > \par Further Details: */
  673. /* ===================== */
  674. /* > */
  675. /* > \verbatim */
  676. /* > */
  677. /* > The algorithm used in this program is basically backward (forward) */
  678. /* > substitution, with scaling to make the the code robust against */
  679. /* > possible overflow. */
  680. /* > */
  681. /* > Each eigenvector is normalized so that the element of largest */
  682. /* > magnitude has magnitude 1; here the magnitude of a complex number */
  683. /* > (x,y) is taken to be |x| + |y|. */
  684. /* > \endverbatim */
  685. /* > */
  686. /* ===================================================================== */
  687. /* Subroutine */ void ztrevc_(char *side, char *howmny, logical *select,
  688. integer *n, doublecomplex *t, integer *ldt, doublecomplex *vl,
  689. integer *ldvl, doublecomplex *vr, integer *ldvr, integer *mm, integer
  690. *m, doublecomplex *work, doublereal *rwork, integer *info)
  691. {
  692. /* System generated locals */
  693. integer t_dim1, t_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1,
  694. i__2, i__3, i__4, i__5;
  695. doublereal d__1, d__2, d__3;
  696. doublecomplex z__1, z__2;
  697. /* Local variables */
  698. logical allv;
  699. doublereal unfl, ovfl, smin;
  700. logical over;
  701. integer i__, j, k;
  702. doublereal scale;
  703. extern logical lsame_(char *, char *);
  704. doublereal remax;
  705. logical leftv, bothv;
  706. extern /* Subroutine */ void zgemv_(char *, integer *, integer *,
  707. doublecomplex *, doublecomplex *, integer *, doublecomplex *,
  708. integer *, doublecomplex *, doublecomplex *, integer *);
  709. logical somev;
  710. extern /* Subroutine */ void zcopy_(integer *, doublecomplex *, integer *,
  711. doublecomplex *, integer *), dlabad_(doublereal *, doublereal *);
  712. integer ii, ki;
  713. extern doublereal dlamch_(char *);
  714. integer is;
  715. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  716. extern void zdscal_(
  717. integer *, doublereal *, doublecomplex *, integer *);
  718. extern integer izamax_(integer *, doublecomplex *, integer *);
  719. logical rightv;
  720. extern doublereal dzasum_(integer *, doublecomplex *, integer *);
  721. doublereal smlnum;
  722. extern /* Subroutine */ void zlatrs_(char *, char *, char *, char *,
  723. integer *, doublecomplex *, integer *, doublecomplex *,
  724. doublereal *, doublereal *, integer *);
  725. doublereal ulp;
  726. /* -- LAPACK computational routine (version 3.8.0) -- */
  727. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  728. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  729. /* November 2017 */
  730. /* ===================================================================== */
  731. /* Decode and test the input parameters */
  732. /* Parameter adjustments */
  733. --select;
  734. t_dim1 = *ldt;
  735. t_offset = 1 + t_dim1 * 1;
  736. t -= t_offset;
  737. vl_dim1 = *ldvl;
  738. vl_offset = 1 + vl_dim1 * 1;
  739. vl -= vl_offset;
  740. vr_dim1 = *ldvr;
  741. vr_offset = 1 + vr_dim1 * 1;
  742. vr -= vr_offset;
  743. --work;
  744. --rwork;
  745. /* Function Body */
  746. bothv = lsame_(side, "B");
  747. rightv = lsame_(side, "R") || bothv;
  748. leftv = lsame_(side, "L") || bothv;
  749. allv = lsame_(howmny, "A");
  750. over = lsame_(howmny, "B");
  751. somev = lsame_(howmny, "S");
  752. /* Set M to the number of columns required to store the selected */
  753. /* eigenvectors. */
  754. if (somev) {
  755. *m = 0;
  756. i__1 = *n;
  757. for (j = 1; j <= i__1; ++j) {
  758. if (select[j]) {
  759. ++(*m);
  760. }
  761. /* L10: */
  762. }
  763. } else {
  764. *m = *n;
  765. }
  766. *info = 0;
  767. if (! rightv && ! leftv) {
  768. *info = -1;
  769. } else if (! allv && ! over && ! somev) {
  770. *info = -2;
  771. } else if (*n < 0) {
  772. *info = -4;
  773. } else if (*ldt < f2cmax(1,*n)) {
  774. *info = -6;
  775. } else if (*ldvl < 1 || leftv && *ldvl < *n) {
  776. *info = -8;
  777. } else if (*ldvr < 1 || rightv && *ldvr < *n) {
  778. *info = -10;
  779. } else if (*mm < *m) {
  780. *info = -11;
  781. }
  782. if (*info != 0) {
  783. i__1 = -(*info);
  784. xerbla_("ZTREVC", &i__1, (ftnlen)6);
  785. return;
  786. }
  787. /* Quick return if possible. */
  788. if (*n == 0) {
  789. return;
  790. }
  791. /* Set the constants to control overflow. */
  792. unfl = dlamch_("Safe minimum");
  793. ovfl = 1. / unfl;
  794. dlabad_(&unfl, &ovfl);
  795. ulp = dlamch_("Precision");
  796. smlnum = unfl * (*n / ulp);
  797. /* Store the diagonal elements of T in working array WORK. */
  798. i__1 = *n;
  799. for (i__ = 1; i__ <= i__1; ++i__) {
  800. i__2 = i__ + *n;
  801. i__3 = i__ + i__ * t_dim1;
  802. work[i__2].r = t[i__3].r, work[i__2].i = t[i__3].i;
  803. /* L20: */
  804. }
  805. /* Compute 1-norm of each column of strictly upper triangular */
  806. /* part of T to control overflow in triangular solver. */
  807. rwork[1] = 0.;
  808. i__1 = *n;
  809. for (j = 2; j <= i__1; ++j) {
  810. i__2 = j - 1;
  811. rwork[j] = dzasum_(&i__2, &t[j * t_dim1 + 1], &c__1);
  812. /* L30: */
  813. }
  814. if (rightv) {
  815. /* Compute right eigenvectors. */
  816. is = *m;
  817. for (ki = *n; ki >= 1; --ki) {
  818. if (somev) {
  819. if (! select[ki]) {
  820. goto L80;
  821. }
  822. }
  823. /* Computing MAX */
  824. i__1 = ki + ki * t_dim1;
  825. d__3 = ulp * ((d__1 = t[i__1].r, abs(d__1)) + (d__2 = d_imag(&t[
  826. ki + ki * t_dim1]), abs(d__2)));
  827. smin = f2cmax(d__3,smlnum);
  828. work[1].r = 1., work[1].i = 0.;
  829. /* Form right-hand side. */
  830. i__1 = ki - 1;
  831. for (k = 1; k <= i__1; ++k) {
  832. i__2 = k;
  833. i__3 = k + ki * t_dim1;
  834. z__1.r = -t[i__3].r, z__1.i = -t[i__3].i;
  835. work[i__2].r = z__1.r, work[i__2].i = z__1.i;
  836. /* L40: */
  837. }
  838. /* Solve the triangular system: */
  839. /* (T(1:KI-1,1:KI-1) - T(KI,KI))*X = SCALE*WORK. */
  840. i__1 = ki - 1;
  841. for (k = 1; k <= i__1; ++k) {
  842. i__2 = k + k * t_dim1;
  843. i__3 = k + k * t_dim1;
  844. i__4 = ki + ki * t_dim1;
  845. z__1.r = t[i__3].r - t[i__4].r, z__1.i = t[i__3].i - t[i__4]
  846. .i;
  847. t[i__2].r = z__1.r, t[i__2].i = z__1.i;
  848. i__2 = k + k * t_dim1;
  849. if ((d__1 = t[i__2].r, abs(d__1)) + (d__2 = d_imag(&t[k + k *
  850. t_dim1]), abs(d__2)) < smin) {
  851. i__3 = k + k * t_dim1;
  852. t[i__3].r = smin, t[i__3].i = 0.;
  853. }
  854. /* L50: */
  855. }
  856. if (ki > 1) {
  857. i__1 = ki - 1;
  858. zlatrs_("Upper", "No transpose", "Non-unit", "Y", &i__1, &t[
  859. t_offset], ldt, &work[1], &scale, &rwork[1], info);
  860. i__1 = ki;
  861. work[i__1].r = scale, work[i__1].i = 0.;
  862. }
  863. /* Copy the vector x or Q*x to VR and normalize. */
  864. if (! over) {
  865. zcopy_(&ki, &work[1], &c__1, &vr[is * vr_dim1 + 1], &c__1);
  866. ii = izamax_(&ki, &vr[is * vr_dim1 + 1], &c__1);
  867. i__1 = ii + is * vr_dim1;
  868. remax = 1. / ((d__1 = vr[i__1].r, abs(d__1)) + (d__2 = d_imag(
  869. &vr[ii + is * vr_dim1]), abs(d__2)));
  870. zdscal_(&ki, &remax, &vr[is * vr_dim1 + 1], &c__1);
  871. i__1 = *n;
  872. for (k = ki + 1; k <= i__1; ++k) {
  873. i__2 = k + is * vr_dim1;
  874. vr[i__2].r = 0., vr[i__2].i = 0.;
  875. /* L60: */
  876. }
  877. } else {
  878. if (ki > 1) {
  879. i__1 = ki - 1;
  880. z__1.r = scale, z__1.i = 0.;
  881. zgemv_("N", n, &i__1, &c_b2, &vr[vr_offset], ldvr, &work[
  882. 1], &c__1, &z__1, &vr[ki * vr_dim1 + 1], &c__1);
  883. }
  884. ii = izamax_(n, &vr[ki * vr_dim1 + 1], &c__1);
  885. i__1 = ii + ki * vr_dim1;
  886. remax = 1. / ((d__1 = vr[i__1].r, abs(d__1)) + (d__2 = d_imag(
  887. &vr[ii + ki * vr_dim1]), abs(d__2)));
  888. zdscal_(n, &remax, &vr[ki * vr_dim1 + 1], &c__1);
  889. }
  890. /* Set back the original diagonal elements of T. */
  891. i__1 = ki - 1;
  892. for (k = 1; k <= i__1; ++k) {
  893. i__2 = k + k * t_dim1;
  894. i__3 = k + *n;
  895. t[i__2].r = work[i__3].r, t[i__2].i = work[i__3].i;
  896. /* L70: */
  897. }
  898. --is;
  899. L80:
  900. ;
  901. }
  902. }
  903. if (leftv) {
  904. /* Compute left eigenvectors. */
  905. is = 1;
  906. i__1 = *n;
  907. for (ki = 1; ki <= i__1; ++ki) {
  908. if (somev) {
  909. if (! select[ki]) {
  910. goto L130;
  911. }
  912. }
  913. /* Computing MAX */
  914. i__2 = ki + ki * t_dim1;
  915. d__3 = ulp * ((d__1 = t[i__2].r, abs(d__1)) + (d__2 = d_imag(&t[
  916. ki + ki * t_dim1]), abs(d__2)));
  917. smin = f2cmax(d__3,smlnum);
  918. i__2 = *n;
  919. work[i__2].r = 1., work[i__2].i = 0.;
  920. /* Form right-hand side. */
  921. i__2 = *n;
  922. for (k = ki + 1; k <= i__2; ++k) {
  923. i__3 = k;
  924. d_cnjg(&z__2, &t[ki + k * t_dim1]);
  925. z__1.r = -z__2.r, z__1.i = -z__2.i;
  926. work[i__3].r = z__1.r, work[i__3].i = z__1.i;
  927. /* L90: */
  928. }
  929. /* Solve the triangular system: */
  930. /* (T(KI+1:N,KI+1:N) - T(KI,KI))**H * X = SCALE*WORK. */
  931. i__2 = *n;
  932. for (k = ki + 1; k <= i__2; ++k) {
  933. i__3 = k + k * t_dim1;
  934. i__4 = k + k * t_dim1;
  935. i__5 = ki + ki * t_dim1;
  936. z__1.r = t[i__4].r - t[i__5].r, z__1.i = t[i__4].i - t[i__5]
  937. .i;
  938. t[i__3].r = z__1.r, t[i__3].i = z__1.i;
  939. i__3 = k + k * t_dim1;
  940. if ((d__1 = t[i__3].r, abs(d__1)) + (d__2 = d_imag(&t[k + k *
  941. t_dim1]), abs(d__2)) < smin) {
  942. i__4 = k + k * t_dim1;
  943. t[i__4].r = smin, t[i__4].i = 0.;
  944. }
  945. /* L100: */
  946. }
  947. if (ki < *n) {
  948. i__2 = *n - ki;
  949. zlatrs_("Upper", "Conjugate transpose", "Non-unit", "Y", &
  950. i__2, &t[ki + 1 + (ki + 1) * t_dim1], ldt, &work[ki +
  951. 1], &scale, &rwork[1], info);
  952. i__2 = ki;
  953. work[i__2].r = scale, work[i__2].i = 0.;
  954. }
  955. /* Copy the vector x or Q*x to VL and normalize. */
  956. if (! over) {
  957. i__2 = *n - ki + 1;
  958. zcopy_(&i__2, &work[ki], &c__1, &vl[ki + is * vl_dim1], &c__1)
  959. ;
  960. i__2 = *n - ki + 1;
  961. ii = izamax_(&i__2, &vl[ki + is * vl_dim1], &c__1) + ki - 1;
  962. i__2 = ii + is * vl_dim1;
  963. remax = 1. / ((d__1 = vl[i__2].r, abs(d__1)) + (d__2 = d_imag(
  964. &vl[ii + is * vl_dim1]), abs(d__2)));
  965. i__2 = *n - ki + 1;
  966. zdscal_(&i__2, &remax, &vl[ki + is * vl_dim1], &c__1);
  967. i__2 = ki - 1;
  968. for (k = 1; k <= i__2; ++k) {
  969. i__3 = k + is * vl_dim1;
  970. vl[i__3].r = 0., vl[i__3].i = 0.;
  971. /* L110: */
  972. }
  973. } else {
  974. if (ki < *n) {
  975. i__2 = *n - ki;
  976. z__1.r = scale, z__1.i = 0.;
  977. zgemv_("N", n, &i__2, &c_b2, &vl[(ki + 1) * vl_dim1 + 1],
  978. ldvl, &work[ki + 1], &c__1, &z__1, &vl[ki *
  979. vl_dim1 + 1], &c__1);
  980. }
  981. ii = izamax_(n, &vl[ki * vl_dim1 + 1], &c__1);
  982. i__2 = ii + ki * vl_dim1;
  983. remax = 1. / ((d__1 = vl[i__2].r, abs(d__1)) + (d__2 = d_imag(
  984. &vl[ii + ki * vl_dim1]), abs(d__2)));
  985. zdscal_(n, &remax, &vl[ki * vl_dim1 + 1], &c__1);
  986. }
  987. /* Set back the original diagonal elements of T. */
  988. i__2 = *n;
  989. for (k = ki + 1; k <= i__2; ++k) {
  990. i__3 = k + k * t_dim1;
  991. i__4 = k + *n;
  992. t[i__3].r = work[i__4].r, t[i__3].i = work[i__4].i;
  993. /* L120: */
  994. }
  995. ++is;
  996. L130:
  997. ;
  998. }
  999. }
  1000. return;
  1001. /* End of ZTREVC */
  1002. } /* ztrevc_ */