You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zgghrd.c 26 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static doublecomplex c_b1 = {1.,0.};
  485. static doublecomplex c_b2 = {0.,0.};
  486. static integer c__1 = 1;
  487. /* > \brief \b ZGGHRD */
  488. /* =========== DOCUMENTATION =========== */
  489. /* Online html documentation available at */
  490. /* http://www.netlib.org/lapack/explore-html/ */
  491. /* > \htmlonly */
  492. /* > Download ZGGHRD + dependencies */
  493. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgghrd.
  494. f"> */
  495. /* > [TGZ]</a> */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgghrd.
  497. f"> */
  498. /* > [ZIP]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgghrd.
  500. f"> */
  501. /* > [TXT]</a> */
  502. /* > \endhtmlonly */
  503. /* Definition: */
  504. /* =========== */
  505. /* SUBROUTINE ZGGHRD( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q, */
  506. /* LDQ, Z, LDZ, INFO ) */
  507. /* CHARACTER COMPQ, COMPZ */
  508. /* INTEGER IHI, ILO, INFO, LDA, LDB, LDQ, LDZ, N */
  509. /* COMPLEX*16 A( LDA, * ), B( LDB, * ), Q( LDQ, * ), */
  510. /* $ Z( LDZ, * ) */
  511. /* > \par Purpose: */
  512. /* ============= */
  513. /* > */
  514. /* > \verbatim */
  515. /* > */
  516. /* > ZGGHRD reduces a pair of complex matrices (A,B) to generalized upper */
  517. /* > Hessenberg form using unitary transformations, where A is a */
  518. /* > general matrix and B is upper triangular. The form of the */
  519. /* > generalized eigenvalue problem is */
  520. /* > A*x = lambda*B*x, */
  521. /* > and B is typically made upper triangular by computing its QR */
  522. /* > factorization and moving the unitary matrix Q to the left side */
  523. /* > of the equation. */
  524. /* > */
  525. /* > This subroutine simultaneously reduces A to a Hessenberg matrix H: */
  526. /* > Q**H*A*Z = H */
  527. /* > and transforms B to another upper triangular matrix T: */
  528. /* > Q**H*B*Z = T */
  529. /* > in order to reduce the problem to its standard form */
  530. /* > H*y = lambda*T*y */
  531. /* > where y = Z**H*x. */
  532. /* > */
  533. /* > The unitary matrices Q and Z are determined as products of Givens */
  534. /* > rotations. They may either be formed explicitly, or they may be */
  535. /* > postmultiplied into input matrices Q1 and Z1, so that */
  536. /* > Q1 * A * Z1**H = (Q1*Q) * H * (Z1*Z)**H */
  537. /* > Q1 * B * Z1**H = (Q1*Q) * T * (Z1*Z)**H */
  538. /* > If Q1 is the unitary matrix from the QR factorization of B in the */
  539. /* > original equation A*x = lambda*B*x, then ZGGHRD reduces the original */
  540. /* > problem to generalized Hessenberg form. */
  541. /* > \endverbatim */
  542. /* Arguments: */
  543. /* ========== */
  544. /* > \param[in] COMPQ */
  545. /* > \verbatim */
  546. /* > COMPQ is CHARACTER*1 */
  547. /* > = 'N': do not compute Q; */
  548. /* > = 'I': Q is initialized to the unit matrix, and the */
  549. /* > unitary matrix Q is returned; */
  550. /* > = 'V': Q must contain a unitary matrix Q1 on entry, */
  551. /* > and the product Q1*Q is returned. */
  552. /* > \endverbatim */
  553. /* > */
  554. /* > \param[in] COMPZ */
  555. /* > \verbatim */
  556. /* > COMPZ is CHARACTER*1 */
  557. /* > = 'N': do not compute Z; */
  558. /* > = 'I': Z is initialized to the unit matrix, and the */
  559. /* > unitary matrix Z is returned; */
  560. /* > = 'V': Z must contain a unitary matrix Z1 on entry, */
  561. /* > and the product Z1*Z is returned. */
  562. /* > \endverbatim */
  563. /* > */
  564. /* > \param[in] N */
  565. /* > \verbatim */
  566. /* > N is INTEGER */
  567. /* > The order of the matrices A and B. N >= 0. */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[in] ILO */
  571. /* > \verbatim */
  572. /* > ILO is INTEGER */
  573. /* > \endverbatim */
  574. /* > */
  575. /* > \param[in] IHI */
  576. /* > \verbatim */
  577. /* > IHI is INTEGER */
  578. /* > */
  579. /* > ILO and IHI mark the rows and columns of A which are to be */
  580. /* > reduced. It is assumed that A is already upper triangular */
  581. /* > in rows and columns 1:ILO-1 and IHI+1:N. ILO and IHI are */
  582. /* > normally set by a previous call to ZGGBAL; otherwise they */
  583. /* > should be set to 1 and N respectively. */
  584. /* > 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. */
  585. /* > \endverbatim */
  586. /* > */
  587. /* > \param[in,out] A */
  588. /* > \verbatim */
  589. /* > A is COMPLEX*16 array, dimension (LDA, N) */
  590. /* > On entry, the N-by-N general matrix to be reduced. */
  591. /* > On exit, the upper triangle and the first subdiagonal of A */
  592. /* > are overwritten with the upper Hessenberg matrix H, and the */
  593. /* > rest is set to zero. */
  594. /* > \endverbatim */
  595. /* > */
  596. /* > \param[in] LDA */
  597. /* > \verbatim */
  598. /* > LDA is INTEGER */
  599. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  600. /* > \endverbatim */
  601. /* > */
  602. /* > \param[in,out] B */
  603. /* > \verbatim */
  604. /* > B is COMPLEX*16 array, dimension (LDB, N) */
  605. /* > On entry, the N-by-N upper triangular matrix B. */
  606. /* > On exit, the upper triangular matrix T = Q**H B Z. The */
  607. /* > elements below the diagonal are set to zero. */
  608. /* > \endverbatim */
  609. /* > */
  610. /* > \param[in] LDB */
  611. /* > \verbatim */
  612. /* > LDB is INTEGER */
  613. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  614. /* > \endverbatim */
  615. /* > */
  616. /* > \param[in,out] Q */
  617. /* > \verbatim */
  618. /* > Q is COMPLEX*16 array, dimension (LDQ, N) */
  619. /* > On entry, if COMPQ = 'V', the unitary matrix Q1, typically */
  620. /* > from the QR factorization of B. */
  621. /* > On exit, if COMPQ='I', the unitary matrix Q, and if */
  622. /* > COMPQ = 'V', the product Q1*Q. */
  623. /* > Not referenced if COMPQ='N'. */
  624. /* > \endverbatim */
  625. /* > */
  626. /* > \param[in] LDQ */
  627. /* > \verbatim */
  628. /* > LDQ is INTEGER */
  629. /* > The leading dimension of the array Q. */
  630. /* > LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise. */
  631. /* > \endverbatim */
  632. /* > */
  633. /* > \param[in,out] Z */
  634. /* > \verbatim */
  635. /* > Z is COMPLEX*16 array, dimension (LDZ, N) */
  636. /* > On entry, if COMPZ = 'V', the unitary matrix Z1. */
  637. /* > On exit, if COMPZ='I', the unitary matrix Z, and if */
  638. /* > COMPZ = 'V', the product Z1*Z. */
  639. /* > Not referenced if COMPZ='N'. */
  640. /* > \endverbatim */
  641. /* > */
  642. /* > \param[in] LDZ */
  643. /* > \verbatim */
  644. /* > LDZ is INTEGER */
  645. /* > The leading dimension of the array Z. */
  646. /* > LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise. */
  647. /* > \endverbatim */
  648. /* > */
  649. /* > \param[out] INFO */
  650. /* > \verbatim */
  651. /* > INFO is INTEGER */
  652. /* > = 0: successful exit. */
  653. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  654. /* > \endverbatim */
  655. /* Authors: */
  656. /* ======== */
  657. /* > \author Univ. of Tennessee */
  658. /* > \author Univ. of California Berkeley */
  659. /* > \author Univ. of Colorado Denver */
  660. /* > \author NAG Ltd. */
  661. /* > \date December 2016 */
  662. /* > \ingroup complex16OTHERcomputational */
  663. /* > \par Further Details: */
  664. /* ===================== */
  665. /* > */
  666. /* > \verbatim */
  667. /* > */
  668. /* > This routine reduces A to Hessenberg and B to triangular form by */
  669. /* > an unblocked reduction, as described in _Matrix_Computations_, */
  670. /* > by Golub and van Loan (Johns Hopkins Press). */
  671. /* > \endverbatim */
  672. /* > */
  673. /* ===================================================================== */
  674. /* Subroutine */ void zgghrd_(char *compq, char *compz, integer *n, integer *
  675. ilo, integer *ihi, doublecomplex *a, integer *lda, doublecomplex *b,
  676. integer *ldb, doublecomplex *q, integer *ldq, doublecomplex *z__,
  677. integer *ldz, integer *info)
  678. {
  679. /* System generated locals */
  680. integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, z_dim1,
  681. z_offset, i__1, i__2, i__3;
  682. doublecomplex z__1;
  683. /* Local variables */
  684. integer jcol, jrow;
  685. extern /* Subroutine */ void zrot_(integer *, doublecomplex *, integer *,
  686. doublecomplex *, integer *, doublereal *, doublecomplex *);
  687. doublereal c__;
  688. doublecomplex s;
  689. extern logical lsame_(char *, char *);
  690. doublecomplex ctemp;
  691. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  692. integer icompq, icompz;
  693. extern /* Subroutine */ void zlaset_(char *, integer *, integer *,
  694. doublecomplex *, doublecomplex *, doublecomplex *, integer *), zlartg_(doublecomplex *, doublecomplex *, doublereal *,
  695. doublecomplex *, doublecomplex *);
  696. logical ilq, ilz;
  697. /* -- LAPACK computational routine (version 3.7.0) -- */
  698. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  699. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  700. /* December 2016 */
  701. /* ===================================================================== */
  702. /* Decode COMPQ */
  703. /* Parameter adjustments */
  704. a_dim1 = *lda;
  705. a_offset = 1 + a_dim1 * 1;
  706. a -= a_offset;
  707. b_dim1 = *ldb;
  708. b_offset = 1 + b_dim1 * 1;
  709. b -= b_offset;
  710. q_dim1 = *ldq;
  711. q_offset = 1 + q_dim1 * 1;
  712. q -= q_offset;
  713. z_dim1 = *ldz;
  714. z_offset = 1 + z_dim1 * 1;
  715. z__ -= z_offset;
  716. /* Function Body */
  717. if (lsame_(compq, "N")) {
  718. ilq = FALSE_;
  719. icompq = 1;
  720. } else if (lsame_(compq, "V")) {
  721. ilq = TRUE_;
  722. icompq = 2;
  723. } else if (lsame_(compq, "I")) {
  724. ilq = TRUE_;
  725. icompq = 3;
  726. } else {
  727. icompq = 0;
  728. }
  729. /* Decode COMPZ */
  730. if (lsame_(compz, "N")) {
  731. ilz = FALSE_;
  732. icompz = 1;
  733. } else if (lsame_(compz, "V")) {
  734. ilz = TRUE_;
  735. icompz = 2;
  736. } else if (lsame_(compz, "I")) {
  737. ilz = TRUE_;
  738. icompz = 3;
  739. } else {
  740. icompz = 0;
  741. }
  742. /* Test the input parameters. */
  743. *info = 0;
  744. if (icompq <= 0) {
  745. *info = -1;
  746. } else if (icompz <= 0) {
  747. *info = -2;
  748. } else if (*n < 0) {
  749. *info = -3;
  750. } else if (*ilo < 1) {
  751. *info = -4;
  752. } else if (*ihi > *n || *ihi < *ilo - 1) {
  753. *info = -5;
  754. } else if (*lda < f2cmax(1,*n)) {
  755. *info = -7;
  756. } else if (*ldb < f2cmax(1,*n)) {
  757. *info = -9;
  758. } else if (ilq && *ldq < *n || *ldq < 1) {
  759. *info = -11;
  760. } else if (ilz && *ldz < *n || *ldz < 1) {
  761. *info = -13;
  762. }
  763. if (*info != 0) {
  764. i__1 = -(*info);
  765. xerbla_("ZGGHRD", &i__1, (ftnlen)6);
  766. return;
  767. }
  768. /* Initialize Q and Z if desired. */
  769. if (icompq == 3) {
  770. zlaset_("Full", n, n, &c_b2, &c_b1, &q[q_offset], ldq);
  771. }
  772. if (icompz == 3) {
  773. zlaset_("Full", n, n, &c_b2, &c_b1, &z__[z_offset], ldz);
  774. }
  775. /* Quick return if possible */
  776. if (*n <= 1) {
  777. return;
  778. }
  779. /* Zero out lower triangle of B */
  780. i__1 = *n - 1;
  781. for (jcol = 1; jcol <= i__1; ++jcol) {
  782. i__2 = *n;
  783. for (jrow = jcol + 1; jrow <= i__2; ++jrow) {
  784. i__3 = jrow + jcol * b_dim1;
  785. b[i__3].r = 0., b[i__3].i = 0.;
  786. /* L10: */
  787. }
  788. /* L20: */
  789. }
  790. /* Reduce A and B */
  791. i__1 = *ihi - 2;
  792. for (jcol = *ilo; jcol <= i__1; ++jcol) {
  793. i__2 = jcol + 2;
  794. for (jrow = *ihi; jrow >= i__2; --jrow) {
  795. /* Step 1: rotate rows JROW-1, JROW to kill A(JROW,JCOL) */
  796. i__3 = jrow - 1 + jcol * a_dim1;
  797. ctemp.r = a[i__3].r, ctemp.i = a[i__3].i;
  798. zlartg_(&ctemp, &a[jrow + jcol * a_dim1], &c__, &s, &a[jrow - 1 +
  799. jcol * a_dim1]);
  800. i__3 = jrow + jcol * a_dim1;
  801. a[i__3].r = 0., a[i__3].i = 0.;
  802. i__3 = *n - jcol;
  803. zrot_(&i__3, &a[jrow - 1 + (jcol + 1) * a_dim1], lda, &a[jrow + (
  804. jcol + 1) * a_dim1], lda, &c__, &s);
  805. i__3 = *n + 2 - jrow;
  806. zrot_(&i__3, &b[jrow - 1 + (jrow - 1) * b_dim1], ldb, &b[jrow + (
  807. jrow - 1) * b_dim1], ldb, &c__, &s);
  808. if (ilq) {
  809. d_cnjg(&z__1, &s);
  810. zrot_(n, &q[(jrow - 1) * q_dim1 + 1], &c__1, &q[jrow * q_dim1
  811. + 1], &c__1, &c__, &z__1);
  812. }
  813. /* Step 2: rotate columns JROW, JROW-1 to kill B(JROW,JROW-1) */
  814. i__3 = jrow + jrow * b_dim1;
  815. ctemp.r = b[i__3].r, ctemp.i = b[i__3].i;
  816. zlartg_(&ctemp, &b[jrow + (jrow - 1) * b_dim1], &c__, &s, &b[jrow
  817. + jrow * b_dim1]);
  818. i__3 = jrow + (jrow - 1) * b_dim1;
  819. b[i__3].r = 0., b[i__3].i = 0.;
  820. zrot_(ihi, &a[jrow * a_dim1 + 1], &c__1, &a[(jrow - 1) * a_dim1 +
  821. 1], &c__1, &c__, &s);
  822. i__3 = jrow - 1;
  823. zrot_(&i__3, &b[jrow * b_dim1 + 1], &c__1, &b[(jrow - 1) * b_dim1
  824. + 1], &c__1, &c__, &s);
  825. if (ilz) {
  826. zrot_(n, &z__[jrow * z_dim1 + 1], &c__1, &z__[(jrow - 1) *
  827. z_dim1 + 1], &c__1, &c__, &s);
  828. }
  829. /* L30: */
  830. }
  831. /* L40: */
  832. }
  833. return;
  834. /* End of ZGGHRD */
  835. } /* zgghrd_ */