You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zgelsy.c 33 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static doublecomplex c_b1 = {0.,0.};
  485. static doublecomplex c_b2 = {1.,0.};
  486. static integer c__1 = 1;
  487. static integer c_n1 = -1;
  488. static integer c__0 = 0;
  489. static integer c__2 = 2;
  490. /* > \brief <b> ZGELSY solves overdetermined or underdetermined systems for GE matrices</b> */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* > \htmlonly */
  495. /* > Download ZGELSY + dependencies */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgelsy.
  497. f"> */
  498. /* > [TGZ]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgelsy.
  500. f"> */
  501. /* > [ZIP]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgelsy.
  503. f"> */
  504. /* > [TXT]</a> */
  505. /* > \endhtmlonly */
  506. /* Definition: */
  507. /* =========== */
  508. /* SUBROUTINE ZGELSY( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK, */
  509. /* WORK, LWORK, RWORK, INFO ) */
  510. /* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS, RANK */
  511. /* DOUBLE PRECISION RCOND */
  512. /* INTEGER JPVT( * ) */
  513. /* DOUBLE PRECISION RWORK( * ) */
  514. /* COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * ) */
  515. /* > \par Purpose: */
  516. /* ============= */
  517. /* > */
  518. /* > \verbatim */
  519. /* > */
  520. /* > ZGELSY computes the minimum-norm solution to a complex linear least */
  521. /* > squares problem: */
  522. /* > minimize || A * X - B || */
  523. /* > using a complete orthogonal factorization of A. A is an M-by-N */
  524. /* > matrix which may be rank-deficient. */
  525. /* > */
  526. /* > Several right hand side vectors b and solution vectors x can be */
  527. /* > handled in a single call; they are stored as the columns of the */
  528. /* > M-by-NRHS right hand side matrix B and the N-by-NRHS solution */
  529. /* > matrix X. */
  530. /* > */
  531. /* > The routine first computes a QR factorization with column pivoting: */
  532. /* > A * P = Q * [ R11 R12 ] */
  533. /* > [ 0 R22 ] */
  534. /* > with R11 defined as the largest leading submatrix whose estimated */
  535. /* > condition number is less than 1/RCOND. The order of R11, RANK, */
  536. /* > is the effective rank of A. */
  537. /* > */
  538. /* > Then, R22 is considered to be negligible, and R12 is annihilated */
  539. /* > by unitary transformations from the right, arriving at the */
  540. /* > complete orthogonal factorization: */
  541. /* > A * P = Q * [ T11 0 ] * Z */
  542. /* > [ 0 0 ] */
  543. /* > The minimum-norm solution is then */
  544. /* > X = P * Z**H [ inv(T11)*Q1**H*B ] */
  545. /* > [ 0 ] */
  546. /* > where Q1 consists of the first RANK columns of Q. */
  547. /* > */
  548. /* > This routine is basically identical to the original xGELSX except */
  549. /* > three differences: */
  550. /* > o The permutation of matrix B (the right hand side) is faster and */
  551. /* > more simple. */
  552. /* > o The call to the subroutine xGEQPF has been substituted by the */
  553. /* > the call to the subroutine xGEQP3. This subroutine is a Blas-3 */
  554. /* > version of the QR factorization with column pivoting. */
  555. /* > o Matrix B (the right hand side) is updated with Blas-3. */
  556. /* > \endverbatim */
  557. /* Arguments: */
  558. /* ========== */
  559. /* > \param[in] M */
  560. /* > \verbatim */
  561. /* > M is INTEGER */
  562. /* > The number of rows of the matrix A. M >= 0. */
  563. /* > \endverbatim */
  564. /* > */
  565. /* > \param[in] N */
  566. /* > \verbatim */
  567. /* > N is INTEGER */
  568. /* > The number of columns of the matrix A. N >= 0. */
  569. /* > \endverbatim */
  570. /* > */
  571. /* > \param[in] NRHS */
  572. /* > \verbatim */
  573. /* > NRHS is INTEGER */
  574. /* > The number of right hand sides, i.e., the number of */
  575. /* > columns of matrices B and X. NRHS >= 0. */
  576. /* > \endverbatim */
  577. /* > */
  578. /* > \param[in,out] A */
  579. /* > \verbatim */
  580. /* > A is COMPLEX*16 array, dimension (LDA,N) */
  581. /* > On entry, the M-by-N matrix A. */
  582. /* > On exit, A has been overwritten by details of its */
  583. /* > complete orthogonal factorization. */
  584. /* > \endverbatim */
  585. /* > */
  586. /* > \param[in] LDA */
  587. /* > \verbatim */
  588. /* > LDA is INTEGER */
  589. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  590. /* > \endverbatim */
  591. /* > */
  592. /* > \param[in,out] B */
  593. /* > \verbatim */
  594. /* > B is COMPLEX*16 array, dimension (LDB,NRHS) */
  595. /* > On entry, the M-by-NRHS right hand side matrix B. */
  596. /* > On exit, the N-by-NRHS solution matrix X. */
  597. /* > \endverbatim */
  598. /* > */
  599. /* > \param[in] LDB */
  600. /* > \verbatim */
  601. /* > LDB is INTEGER */
  602. /* > The leading dimension of the array B. LDB >= f2cmax(1,M,N). */
  603. /* > \endverbatim */
  604. /* > */
  605. /* > \param[in,out] JPVT */
  606. /* > \verbatim */
  607. /* > JPVT is INTEGER array, dimension (N) */
  608. /* > On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted */
  609. /* > to the front of AP, otherwise column i is a free column. */
  610. /* > On exit, if JPVT(i) = k, then the i-th column of A*P */
  611. /* > was the k-th column of A. */
  612. /* > \endverbatim */
  613. /* > */
  614. /* > \param[in] RCOND */
  615. /* > \verbatim */
  616. /* > RCOND is DOUBLE PRECISION */
  617. /* > RCOND is used to determine the effective rank of A, which */
  618. /* > is defined as the order of the largest leading triangular */
  619. /* > submatrix R11 in the QR factorization with pivoting of A, */
  620. /* > whose estimated condition number < 1/RCOND. */
  621. /* > \endverbatim */
  622. /* > */
  623. /* > \param[out] RANK */
  624. /* > \verbatim */
  625. /* > RANK is INTEGER */
  626. /* > The effective rank of A, i.e., the order of the submatrix */
  627. /* > R11. This is the same as the order of the submatrix T11 */
  628. /* > in the complete orthogonal factorization of A. */
  629. /* > \endverbatim */
  630. /* > */
  631. /* > \param[out] WORK */
  632. /* > \verbatim */
  633. /* > WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) */
  634. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  635. /* > \endverbatim */
  636. /* > */
  637. /* > \param[in] LWORK */
  638. /* > \verbatim */
  639. /* > LWORK is INTEGER */
  640. /* > The dimension of the array WORK. */
  641. /* > The unblocked strategy requires that: */
  642. /* > LWORK >= MN + MAX( 2*MN, N+1, MN+NRHS ) */
  643. /* > where MN = f2cmin(M,N). */
  644. /* > The block algorithm requires that: */
  645. /* > LWORK >= MN + MAX( 2*MN, NB*(N+1), MN+MN*NB, MN+NB*NRHS ) */
  646. /* > where NB is an upper bound on the blocksize returned */
  647. /* > by ILAENV for the routines ZGEQP3, ZTZRZF, CTZRQF, ZUNMQR, */
  648. /* > and ZUNMRZ. */
  649. /* > */
  650. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  651. /* > only calculates the optimal size of the WORK array, returns */
  652. /* > this value as the first entry of the WORK array, and no error */
  653. /* > message related to LWORK is issued by XERBLA. */
  654. /* > \endverbatim */
  655. /* > */
  656. /* > \param[out] RWORK */
  657. /* > \verbatim */
  658. /* > RWORK is DOUBLE PRECISION array, dimension (2*N) */
  659. /* > \endverbatim */
  660. /* > */
  661. /* > \param[out] INFO */
  662. /* > \verbatim */
  663. /* > INFO is INTEGER */
  664. /* > = 0: successful exit */
  665. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  666. /* > \endverbatim */
  667. /* Authors: */
  668. /* ======== */
  669. /* > \author Univ. of Tennessee */
  670. /* > \author Univ. of California Berkeley */
  671. /* > \author Univ. of Colorado Denver */
  672. /* > \author NAG Ltd. */
  673. /* > \date December 2016 */
  674. /* > \ingroup complex16GEsolve */
  675. /* > \par Contributors: */
  676. /* ================== */
  677. /* > */
  678. /* > A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA \n */
  679. /* > E. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain \n */
  680. /* > G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain \n */
  681. /* > */
  682. /* ===================================================================== */
  683. /* Subroutine */ void zgelsy_(integer *m, integer *n, integer *nrhs,
  684. doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb,
  685. integer *jpvt, doublereal *rcond, integer *rank, doublecomplex *work,
  686. integer *lwork, doublereal *rwork, integer *info)
  687. {
  688. /* System generated locals */
  689. integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4;
  690. doublereal d__1, d__2;
  691. doublecomplex z__1;
  692. /* Local variables */
  693. doublereal anrm, bnrm, smin, smax;
  694. integer i__, j, iascl, ibscl, ismin, ismax;
  695. doublecomplex c1, c2;
  696. doublereal wsize;
  697. doublecomplex s1, s2;
  698. extern /* Subroutine */ void zcopy_(integer *, doublecomplex *, integer *,
  699. doublecomplex *, integer *), ztrsm_(char *, char *, char *, char *
  700. , integer *, integer *, doublecomplex *, doublecomplex *, integer
  701. *, doublecomplex *, integer *),
  702. zlaic1_(integer *, integer *, doublecomplex *, doublereal *,
  703. doublecomplex *, doublecomplex *, doublereal *, doublecomplex *,
  704. doublecomplex *), dlabad_(doublereal *, doublereal *), zgeqp3_(
  705. integer *, integer *, doublecomplex *, integer *, integer *,
  706. doublecomplex *, doublecomplex *, integer *, doublereal *,
  707. integer *);
  708. integer nb;
  709. extern doublereal dlamch_(char *);
  710. integer mn;
  711. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  712. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  713. integer *, integer *, ftnlen, ftnlen);
  714. extern doublereal zlange_(char *, integer *, integer *, doublecomplex *,
  715. integer *, doublereal *);
  716. doublereal bignum;
  717. extern /* Subroutine */ void zlascl_(char *, integer *, integer *,
  718. doublereal *, doublereal *, integer *, integer *, doublecomplex *,
  719. integer *, integer *);
  720. integer nb1, nb2, nb3, nb4;
  721. extern /* Subroutine */ void zlaset_(char *, integer *, integer *,
  722. doublecomplex *, doublecomplex *, doublecomplex *, integer *);
  723. doublereal sminpr, smaxpr, smlnum;
  724. integer lwkopt;
  725. logical lquery;
  726. extern /* Subroutine */ void zunmqr_(char *, char *, integer *, integer *,
  727. integer *, doublecomplex *, integer *, doublecomplex *,
  728. doublecomplex *, integer *, doublecomplex *, integer *, integer *), zunmrz_(char *, char *, integer *, integer *,
  729. integer *, integer *, doublecomplex *, integer *, doublecomplex *,
  730. doublecomplex *, integer *, doublecomplex *, integer *, integer *
  731. ), ztzrzf_(integer *, integer *, doublecomplex *,
  732. integer *, doublecomplex *, doublecomplex *, integer *, integer *)
  733. ;
  734. /* -- LAPACK driver routine (version 3.7.0) -- */
  735. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  736. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  737. /* December 2016 */
  738. /* ===================================================================== */
  739. /* Parameter adjustments */
  740. a_dim1 = *lda;
  741. a_offset = 1 + a_dim1 * 1;
  742. a -= a_offset;
  743. b_dim1 = *ldb;
  744. b_offset = 1 + b_dim1 * 1;
  745. b -= b_offset;
  746. --jpvt;
  747. --work;
  748. --rwork;
  749. /* Function Body */
  750. mn = f2cmin(*m,*n);
  751. ismin = mn + 1;
  752. ismax = (mn << 1) + 1;
  753. /* Test the input arguments. */
  754. *info = 0;
  755. nb1 = ilaenv_(&c__1, "ZGEQRF", " ", m, n, &c_n1, &c_n1, (ftnlen)6, (
  756. ftnlen)1);
  757. nb2 = ilaenv_(&c__1, "ZGERQF", " ", m, n, &c_n1, &c_n1, (ftnlen)6, (
  758. ftnlen)1);
  759. nb3 = ilaenv_(&c__1, "ZUNMQR", " ", m, n, nrhs, &c_n1, (ftnlen)6, (ftnlen)
  760. 1);
  761. nb4 = ilaenv_(&c__1, "ZUNMRQ", " ", m, n, nrhs, &c_n1, (ftnlen)6, (ftnlen)
  762. 1);
  763. /* Computing MAX */
  764. i__1 = f2cmax(nb1,nb2), i__1 = f2cmax(i__1,nb3);
  765. nb = f2cmax(i__1,nb4);
  766. /* Computing MAX */
  767. i__1 = 1, i__2 = mn + (*n << 1) + nb * (*n + 1), i__1 = f2cmax(i__1,i__2),
  768. i__2 = (mn << 1) + nb * *nrhs;
  769. lwkopt = f2cmax(i__1,i__2);
  770. z__1.r = (doublereal) lwkopt, z__1.i = 0.;
  771. work[1].r = z__1.r, work[1].i = z__1.i;
  772. lquery = *lwork == -1;
  773. if (*m < 0) {
  774. *info = -1;
  775. } else if (*n < 0) {
  776. *info = -2;
  777. } else if (*nrhs < 0) {
  778. *info = -3;
  779. } else if (*lda < f2cmax(1,*m)) {
  780. *info = -5;
  781. } else /* if(complicated condition) */ {
  782. /* Computing MAX */
  783. i__1 = f2cmax(1,*m);
  784. if (*ldb < f2cmax(i__1,*n)) {
  785. *info = -7;
  786. } else /* if(complicated condition) */ {
  787. /* Computing MAX */
  788. i__1 = mn << 1, i__2 = *n + 1, i__1 = f2cmax(i__1,i__2), i__2 = mn +
  789. *nrhs;
  790. if (*lwork < mn + f2cmax(i__1,i__2) && ! lquery) {
  791. *info = -12;
  792. }
  793. }
  794. }
  795. if (*info != 0) {
  796. i__1 = -(*info);
  797. xerbla_("ZGELSY", &i__1, (ftnlen)6);
  798. return;
  799. } else if (lquery) {
  800. return;
  801. }
  802. /* Quick return if possible */
  803. /* Computing MIN */
  804. i__1 = f2cmin(*m,*n);
  805. if (f2cmin(i__1,*nrhs) == 0) {
  806. *rank = 0;
  807. return;
  808. }
  809. /* Get machine parameters */
  810. smlnum = dlamch_("S") / dlamch_("P");
  811. bignum = 1. / smlnum;
  812. dlabad_(&smlnum, &bignum);
  813. /* Scale A, B if f2cmax entries outside range [SMLNUM,BIGNUM] */
  814. anrm = zlange_("M", m, n, &a[a_offset], lda, &rwork[1]);
  815. iascl = 0;
  816. if (anrm > 0. && anrm < smlnum) {
  817. /* Scale matrix norm up to SMLNUM */
  818. zlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda,
  819. info);
  820. iascl = 1;
  821. } else if (anrm > bignum) {
  822. /* Scale matrix norm down to BIGNUM */
  823. zlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda,
  824. info);
  825. iascl = 2;
  826. } else if (anrm == 0.) {
  827. /* Matrix all zero. Return zero solution. */
  828. i__1 = f2cmax(*m,*n);
  829. zlaset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb);
  830. *rank = 0;
  831. goto L70;
  832. }
  833. bnrm = zlange_("M", m, nrhs, &b[b_offset], ldb, &rwork[1]);
  834. ibscl = 0;
  835. if (bnrm > 0. && bnrm < smlnum) {
  836. /* Scale matrix norm up to SMLNUM */
  837. zlascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb,
  838. info);
  839. ibscl = 1;
  840. } else if (bnrm > bignum) {
  841. /* Scale matrix norm down to BIGNUM */
  842. zlascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb,
  843. info);
  844. ibscl = 2;
  845. }
  846. /* Compute QR factorization with column pivoting of A: */
  847. /* A * P = Q * R */
  848. i__1 = *lwork - mn;
  849. zgeqp3_(m, n, &a[a_offset], lda, &jpvt[1], &work[1], &work[mn + 1], &i__1,
  850. &rwork[1], info);
  851. i__1 = mn + 1;
  852. wsize = mn + work[i__1].r;
  853. /* complex workspace: MN+NB*(N+1). real workspace 2*N. */
  854. /* Details of Householder rotations stored in WORK(1:MN). */
  855. /* Determine RANK using incremental condition estimation */
  856. i__1 = ismin;
  857. work[i__1].r = 1., work[i__1].i = 0.;
  858. i__1 = ismax;
  859. work[i__1].r = 1., work[i__1].i = 0.;
  860. smax = z_abs(&a[a_dim1 + 1]);
  861. smin = smax;
  862. if (z_abs(&a[a_dim1 + 1]) == 0.) {
  863. *rank = 0;
  864. i__1 = f2cmax(*m,*n);
  865. zlaset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb);
  866. goto L70;
  867. } else {
  868. *rank = 1;
  869. }
  870. L10:
  871. if (*rank < mn) {
  872. i__ = *rank + 1;
  873. zlaic1_(&c__2, rank, &work[ismin], &smin, &a[i__ * a_dim1 + 1], &a[
  874. i__ + i__ * a_dim1], &sminpr, &s1, &c1);
  875. zlaic1_(&c__1, rank, &work[ismax], &smax, &a[i__ * a_dim1 + 1], &a[
  876. i__ + i__ * a_dim1], &smaxpr, &s2, &c2);
  877. if (smaxpr * *rcond <= sminpr) {
  878. i__1 = *rank;
  879. for (i__ = 1; i__ <= i__1; ++i__) {
  880. i__2 = ismin + i__ - 1;
  881. i__3 = ismin + i__ - 1;
  882. z__1.r = s1.r * work[i__3].r - s1.i * work[i__3].i, z__1.i =
  883. s1.r * work[i__3].i + s1.i * work[i__3].r;
  884. work[i__2].r = z__1.r, work[i__2].i = z__1.i;
  885. i__2 = ismax + i__ - 1;
  886. i__3 = ismax + i__ - 1;
  887. z__1.r = s2.r * work[i__3].r - s2.i * work[i__3].i, z__1.i =
  888. s2.r * work[i__3].i + s2.i * work[i__3].r;
  889. work[i__2].r = z__1.r, work[i__2].i = z__1.i;
  890. /* L20: */
  891. }
  892. i__1 = ismin + *rank;
  893. work[i__1].r = c1.r, work[i__1].i = c1.i;
  894. i__1 = ismax + *rank;
  895. work[i__1].r = c2.r, work[i__1].i = c2.i;
  896. smin = sminpr;
  897. smax = smaxpr;
  898. ++(*rank);
  899. goto L10;
  900. }
  901. }
  902. /* complex workspace: 3*MN. */
  903. /* Logically partition R = [ R11 R12 ] */
  904. /* [ 0 R22 ] */
  905. /* where R11 = R(1:RANK,1:RANK) */
  906. /* [R11,R12] = [ T11, 0 ] * Y */
  907. if (*rank < *n) {
  908. i__1 = *lwork - (mn << 1);
  909. ztzrzf_(rank, n, &a[a_offset], lda, &work[mn + 1], &work[(mn << 1) +
  910. 1], &i__1, info);
  911. }
  912. /* complex workspace: 2*MN. */
  913. /* Details of Householder rotations stored in WORK(MN+1:2*MN) */
  914. /* B(1:M,1:NRHS) := Q**H * B(1:M,1:NRHS) */
  915. i__1 = *lwork - (mn << 1);
  916. zunmqr_("Left", "Conjugate transpose", m, nrhs, &mn, &a[a_offset], lda, &
  917. work[1], &b[b_offset], ldb, &work[(mn << 1) + 1], &i__1, info);
  918. /* Computing MAX */
  919. i__1 = (mn << 1) + 1;
  920. d__1 = wsize, d__2 = (mn << 1) + work[i__1].r;
  921. wsize = f2cmax(d__1,d__2);
  922. /* complex workspace: 2*MN+NB*NRHS. */
  923. /* B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS) */
  924. ztrsm_("Left", "Upper", "No transpose", "Non-unit", rank, nrhs, &c_b2, &a[
  925. a_offset], lda, &b[b_offset], ldb);
  926. i__1 = *nrhs;
  927. for (j = 1; j <= i__1; ++j) {
  928. i__2 = *n;
  929. for (i__ = *rank + 1; i__ <= i__2; ++i__) {
  930. i__3 = i__ + j * b_dim1;
  931. b[i__3].r = 0., b[i__3].i = 0.;
  932. /* L30: */
  933. }
  934. /* L40: */
  935. }
  936. /* B(1:N,1:NRHS) := Y**H * B(1:N,1:NRHS) */
  937. if (*rank < *n) {
  938. i__1 = *n - *rank;
  939. i__2 = *lwork - (mn << 1);
  940. zunmrz_("Left", "Conjugate transpose", n, nrhs, rank, &i__1, &a[
  941. a_offset], lda, &work[mn + 1], &b[b_offset], ldb, &work[(mn <<
  942. 1) + 1], &i__2, info);
  943. }
  944. /* complex workspace: 2*MN+NRHS. */
  945. /* B(1:N,1:NRHS) := P * B(1:N,1:NRHS) */
  946. i__1 = *nrhs;
  947. for (j = 1; j <= i__1; ++j) {
  948. i__2 = *n;
  949. for (i__ = 1; i__ <= i__2; ++i__) {
  950. i__3 = jpvt[i__];
  951. i__4 = i__ + j * b_dim1;
  952. work[i__3].r = b[i__4].r, work[i__3].i = b[i__4].i;
  953. /* L50: */
  954. }
  955. zcopy_(n, &work[1], &c__1, &b[j * b_dim1 + 1], &c__1);
  956. /* L60: */
  957. }
  958. /* complex workspace: N. */
  959. /* Undo scaling */
  960. if (iascl == 1) {
  961. zlascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb,
  962. info);
  963. zlascl_("U", &c__0, &c__0, &smlnum, &anrm, rank, rank, &a[a_offset],
  964. lda, info);
  965. } else if (iascl == 2) {
  966. zlascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb,
  967. info);
  968. zlascl_("U", &c__0, &c__0, &bignum, &anrm, rank, rank, &a[a_offset],
  969. lda, info);
  970. }
  971. if (ibscl == 1) {
  972. zlascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb,
  973. info);
  974. } else if (ibscl == 2) {
  975. zlascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb,
  976. info);
  977. }
  978. L70:
  979. z__1.r = (doublereal) lwkopt, z__1.i = 0.;
  980. work[1].r = z__1.r, work[1].i = z__1.i;
  981. return;
  982. /* End of ZGELSY */
  983. } /* zgelsy_ */