You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zhetf2_rk.c 54 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. /* > \brief \b ZHETF2_RK computes the factorization of a complex Hermitian indefinite matrix using the bounded
  486. Bunch-Kaufman (rook) diagonal pivoting method (BLAS2 unblocked algorithm). */
  487. /* =========== DOCUMENTATION =========== */
  488. /* Online html documentation available at */
  489. /* http://www.netlib.org/lapack/explore-html/ */
  490. /* > \htmlonly */
  491. /* > Download ZHETF2_RK + dependencies */
  492. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhetf2_
  493. rk.f"> */
  494. /* > [TGZ]</a> */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhetf2_
  496. rk.f"> */
  497. /* > [ZIP]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhetf2_
  499. rk.f"> */
  500. /* > [TXT]</a> */
  501. /* > \endhtmlonly */
  502. /* Definition: */
  503. /* =========== */
  504. /* SUBROUTINE ZHETF2_RK( UPLO, N, A, LDA, E, IPIV, INFO ) */
  505. /* CHARACTER UPLO */
  506. /* INTEGER INFO, LDA, N */
  507. /* INTEGER IPIV( * ) */
  508. /* COMPLEX*16 A( LDA, * ), E ( * ) */
  509. /* > \par Purpose: */
  510. /* ============= */
  511. /* > */
  512. /* > \verbatim */
  513. /* > ZHETF2_RK computes the factorization of a complex Hermitian matrix A */
  514. /* > using the bounded Bunch-Kaufman (rook) diagonal pivoting method: */
  515. /* > */
  516. /* > A = P*U*D*(U**H)*(P**T) or A = P*L*D*(L**H)*(P**T), */
  517. /* > */
  518. /* > where U (or L) is unit upper (or lower) triangular matrix, */
  519. /* > U**H (or L**H) is the conjugate of U (or L), P is a permutation */
  520. /* > matrix, P**T is the transpose of P, and D is Hermitian and block */
  521. /* > diagonal with 1-by-1 and 2-by-2 diagonal blocks. */
  522. /* > */
  523. /* > This is the unblocked version of the algorithm, calling Level 2 BLAS. */
  524. /* > For more information see Further Details section. */
  525. /* > \endverbatim */
  526. /* Arguments: */
  527. /* ========== */
  528. /* > \param[in] UPLO */
  529. /* > \verbatim */
  530. /* > UPLO is CHARACTER*1 */
  531. /* > Specifies whether the upper or lower triangular part of the */
  532. /* > Hermitian matrix A is stored: */
  533. /* > = 'U': Upper triangular */
  534. /* > = 'L': Lower triangular */
  535. /* > \endverbatim */
  536. /* > */
  537. /* > \param[in] N */
  538. /* > \verbatim */
  539. /* > N is INTEGER */
  540. /* > The order of the matrix A. N >= 0. */
  541. /* > \endverbatim */
  542. /* > */
  543. /* > \param[in,out] A */
  544. /* > \verbatim */
  545. /* > A is COMPLEX*16 array, dimension (LDA,N) */
  546. /* > On entry, the Hermitian matrix A. */
  547. /* > If UPLO = 'U': the leading N-by-N upper triangular part */
  548. /* > of A contains the upper triangular part of the matrix A, */
  549. /* > and the strictly lower triangular part of A is not */
  550. /* > referenced. */
  551. /* > */
  552. /* > If UPLO = 'L': the leading N-by-N lower triangular part */
  553. /* > of A contains the lower triangular part of the matrix A, */
  554. /* > and the strictly upper triangular part of A is not */
  555. /* > referenced. */
  556. /* > */
  557. /* > On exit, contains: */
  558. /* > a) ONLY diagonal elements of the Hermitian block diagonal */
  559. /* > matrix D on the diagonal of A, i.e. D(k,k) = A(k,k); */
  560. /* > (superdiagonal (or subdiagonal) elements of D */
  561. /* > are stored on exit in array E), and */
  562. /* > b) If UPLO = 'U': factor U in the superdiagonal part of A. */
  563. /* > If UPLO = 'L': factor L in the subdiagonal part of A. */
  564. /* > \endverbatim */
  565. /* > */
  566. /* > \param[in] LDA */
  567. /* > \verbatim */
  568. /* > LDA is INTEGER */
  569. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  570. /* > \endverbatim */
  571. /* > */
  572. /* > \param[out] E */
  573. /* > \verbatim */
  574. /* > E is COMPLEX*16 array, dimension (N) */
  575. /* > On exit, contains the superdiagonal (or subdiagonal) */
  576. /* > elements of the Hermitian block diagonal matrix D */
  577. /* > with 1-by-1 or 2-by-2 diagonal blocks, where */
  578. /* > If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0; */
  579. /* > If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0. */
  580. /* > */
  581. /* > NOTE: For 1-by-1 diagonal block D(k), where */
  582. /* > 1 <= k <= N, the element E(k) is set to 0 in both */
  583. /* > UPLO = 'U' or UPLO = 'L' cases. */
  584. /* > \endverbatim */
  585. /* > */
  586. /* > \param[out] IPIV */
  587. /* > \verbatim */
  588. /* > IPIV is INTEGER array, dimension (N) */
  589. /* > IPIV describes the permutation matrix P in the factorization */
  590. /* > of matrix A as follows. The absolute value of IPIV(k) */
  591. /* > represents the index of row and column that were */
  592. /* > interchanged with the k-th row and column. The value of UPLO */
  593. /* > describes the order in which the interchanges were applied. */
  594. /* > Also, the sign of IPIV represents the block structure of */
  595. /* > the Hermitian block diagonal matrix D with 1-by-1 or 2-by-2 */
  596. /* > diagonal blocks which correspond to 1 or 2 interchanges */
  597. /* > at each factorization step. For more info see Further */
  598. /* > Details section. */
  599. /* > */
  600. /* > If UPLO = 'U', */
  601. /* > ( in factorization order, k decreases from N to 1 ): */
  602. /* > a) A single positive entry IPIV(k) > 0 means: */
  603. /* > D(k,k) is a 1-by-1 diagonal block. */
  604. /* > If IPIV(k) != k, rows and columns k and IPIV(k) were */
  605. /* > interchanged in the matrix A(1:N,1:N); */
  606. /* > If IPIV(k) = k, no interchange occurred. */
  607. /* > */
  608. /* > b) A pair of consecutive negative entries */
  609. /* > IPIV(k) < 0 and IPIV(k-1) < 0 means: */
  610. /* > D(k-1:k,k-1:k) is a 2-by-2 diagonal block. */
  611. /* > (NOTE: negative entries in IPIV appear ONLY in pairs). */
  612. /* > 1) If -IPIV(k) != k, rows and columns */
  613. /* > k and -IPIV(k) were interchanged */
  614. /* > in the matrix A(1:N,1:N). */
  615. /* > If -IPIV(k) = k, no interchange occurred. */
  616. /* > 2) If -IPIV(k-1) != k-1, rows and columns */
  617. /* > k-1 and -IPIV(k-1) were interchanged */
  618. /* > in the matrix A(1:N,1:N). */
  619. /* > If -IPIV(k-1) = k-1, no interchange occurred. */
  620. /* > */
  621. /* > c) In both cases a) and b), always ABS( IPIV(k) ) <= k. */
  622. /* > */
  623. /* > d) NOTE: Any entry IPIV(k) is always NONZERO on output. */
  624. /* > */
  625. /* > If UPLO = 'L', */
  626. /* > ( in factorization order, k increases from 1 to N ): */
  627. /* > a) A single positive entry IPIV(k) > 0 means: */
  628. /* > D(k,k) is a 1-by-1 diagonal block. */
  629. /* > If IPIV(k) != k, rows and columns k and IPIV(k) were */
  630. /* > interchanged in the matrix A(1:N,1:N). */
  631. /* > If IPIV(k) = k, no interchange occurred. */
  632. /* > */
  633. /* > b) A pair of consecutive negative entries */
  634. /* > IPIV(k) < 0 and IPIV(k+1) < 0 means: */
  635. /* > D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
  636. /* > (NOTE: negative entries in IPIV appear ONLY in pairs). */
  637. /* > 1) If -IPIV(k) != k, rows and columns */
  638. /* > k and -IPIV(k) were interchanged */
  639. /* > in the matrix A(1:N,1:N). */
  640. /* > If -IPIV(k) = k, no interchange occurred. */
  641. /* > 2) If -IPIV(k+1) != k+1, rows and columns */
  642. /* > k-1 and -IPIV(k-1) were interchanged */
  643. /* > in the matrix A(1:N,1:N). */
  644. /* > If -IPIV(k+1) = k+1, no interchange occurred. */
  645. /* > */
  646. /* > c) In both cases a) and b), always ABS( IPIV(k) ) >= k. */
  647. /* > */
  648. /* > d) NOTE: Any entry IPIV(k) is always NONZERO on output. */
  649. /* > \endverbatim */
  650. /* > */
  651. /* > \param[out] INFO */
  652. /* > \verbatim */
  653. /* > INFO is INTEGER */
  654. /* > = 0: successful exit */
  655. /* > */
  656. /* > < 0: If INFO = -k, the k-th argument had an illegal value */
  657. /* > */
  658. /* > > 0: If INFO = k, the matrix A is singular, because: */
  659. /* > If UPLO = 'U': column k in the upper */
  660. /* > triangular part of A contains all zeros. */
  661. /* > If UPLO = 'L': column k in the lower */
  662. /* > triangular part of A contains all zeros. */
  663. /* > */
  664. /* > Therefore D(k,k) is exactly zero, and superdiagonal */
  665. /* > elements of column k of U (or subdiagonal elements of */
  666. /* > column k of L ) are all zeros. The factorization has */
  667. /* > been completed, but the block diagonal matrix D is */
  668. /* > exactly singular, and division by zero will occur if */
  669. /* > it is used to solve a system of equations. */
  670. /* > */
  671. /* > NOTE: INFO only stores the first occurrence of */
  672. /* > a singularity, any subsequent occurrence of singularity */
  673. /* > is not stored in INFO even though the factorization */
  674. /* > always completes. */
  675. /* > \endverbatim */
  676. /* Authors: */
  677. /* ======== */
  678. /* > \author Univ. of Tennessee */
  679. /* > \author Univ. of California Berkeley */
  680. /* > \author Univ. of Colorado Denver */
  681. /* > \author NAG Ltd. */
  682. /* > \date December 2016 */
  683. /* > \ingroup complex16HEcomputational */
  684. /* > \par Further Details: */
  685. /* ===================== */
  686. /* > */
  687. /* > \verbatim */
  688. /* > TODO: put further details */
  689. /* > \endverbatim */
  690. /* > \par Contributors: */
  691. /* ================== */
  692. /* > */
  693. /* > \verbatim */
  694. /* > */
  695. /* > December 2016, Igor Kozachenko, */
  696. /* > Computer Science Division, */
  697. /* > University of California, Berkeley */
  698. /* > */
  699. /* > September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, */
  700. /* > School of Mathematics, */
  701. /* > University of Manchester */
  702. /* > */
  703. /* > 01-01-96 - Based on modifications by */
  704. /* > J. Lewis, Boeing Computer Services Company */
  705. /* > A. Petitet, Computer Science Dept., */
  706. /* > Univ. of Tenn., Knoxville abd , USA */
  707. /* > \endverbatim */
  708. /* ===================================================================== */
  709. /* Subroutine */ void zhetf2_rk_(char *uplo, integer *n, doublecomplex *a,
  710. integer *lda, doublecomplex *e, integer *ipiv, integer *info)
  711. {
  712. /* System generated locals */
  713. integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5, i__6;
  714. doublereal d__1, d__2;
  715. doublecomplex z__1, z__2, z__3, z__4, z__5, z__6, z__7, z__8;
  716. /* Local variables */
  717. logical done;
  718. integer imax, jmax;
  719. extern /* Subroutine */ void zher_(char *, integer *, doublereal *,
  720. doublecomplex *, integer *, doublecomplex *, integer *);
  721. doublereal d__;
  722. integer i__, j, k, p;
  723. doublecomplex t;
  724. doublereal alpha;
  725. extern logical lsame_(char *, char *);
  726. doublereal dtemp, sfmin;
  727. integer itemp, kstep;
  728. logical upper;
  729. doublereal r1;
  730. extern /* Subroutine */ void zswap_(integer *, doublecomplex *, integer *,
  731. doublecomplex *, integer *);
  732. extern doublereal dlapy2_(doublereal *, doublereal *);
  733. doublereal d11;
  734. doublecomplex d12;
  735. doublereal d22;
  736. doublecomplex d21;
  737. integer ii, kk;
  738. extern doublereal dlamch_(char *);
  739. integer kp;
  740. doublereal absakk;
  741. doublecomplex wk;
  742. doublereal tt;
  743. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  744. extern void zdscal_(
  745. integer *, doublereal *, doublecomplex *, integer *);
  746. doublereal colmax;
  747. extern integer izamax_(integer *, doublecomplex *, integer *);
  748. doublereal rowmax;
  749. doublecomplex wkm1, wkp1;
  750. /* -- LAPACK computational routine (version 3.7.0) -- */
  751. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  752. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  753. /* December 2016 */
  754. /* ====================================================================== */
  755. /* Test the input parameters. */
  756. /* Parameter adjustments */
  757. a_dim1 = *lda;
  758. a_offset = 1 + a_dim1 * 1;
  759. a -= a_offset;
  760. --e;
  761. --ipiv;
  762. /* Function Body */
  763. *info = 0;
  764. upper = lsame_(uplo, "U");
  765. if (! upper && ! lsame_(uplo, "L")) {
  766. *info = -1;
  767. } else if (*n < 0) {
  768. *info = -2;
  769. } else if (*lda < f2cmax(1,*n)) {
  770. *info = -4;
  771. }
  772. if (*info != 0) {
  773. i__1 = -(*info);
  774. xerbla_("ZHETF2_RK", &i__1, (ftnlen)9);
  775. return;
  776. }
  777. /* Initialize ALPHA for use in choosing pivot block size. */
  778. alpha = (sqrt(17.) + 1.) / 8.;
  779. /* Compute machine safe minimum */
  780. sfmin = dlamch_("S");
  781. if (upper) {
  782. /* Factorize A as U*D*U**H using the upper triangle of A */
  783. /* Initialize the first entry of array E, where superdiagonal */
  784. /* elements of D are stored */
  785. e[1].r = 0., e[1].i = 0.;
  786. /* K is the main loop index, decreasing from N to 1 in steps of */
  787. /* 1 or 2 */
  788. k = *n;
  789. L10:
  790. /* If K < 1, exit from loop */
  791. if (k < 1) {
  792. goto L34;
  793. }
  794. kstep = 1;
  795. p = k;
  796. /* Determine rows and columns to be interchanged and whether */
  797. /* a 1-by-1 or 2-by-2 pivot block will be used */
  798. i__1 = k + k * a_dim1;
  799. absakk = (d__1 = a[i__1].r, abs(d__1));
  800. /* IMAX is the row-index of the largest off-diagonal element in */
  801. /* column K, and COLMAX is its absolute value. */
  802. /* Determine both COLMAX and IMAX. */
  803. if (k > 1) {
  804. i__1 = k - 1;
  805. imax = izamax_(&i__1, &a[k * a_dim1 + 1], &c__1);
  806. i__1 = imax + k * a_dim1;
  807. colmax = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[imax +
  808. k * a_dim1]), abs(d__2));
  809. } else {
  810. colmax = 0.;
  811. }
  812. if (f2cmax(absakk,colmax) == 0.) {
  813. /* Column K is zero or underflow: set INFO and continue */
  814. if (*info == 0) {
  815. *info = k;
  816. }
  817. kp = k;
  818. i__1 = k + k * a_dim1;
  819. i__2 = k + k * a_dim1;
  820. d__1 = a[i__2].r;
  821. a[i__1].r = d__1, a[i__1].i = 0.;
  822. /* Set E( K ) to zero */
  823. if (k > 1) {
  824. i__1 = k;
  825. e[i__1].r = 0., e[i__1].i = 0.;
  826. }
  827. } else {
  828. /* ============================================================ */
  829. /* BEGIN pivot search */
  830. /* Case(1) */
  831. /* Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX */
  832. /* (used to handle NaN and Inf) */
  833. if (! (absakk < alpha * colmax)) {
  834. /* no interchange, use 1-by-1 pivot block */
  835. kp = k;
  836. } else {
  837. done = FALSE_;
  838. /* Loop until pivot found */
  839. L12:
  840. /* BEGIN pivot search loop body */
  841. /* JMAX is the column-index of the largest off-diagonal */
  842. /* element in row IMAX, and ROWMAX is its absolute value. */
  843. /* Determine both ROWMAX and JMAX. */
  844. if (imax != k) {
  845. i__1 = k - imax;
  846. jmax = imax + izamax_(&i__1, &a[imax + (imax + 1) *
  847. a_dim1], lda);
  848. i__1 = imax + jmax * a_dim1;
  849. rowmax = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&
  850. a[imax + jmax * a_dim1]), abs(d__2));
  851. } else {
  852. rowmax = 0.;
  853. }
  854. if (imax > 1) {
  855. i__1 = imax - 1;
  856. itemp = izamax_(&i__1, &a[imax * a_dim1 + 1], &c__1);
  857. i__1 = itemp + imax * a_dim1;
  858. dtemp = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[
  859. itemp + imax * a_dim1]), abs(d__2));
  860. if (dtemp > rowmax) {
  861. rowmax = dtemp;
  862. jmax = itemp;
  863. }
  864. }
  865. /* Case(2) */
  866. /* Equivalent to testing for */
  867. /* ABS( REAL( W( IMAX,KW-1 ) ) ).GE.ALPHA*ROWMAX */
  868. /* (used to handle NaN and Inf) */
  869. i__1 = imax + imax * a_dim1;
  870. if (! ((d__1 = a[i__1].r, abs(d__1)) < alpha * rowmax)) {
  871. /* interchange rows and columns K and IMAX, */
  872. /* use 1-by-1 pivot block */
  873. kp = imax;
  874. done = TRUE_;
  875. /* Case(3) */
  876. /* Equivalent to testing for ROWMAX.EQ.COLMAX, */
  877. /* (used to handle NaN and Inf) */
  878. } else if (p == jmax || rowmax <= colmax) {
  879. /* interchange rows and columns K-1 and IMAX, */
  880. /* use 2-by-2 pivot block */
  881. kp = imax;
  882. kstep = 2;
  883. done = TRUE_;
  884. /* Case(4) */
  885. } else {
  886. /* Pivot not found: set params and repeat */
  887. p = imax;
  888. colmax = rowmax;
  889. imax = jmax;
  890. }
  891. /* END pivot search loop body */
  892. if (! done) {
  893. goto L12;
  894. }
  895. }
  896. /* END pivot search */
  897. /* ============================================================ */
  898. /* KK is the column of A where pivoting step stopped */
  899. kk = k - kstep + 1;
  900. /* For only a 2x2 pivot, interchange rows and columns K and P */
  901. /* in the leading submatrix A(1:k,1:k) */
  902. if (kstep == 2 && p != k) {
  903. /* (1) Swap columnar parts */
  904. if (p > 1) {
  905. i__1 = p - 1;
  906. zswap_(&i__1, &a[k * a_dim1 + 1], &c__1, &a[p * a_dim1 +
  907. 1], &c__1);
  908. }
  909. /* (2) Swap and conjugate middle parts */
  910. i__1 = k - 1;
  911. for (j = p + 1; j <= i__1; ++j) {
  912. d_cnjg(&z__1, &a[j + k * a_dim1]);
  913. t.r = z__1.r, t.i = z__1.i;
  914. i__2 = j + k * a_dim1;
  915. d_cnjg(&z__1, &a[p + j * a_dim1]);
  916. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  917. i__2 = p + j * a_dim1;
  918. a[i__2].r = t.r, a[i__2].i = t.i;
  919. /* L14: */
  920. }
  921. /* (3) Swap and conjugate corner elements at row-col interserction */
  922. i__1 = p + k * a_dim1;
  923. d_cnjg(&z__1, &a[p + k * a_dim1]);
  924. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  925. /* (4) Swap diagonal elements at row-col intersection */
  926. i__1 = k + k * a_dim1;
  927. r1 = a[i__1].r;
  928. i__1 = k + k * a_dim1;
  929. i__2 = p + p * a_dim1;
  930. d__1 = a[i__2].r;
  931. a[i__1].r = d__1, a[i__1].i = 0.;
  932. i__1 = p + p * a_dim1;
  933. a[i__1].r = r1, a[i__1].i = 0.;
  934. /* Convert upper triangle of A into U form by applying */
  935. /* the interchanges in columns k+1:N. */
  936. if (k < *n) {
  937. i__1 = *n - k;
  938. zswap_(&i__1, &a[k + (k + 1) * a_dim1], lda, &a[p + (k +
  939. 1) * a_dim1], lda);
  940. }
  941. }
  942. /* For both 1x1 and 2x2 pivots, interchange rows and */
  943. /* columns KK and KP in the leading submatrix A(1:k,1:k) */
  944. if (kp != kk) {
  945. /* (1) Swap columnar parts */
  946. if (kp > 1) {
  947. i__1 = kp - 1;
  948. zswap_(&i__1, &a[kk * a_dim1 + 1], &c__1, &a[kp * a_dim1
  949. + 1], &c__1);
  950. }
  951. /* (2) Swap and conjugate middle parts */
  952. i__1 = kk - 1;
  953. for (j = kp + 1; j <= i__1; ++j) {
  954. d_cnjg(&z__1, &a[j + kk * a_dim1]);
  955. t.r = z__1.r, t.i = z__1.i;
  956. i__2 = j + kk * a_dim1;
  957. d_cnjg(&z__1, &a[kp + j * a_dim1]);
  958. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  959. i__2 = kp + j * a_dim1;
  960. a[i__2].r = t.r, a[i__2].i = t.i;
  961. /* L15: */
  962. }
  963. /* (3) Swap and conjugate corner elements at row-col interserction */
  964. i__1 = kp + kk * a_dim1;
  965. d_cnjg(&z__1, &a[kp + kk * a_dim1]);
  966. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  967. /* (4) Swap diagonal elements at row-col intersection */
  968. i__1 = kk + kk * a_dim1;
  969. r1 = a[i__1].r;
  970. i__1 = kk + kk * a_dim1;
  971. i__2 = kp + kp * a_dim1;
  972. d__1 = a[i__2].r;
  973. a[i__1].r = d__1, a[i__1].i = 0.;
  974. i__1 = kp + kp * a_dim1;
  975. a[i__1].r = r1, a[i__1].i = 0.;
  976. if (kstep == 2) {
  977. /* (*) Make sure that diagonal element of pivot is real */
  978. i__1 = k + k * a_dim1;
  979. i__2 = k + k * a_dim1;
  980. d__1 = a[i__2].r;
  981. a[i__1].r = d__1, a[i__1].i = 0.;
  982. /* (5) Swap row elements */
  983. i__1 = k - 1 + k * a_dim1;
  984. t.r = a[i__1].r, t.i = a[i__1].i;
  985. i__1 = k - 1 + k * a_dim1;
  986. i__2 = kp + k * a_dim1;
  987. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  988. i__1 = kp + k * a_dim1;
  989. a[i__1].r = t.r, a[i__1].i = t.i;
  990. }
  991. /* Convert upper triangle of A into U form by applying */
  992. /* the interchanges in columns k+1:N. */
  993. if (k < *n) {
  994. i__1 = *n - k;
  995. zswap_(&i__1, &a[kk + (k + 1) * a_dim1], lda, &a[kp + (k
  996. + 1) * a_dim1], lda);
  997. }
  998. } else {
  999. /* (*) Make sure that diagonal element of pivot is real */
  1000. i__1 = k + k * a_dim1;
  1001. i__2 = k + k * a_dim1;
  1002. d__1 = a[i__2].r;
  1003. a[i__1].r = d__1, a[i__1].i = 0.;
  1004. if (kstep == 2) {
  1005. i__1 = k - 1 + (k - 1) * a_dim1;
  1006. i__2 = k - 1 + (k - 1) * a_dim1;
  1007. d__1 = a[i__2].r;
  1008. a[i__1].r = d__1, a[i__1].i = 0.;
  1009. }
  1010. }
  1011. /* Update the leading submatrix */
  1012. if (kstep == 1) {
  1013. /* 1-by-1 pivot block D(k): column k now holds */
  1014. /* W(k) = U(k)*D(k) */
  1015. /* where U(k) is the k-th column of U */
  1016. if (k > 1) {
  1017. /* Perform a rank-1 update of A(1:k-1,1:k-1) and */
  1018. /* store U(k) in column k */
  1019. i__1 = k + k * a_dim1;
  1020. if ((d__1 = a[i__1].r, abs(d__1)) >= sfmin) {
  1021. /* Perform a rank-1 update of A(1:k-1,1:k-1) as */
  1022. /* A := A - U(k)*D(k)*U(k)**T */
  1023. /* = A - W(k)*1/D(k)*W(k)**T */
  1024. i__1 = k + k * a_dim1;
  1025. d11 = 1. / a[i__1].r;
  1026. i__1 = k - 1;
  1027. d__1 = -d11;
  1028. zher_(uplo, &i__1, &d__1, &a[k * a_dim1 + 1], &c__1, &
  1029. a[a_offset], lda);
  1030. /* Store U(k) in column k */
  1031. i__1 = k - 1;
  1032. zdscal_(&i__1, &d11, &a[k * a_dim1 + 1], &c__1);
  1033. } else {
  1034. /* Store L(k) in column K */
  1035. i__1 = k + k * a_dim1;
  1036. d11 = a[i__1].r;
  1037. i__1 = k - 1;
  1038. for (ii = 1; ii <= i__1; ++ii) {
  1039. i__2 = ii + k * a_dim1;
  1040. i__3 = ii + k * a_dim1;
  1041. z__1.r = a[i__3].r / d11, z__1.i = a[i__3].i /
  1042. d11;
  1043. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  1044. /* L16: */
  1045. }
  1046. /* Perform a rank-1 update of A(k+1:n,k+1:n) as */
  1047. /* A := A - U(k)*D(k)*U(k)**T */
  1048. /* = A - W(k)*(1/D(k))*W(k)**T */
  1049. /* = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T */
  1050. i__1 = k - 1;
  1051. d__1 = -d11;
  1052. zher_(uplo, &i__1, &d__1, &a[k * a_dim1 + 1], &c__1, &
  1053. a[a_offset], lda);
  1054. }
  1055. /* Store the superdiagonal element of D in array E */
  1056. i__1 = k;
  1057. e[i__1].r = 0., e[i__1].i = 0.;
  1058. }
  1059. } else {
  1060. /* 2-by-2 pivot block D(k): columns k and k-1 now hold */
  1061. /* ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k) */
  1062. /* where U(k) and U(k-1) are the k-th and (k-1)-th columns */
  1063. /* of U */
  1064. /* Perform a rank-2 update of A(1:k-2,1:k-2) as */
  1065. /* A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T */
  1066. /* = A - ( ( A(k-1)A(k) )*inv(D(k)) ) * ( A(k-1)A(k) )**T */
  1067. /* and store L(k) and L(k+1) in columns k and k+1 */
  1068. if (k > 2) {
  1069. /* D = |A12| */
  1070. i__1 = k - 1 + k * a_dim1;
  1071. d__1 = a[i__1].r;
  1072. d__2 = d_imag(&a[k - 1 + k * a_dim1]);
  1073. d__ = dlapy2_(&d__1, &d__2);
  1074. i__1 = k + k * a_dim1;
  1075. z__1.r = a[i__1].r / d__, z__1.i = a[i__1].i / d__;
  1076. d11 = z__1.r;
  1077. i__1 = k - 1 + (k - 1) * a_dim1;
  1078. z__1.r = a[i__1].r / d__, z__1.i = a[i__1].i / d__;
  1079. d22 = z__1.r;
  1080. i__1 = k - 1 + k * a_dim1;
  1081. z__1.r = a[i__1].r / d__, z__1.i = a[i__1].i / d__;
  1082. d12.r = z__1.r, d12.i = z__1.i;
  1083. tt = 1. / (d11 * d22 - 1.);
  1084. for (j = k - 2; j >= 1; --j) {
  1085. /* Compute D21 * ( W(k)W(k+1) ) * inv(D(k)) for row J */
  1086. i__1 = j + (k - 1) * a_dim1;
  1087. z__3.r = d11 * a[i__1].r, z__3.i = d11 * a[i__1].i;
  1088. d_cnjg(&z__5, &d12);
  1089. i__2 = j + k * a_dim1;
  1090. z__4.r = z__5.r * a[i__2].r - z__5.i * a[i__2].i,
  1091. z__4.i = z__5.r * a[i__2].i + z__5.i * a[i__2]
  1092. .r;
  1093. z__2.r = z__3.r - z__4.r, z__2.i = z__3.i - z__4.i;
  1094. z__1.r = tt * z__2.r, z__1.i = tt * z__2.i;
  1095. wkm1.r = z__1.r, wkm1.i = z__1.i;
  1096. i__1 = j + k * a_dim1;
  1097. z__3.r = d22 * a[i__1].r, z__3.i = d22 * a[i__1].i;
  1098. i__2 = j + (k - 1) * a_dim1;
  1099. z__4.r = d12.r * a[i__2].r - d12.i * a[i__2].i,
  1100. z__4.i = d12.r * a[i__2].i + d12.i * a[i__2]
  1101. .r;
  1102. z__2.r = z__3.r - z__4.r, z__2.i = z__3.i - z__4.i;
  1103. z__1.r = tt * z__2.r, z__1.i = tt * z__2.i;
  1104. wk.r = z__1.r, wk.i = z__1.i;
  1105. /* Perform a rank-2 update of A(1:k-2,1:k-2) */
  1106. for (i__ = j; i__ >= 1; --i__) {
  1107. i__1 = i__ + j * a_dim1;
  1108. i__2 = i__ + j * a_dim1;
  1109. i__3 = i__ + k * a_dim1;
  1110. z__4.r = a[i__3].r / d__, z__4.i = a[i__3].i /
  1111. d__;
  1112. d_cnjg(&z__5, &wk);
  1113. z__3.r = z__4.r * z__5.r - z__4.i * z__5.i,
  1114. z__3.i = z__4.r * z__5.i + z__4.i *
  1115. z__5.r;
  1116. z__2.r = a[i__2].r - z__3.r, z__2.i = a[i__2].i -
  1117. z__3.i;
  1118. i__4 = i__ + (k - 1) * a_dim1;
  1119. z__7.r = a[i__4].r / d__, z__7.i = a[i__4].i /
  1120. d__;
  1121. d_cnjg(&z__8, &wkm1);
  1122. z__6.r = z__7.r * z__8.r - z__7.i * z__8.i,
  1123. z__6.i = z__7.r * z__8.i + z__7.i *
  1124. z__8.r;
  1125. z__1.r = z__2.r - z__6.r, z__1.i = z__2.i -
  1126. z__6.i;
  1127. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  1128. /* L20: */
  1129. }
  1130. /* Store U(k) and U(k-1) in cols k and k-1 for row J */
  1131. i__1 = j + k * a_dim1;
  1132. z__1.r = wk.r / d__, z__1.i = wk.i / d__;
  1133. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  1134. i__1 = j + (k - 1) * a_dim1;
  1135. z__1.r = wkm1.r / d__, z__1.i = wkm1.i / d__;
  1136. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  1137. /* (*) Make sure that diagonal element of pivot is real */
  1138. i__1 = j + j * a_dim1;
  1139. i__2 = j + j * a_dim1;
  1140. d__1 = a[i__2].r;
  1141. z__1.r = d__1, z__1.i = 0.;
  1142. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  1143. /* L30: */
  1144. }
  1145. }
  1146. /* Copy superdiagonal elements of D(K) to E(K) and */
  1147. /* ZERO out superdiagonal entry of A */
  1148. i__1 = k;
  1149. i__2 = k - 1 + k * a_dim1;
  1150. e[i__1].r = a[i__2].r, e[i__1].i = a[i__2].i;
  1151. i__1 = k - 1;
  1152. e[i__1].r = 0., e[i__1].i = 0.;
  1153. i__1 = k - 1 + k * a_dim1;
  1154. a[i__1].r = 0., a[i__1].i = 0.;
  1155. }
  1156. /* End column K is nonsingular */
  1157. }
  1158. /* Store details of the interchanges in IPIV */
  1159. if (kstep == 1) {
  1160. ipiv[k] = kp;
  1161. } else {
  1162. ipiv[k] = -p;
  1163. ipiv[k - 1] = -kp;
  1164. }
  1165. /* Decrease K and return to the start of the main loop */
  1166. k -= kstep;
  1167. goto L10;
  1168. L34:
  1169. ;
  1170. } else {
  1171. /* Factorize A as L*D*L**H using the lower triangle of A */
  1172. /* Initialize the unused last entry of the subdiagonal array E. */
  1173. i__1 = *n;
  1174. e[i__1].r = 0., e[i__1].i = 0.;
  1175. /* K is the main loop index, increasing from 1 to N in steps of */
  1176. /* 1 or 2 */
  1177. k = 1;
  1178. L40:
  1179. /* If K > N, exit from loop */
  1180. if (k > *n) {
  1181. goto L64;
  1182. }
  1183. kstep = 1;
  1184. p = k;
  1185. /* Determine rows and columns to be interchanged and whether */
  1186. /* a 1-by-1 or 2-by-2 pivot block will be used */
  1187. i__1 = k + k * a_dim1;
  1188. absakk = (d__1 = a[i__1].r, abs(d__1));
  1189. /* IMAX is the row-index of the largest off-diagonal element in */
  1190. /* column K, and COLMAX is its absolute value. */
  1191. /* Determine both COLMAX and IMAX. */
  1192. if (k < *n) {
  1193. i__1 = *n - k;
  1194. imax = k + izamax_(&i__1, &a[k + 1 + k * a_dim1], &c__1);
  1195. i__1 = imax + k * a_dim1;
  1196. colmax = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[imax +
  1197. k * a_dim1]), abs(d__2));
  1198. } else {
  1199. colmax = 0.;
  1200. }
  1201. if (f2cmax(absakk,colmax) == 0.) {
  1202. /* Column K is zero or underflow: set INFO and continue */
  1203. if (*info == 0) {
  1204. *info = k;
  1205. }
  1206. kp = k;
  1207. i__1 = k + k * a_dim1;
  1208. i__2 = k + k * a_dim1;
  1209. d__1 = a[i__2].r;
  1210. a[i__1].r = d__1, a[i__1].i = 0.;
  1211. /* Set E( K ) to zero */
  1212. if (k < *n) {
  1213. i__1 = k;
  1214. e[i__1].r = 0., e[i__1].i = 0.;
  1215. }
  1216. } else {
  1217. /* ============================================================ */
  1218. /* BEGIN pivot search */
  1219. /* Case(1) */
  1220. /* Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX */
  1221. /* (used to handle NaN and Inf) */
  1222. if (! (absakk < alpha * colmax)) {
  1223. /* no interchange, use 1-by-1 pivot block */
  1224. kp = k;
  1225. } else {
  1226. done = FALSE_;
  1227. /* Loop until pivot found */
  1228. L42:
  1229. /* BEGIN pivot search loop body */
  1230. /* JMAX is the column-index of the largest off-diagonal */
  1231. /* element in row IMAX, and ROWMAX is its absolute value. */
  1232. /* Determine both ROWMAX and JMAX. */
  1233. if (imax != k) {
  1234. i__1 = imax - k;
  1235. jmax = k - 1 + izamax_(&i__1, &a[imax + k * a_dim1], lda);
  1236. i__1 = imax + jmax * a_dim1;
  1237. rowmax = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&
  1238. a[imax + jmax * a_dim1]), abs(d__2));
  1239. } else {
  1240. rowmax = 0.;
  1241. }
  1242. if (imax < *n) {
  1243. i__1 = *n - imax;
  1244. itemp = imax + izamax_(&i__1, &a[imax + 1 + imax * a_dim1]
  1245. , &c__1);
  1246. i__1 = itemp + imax * a_dim1;
  1247. dtemp = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[
  1248. itemp + imax * a_dim1]), abs(d__2));
  1249. if (dtemp > rowmax) {
  1250. rowmax = dtemp;
  1251. jmax = itemp;
  1252. }
  1253. }
  1254. /* Case(2) */
  1255. /* Equivalent to testing for */
  1256. /* ABS( REAL( W( IMAX,KW-1 ) ) ).GE.ALPHA*ROWMAX */
  1257. /* (used to handle NaN and Inf) */
  1258. i__1 = imax + imax * a_dim1;
  1259. if (! ((d__1 = a[i__1].r, abs(d__1)) < alpha * rowmax)) {
  1260. /* interchange rows and columns K and IMAX, */
  1261. /* use 1-by-1 pivot block */
  1262. kp = imax;
  1263. done = TRUE_;
  1264. /* Case(3) */
  1265. /* Equivalent to testing for ROWMAX.EQ.COLMAX, */
  1266. /* (used to handle NaN and Inf) */
  1267. } else if (p == jmax || rowmax <= colmax) {
  1268. /* interchange rows and columns K+1 and IMAX, */
  1269. /* use 2-by-2 pivot block */
  1270. kp = imax;
  1271. kstep = 2;
  1272. done = TRUE_;
  1273. /* Case(4) */
  1274. } else {
  1275. /* Pivot not found: set params and repeat */
  1276. p = imax;
  1277. colmax = rowmax;
  1278. imax = jmax;
  1279. }
  1280. /* END pivot search loop body */
  1281. if (! done) {
  1282. goto L42;
  1283. }
  1284. }
  1285. /* END pivot search */
  1286. /* ============================================================ */
  1287. /* KK is the column of A where pivoting step stopped */
  1288. kk = k + kstep - 1;
  1289. /* For only a 2x2 pivot, interchange rows and columns K and P */
  1290. /* in the trailing submatrix A(k:n,k:n) */
  1291. if (kstep == 2 && p != k) {
  1292. /* (1) Swap columnar parts */
  1293. if (p < *n) {
  1294. i__1 = *n - p;
  1295. zswap_(&i__1, &a[p + 1 + k * a_dim1], &c__1, &a[p + 1 + p
  1296. * a_dim1], &c__1);
  1297. }
  1298. /* (2) Swap and conjugate middle parts */
  1299. i__1 = p - 1;
  1300. for (j = k + 1; j <= i__1; ++j) {
  1301. d_cnjg(&z__1, &a[j + k * a_dim1]);
  1302. t.r = z__1.r, t.i = z__1.i;
  1303. i__2 = j + k * a_dim1;
  1304. d_cnjg(&z__1, &a[p + j * a_dim1]);
  1305. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  1306. i__2 = p + j * a_dim1;
  1307. a[i__2].r = t.r, a[i__2].i = t.i;
  1308. /* L44: */
  1309. }
  1310. /* (3) Swap and conjugate corner elements at row-col interserction */
  1311. i__1 = p + k * a_dim1;
  1312. d_cnjg(&z__1, &a[p + k * a_dim1]);
  1313. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  1314. /* (4) Swap diagonal elements at row-col intersection */
  1315. i__1 = k + k * a_dim1;
  1316. r1 = a[i__1].r;
  1317. i__1 = k + k * a_dim1;
  1318. i__2 = p + p * a_dim1;
  1319. d__1 = a[i__2].r;
  1320. a[i__1].r = d__1, a[i__1].i = 0.;
  1321. i__1 = p + p * a_dim1;
  1322. a[i__1].r = r1, a[i__1].i = 0.;
  1323. /* Convert lower triangle of A into L form by applying */
  1324. /* the interchanges in columns 1:k-1. */
  1325. if (k > 1) {
  1326. i__1 = k - 1;
  1327. zswap_(&i__1, &a[k + a_dim1], lda, &a[p + a_dim1], lda);
  1328. }
  1329. }
  1330. /* For both 1x1 and 2x2 pivots, interchange rows and */
  1331. /* columns KK and KP in the trailing submatrix A(k:n,k:n) */
  1332. if (kp != kk) {
  1333. /* (1) Swap columnar parts */
  1334. if (kp < *n) {
  1335. i__1 = *n - kp;
  1336. zswap_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + 1
  1337. + kp * a_dim1], &c__1);
  1338. }
  1339. /* (2) Swap and conjugate middle parts */
  1340. i__1 = kp - 1;
  1341. for (j = kk + 1; j <= i__1; ++j) {
  1342. d_cnjg(&z__1, &a[j + kk * a_dim1]);
  1343. t.r = z__1.r, t.i = z__1.i;
  1344. i__2 = j + kk * a_dim1;
  1345. d_cnjg(&z__1, &a[kp + j * a_dim1]);
  1346. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  1347. i__2 = kp + j * a_dim1;
  1348. a[i__2].r = t.r, a[i__2].i = t.i;
  1349. /* L45: */
  1350. }
  1351. /* (3) Swap and conjugate corner elements at row-col interserction */
  1352. i__1 = kp + kk * a_dim1;
  1353. d_cnjg(&z__1, &a[kp + kk * a_dim1]);
  1354. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  1355. /* (4) Swap diagonal elements at row-col intersection */
  1356. i__1 = kk + kk * a_dim1;
  1357. r1 = a[i__1].r;
  1358. i__1 = kk + kk * a_dim1;
  1359. i__2 = kp + kp * a_dim1;
  1360. d__1 = a[i__2].r;
  1361. a[i__1].r = d__1, a[i__1].i = 0.;
  1362. i__1 = kp + kp * a_dim1;
  1363. a[i__1].r = r1, a[i__1].i = 0.;
  1364. if (kstep == 2) {
  1365. /* (*) Make sure that diagonal element of pivot is real */
  1366. i__1 = k + k * a_dim1;
  1367. i__2 = k + k * a_dim1;
  1368. d__1 = a[i__2].r;
  1369. a[i__1].r = d__1, a[i__1].i = 0.;
  1370. /* (5) Swap row elements */
  1371. i__1 = k + 1 + k * a_dim1;
  1372. t.r = a[i__1].r, t.i = a[i__1].i;
  1373. i__1 = k + 1 + k * a_dim1;
  1374. i__2 = kp + k * a_dim1;
  1375. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  1376. i__1 = kp + k * a_dim1;
  1377. a[i__1].r = t.r, a[i__1].i = t.i;
  1378. }
  1379. /* Convert lower triangle of A into L form by applying */
  1380. /* the interchanges in columns 1:k-1. */
  1381. if (k > 1) {
  1382. i__1 = k - 1;
  1383. zswap_(&i__1, &a[kk + a_dim1], lda, &a[kp + a_dim1], lda);
  1384. }
  1385. } else {
  1386. /* (*) Make sure that diagonal element of pivot is real */
  1387. i__1 = k + k * a_dim1;
  1388. i__2 = k + k * a_dim1;
  1389. d__1 = a[i__2].r;
  1390. a[i__1].r = d__1, a[i__1].i = 0.;
  1391. if (kstep == 2) {
  1392. i__1 = k + 1 + (k + 1) * a_dim1;
  1393. i__2 = k + 1 + (k + 1) * a_dim1;
  1394. d__1 = a[i__2].r;
  1395. a[i__1].r = d__1, a[i__1].i = 0.;
  1396. }
  1397. }
  1398. /* Update the trailing submatrix */
  1399. if (kstep == 1) {
  1400. /* 1-by-1 pivot block D(k): column k of A now holds */
  1401. /* W(k) = L(k)*D(k), */
  1402. /* where L(k) is the k-th column of L */
  1403. if (k < *n) {
  1404. /* Perform a rank-1 update of A(k+1:n,k+1:n) and */
  1405. /* store L(k) in column k */
  1406. /* Handle division by a small number */
  1407. i__1 = k + k * a_dim1;
  1408. if ((d__1 = a[i__1].r, abs(d__1)) >= sfmin) {
  1409. /* Perform a rank-1 update of A(k+1:n,k+1:n) as */
  1410. /* A := A - L(k)*D(k)*L(k)**T */
  1411. /* = A - W(k)*(1/D(k))*W(k)**T */
  1412. i__1 = k + k * a_dim1;
  1413. d11 = 1. / a[i__1].r;
  1414. i__1 = *n - k;
  1415. d__1 = -d11;
  1416. zher_(uplo, &i__1, &d__1, &a[k + 1 + k * a_dim1], &
  1417. c__1, &a[k + 1 + (k + 1) * a_dim1], lda);
  1418. /* Store L(k) in column k */
  1419. i__1 = *n - k;
  1420. zdscal_(&i__1, &d11, &a[k + 1 + k * a_dim1], &c__1);
  1421. } else {
  1422. /* Store L(k) in column k */
  1423. i__1 = k + k * a_dim1;
  1424. d11 = a[i__1].r;
  1425. i__1 = *n;
  1426. for (ii = k + 1; ii <= i__1; ++ii) {
  1427. i__2 = ii + k * a_dim1;
  1428. i__3 = ii + k * a_dim1;
  1429. z__1.r = a[i__3].r / d11, z__1.i = a[i__3].i /
  1430. d11;
  1431. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  1432. /* L46: */
  1433. }
  1434. /* Perform a rank-1 update of A(k+1:n,k+1:n) as */
  1435. /* A := A - L(k)*D(k)*L(k)**T */
  1436. /* = A - W(k)*(1/D(k))*W(k)**T */
  1437. /* = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T */
  1438. i__1 = *n - k;
  1439. d__1 = -d11;
  1440. zher_(uplo, &i__1, &d__1, &a[k + 1 + k * a_dim1], &
  1441. c__1, &a[k + 1 + (k + 1) * a_dim1], lda);
  1442. }
  1443. /* Store the subdiagonal element of D in array E */
  1444. i__1 = k;
  1445. e[i__1].r = 0., e[i__1].i = 0.;
  1446. }
  1447. } else {
  1448. /* 2-by-2 pivot block D(k): columns k and k+1 now hold */
  1449. /* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k) */
  1450. /* where L(k) and L(k+1) are the k-th and (k+1)-th columns */
  1451. /* of L */
  1452. /* Perform a rank-2 update of A(k+2:n,k+2:n) as */
  1453. /* A := A - ( L(k) L(k+1) ) * D(k) * ( L(k) L(k+1) )**T */
  1454. /* = A - ( ( A(k)A(k+1) )*inv(D(k) ) * ( A(k)A(k+1) )**T */
  1455. /* and store L(k) and L(k+1) in columns k and k+1 */
  1456. if (k < *n - 1) {
  1457. /* D = |A21| */
  1458. i__1 = k + 1 + k * a_dim1;
  1459. d__1 = a[i__1].r;
  1460. d__2 = d_imag(&a[k + 1 + k * a_dim1]);
  1461. d__ = dlapy2_(&d__1, &d__2);
  1462. i__1 = k + 1 + (k + 1) * a_dim1;
  1463. d11 = a[i__1].r / d__;
  1464. i__1 = k + k * a_dim1;
  1465. d22 = a[i__1].r / d__;
  1466. i__1 = k + 1 + k * a_dim1;
  1467. z__1.r = a[i__1].r / d__, z__1.i = a[i__1].i / d__;
  1468. d21.r = z__1.r, d21.i = z__1.i;
  1469. tt = 1. / (d11 * d22 - 1.);
  1470. i__1 = *n;
  1471. for (j = k + 2; j <= i__1; ++j) {
  1472. /* Compute D21 * ( W(k)W(k+1) ) * inv(D(k)) for row J */
  1473. i__2 = j + k * a_dim1;
  1474. z__3.r = d11 * a[i__2].r, z__3.i = d11 * a[i__2].i;
  1475. i__3 = j + (k + 1) * a_dim1;
  1476. z__4.r = d21.r * a[i__3].r - d21.i * a[i__3].i,
  1477. z__4.i = d21.r * a[i__3].i + d21.i * a[i__3]
  1478. .r;
  1479. z__2.r = z__3.r - z__4.r, z__2.i = z__3.i - z__4.i;
  1480. z__1.r = tt * z__2.r, z__1.i = tt * z__2.i;
  1481. wk.r = z__1.r, wk.i = z__1.i;
  1482. i__2 = j + (k + 1) * a_dim1;
  1483. z__3.r = d22 * a[i__2].r, z__3.i = d22 * a[i__2].i;
  1484. d_cnjg(&z__5, &d21);
  1485. i__3 = j + k * a_dim1;
  1486. z__4.r = z__5.r * a[i__3].r - z__5.i * a[i__3].i,
  1487. z__4.i = z__5.r * a[i__3].i + z__5.i * a[i__3]
  1488. .r;
  1489. z__2.r = z__3.r - z__4.r, z__2.i = z__3.i - z__4.i;
  1490. z__1.r = tt * z__2.r, z__1.i = tt * z__2.i;
  1491. wkp1.r = z__1.r, wkp1.i = z__1.i;
  1492. /* Perform a rank-2 update of A(k+2:n,k+2:n) */
  1493. i__2 = *n;
  1494. for (i__ = j; i__ <= i__2; ++i__) {
  1495. i__3 = i__ + j * a_dim1;
  1496. i__4 = i__ + j * a_dim1;
  1497. i__5 = i__ + k * a_dim1;
  1498. z__4.r = a[i__5].r / d__, z__4.i = a[i__5].i /
  1499. d__;
  1500. d_cnjg(&z__5, &wk);
  1501. z__3.r = z__4.r * z__5.r - z__4.i * z__5.i,
  1502. z__3.i = z__4.r * z__5.i + z__4.i *
  1503. z__5.r;
  1504. z__2.r = a[i__4].r - z__3.r, z__2.i = a[i__4].i -
  1505. z__3.i;
  1506. i__6 = i__ + (k + 1) * a_dim1;
  1507. z__7.r = a[i__6].r / d__, z__7.i = a[i__6].i /
  1508. d__;
  1509. d_cnjg(&z__8, &wkp1);
  1510. z__6.r = z__7.r * z__8.r - z__7.i * z__8.i,
  1511. z__6.i = z__7.r * z__8.i + z__7.i *
  1512. z__8.r;
  1513. z__1.r = z__2.r - z__6.r, z__1.i = z__2.i -
  1514. z__6.i;
  1515. a[i__3].r = z__1.r, a[i__3].i = z__1.i;
  1516. /* L50: */
  1517. }
  1518. /* Store L(k) and L(k+1) in cols k and k+1 for row J */
  1519. i__2 = j + k * a_dim1;
  1520. z__1.r = wk.r / d__, z__1.i = wk.i / d__;
  1521. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  1522. i__2 = j + (k + 1) * a_dim1;
  1523. z__1.r = wkp1.r / d__, z__1.i = wkp1.i / d__;
  1524. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  1525. /* (*) Make sure that diagonal element of pivot is real */
  1526. i__2 = j + j * a_dim1;
  1527. i__3 = j + j * a_dim1;
  1528. d__1 = a[i__3].r;
  1529. z__1.r = d__1, z__1.i = 0.;
  1530. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  1531. /* L60: */
  1532. }
  1533. }
  1534. /* Copy subdiagonal elements of D(K) to E(K) and */
  1535. /* ZERO out subdiagonal entry of A */
  1536. i__1 = k;
  1537. i__2 = k + 1 + k * a_dim1;
  1538. e[i__1].r = a[i__2].r, e[i__1].i = a[i__2].i;
  1539. i__1 = k + 1;
  1540. e[i__1].r = 0., e[i__1].i = 0.;
  1541. i__1 = k + 1 + k * a_dim1;
  1542. a[i__1].r = 0., a[i__1].i = 0.;
  1543. }
  1544. /* End column K is nonsingular */
  1545. }
  1546. /* Store details of the interchanges in IPIV */
  1547. if (kstep == 1) {
  1548. ipiv[k] = kp;
  1549. } else {
  1550. ipiv[k] = -p;
  1551. ipiv[k + 1] = -kp;
  1552. }
  1553. /* Increase K and return to the start of the main loop */
  1554. k += kstep;
  1555. goto L40;
  1556. L64:
  1557. ;
  1558. }
  1559. return;
  1560. /* End of ZHETF2_RK */
  1561. } /* zhetf2_rk__ */