You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ssytf2_rook.c 38 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. /* > \brief \b SSYTF2_ROOK computes the factorization of a real symmetric indefinite matrix using the bounded
  486. Bunch-Kaufman ("rook") diagonal pivoting method (unblocked algorithm). */
  487. /* =========== DOCUMENTATION =========== */
  488. /* Online html documentation available at */
  489. /* http://www.netlib.org/lapack/explore-html/ */
  490. /* > \htmlonly */
  491. /* > Download SSYTF2_ROOK + dependencies */
  492. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssytf2_
  493. rook.f"> */
  494. /* > [TGZ]</a> */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssytf2_
  496. rook.f"> */
  497. /* > [ZIP]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssytf2_
  499. rook.f"> */
  500. /* > [TXT]</a> */
  501. /* > \endhtmlonly */
  502. /* Definition: */
  503. /* =========== */
  504. /* SUBROUTINE SSYTF2_ROOK( UPLO, N, A, LDA, IPIV, INFO ) */
  505. /* CHARACTER UPLO */
  506. /* INTEGER INFO, LDA, N */
  507. /* INTEGER IPIV( * ) */
  508. /* REAL A( LDA, * ) */
  509. /* > \par Purpose: */
  510. /* ============= */
  511. /* > */
  512. /* > \verbatim */
  513. /* > */
  514. /* > SSYTF2_ROOK computes the factorization of a real symmetric matrix A */
  515. /* > using the bounded Bunch-Kaufman ("rook") diagonal pivoting method: */
  516. /* > */
  517. /* > A = U*D*U**T or A = L*D*L**T */
  518. /* > */
  519. /* > where U (or L) is a product of permutation and unit upper (lower) */
  520. /* > triangular matrices, U**T is the transpose of U, and D is symmetric and */
  521. /* > block diagonal with 1-by-1 and 2-by-2 diagonal blocks. */
  522. /* > */
  523. /* > This is the unblocked version of the algorithm, calling Level 2 BLAS. */
  524. /* > \endverbatim */
  525. /* Arguments: */
  526. /* ========== */
  527. /* > \param[in] UPLO */
  528. /* > \verbatim */
  529. /* > UPLO is CHARACTER*1 */
  530. /* > Specifies whether the upper or lower triangular part of the */
  531. /* > symmetric matrix A is stored: */
  532. /* > = 'U': Upper triangular */
  533. /* > = 'L': Lower triangular */
  534. /* > \endverbatim */
  535. /* > */
  536. /* > \param[in] N */
  537. /* > \verbatim */
  538. /* > N is INTEGER */
  539. /* > The order of the matrix A. N >= 0. */
  540. /* > \endverbatim */
  541. /* > */
  542. /* > \param[in,out] A */
  543. /* > \verbatim */
  544. /* > A is REAL array, dimension (LDA,N) */
  545. /* > On entry, the symmetric matrix A. If UPLO = 'U', the leading */
  546. /* > n-by-n upper triangular part of A contains the upper */
  547. /* > triangular part of the matrix A, and the strictly lower */
  548. /* > triangular part of A is not referenced. If UPLO = 'L', the */
  549. /* > leading n-by-n lower triangular part of A contains the lower */
  550. /* > triangular part of the matrix A, and the strictly upper */
  551. /* > triangular part of A is not referenced. */
  552. /* > */
  553. /* > On exit, the block diagonal matrix D and the multipliers used */
  554. /* > to obtain the factor U or L (see below for further details). */
  555. /* > \endverbatim */
  556. /* > */
  557. /* > \param[in] LDA */
  558. /* > \verbatim */
  559. /* > LDA is INTEGER */
  560. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  561. /* > \endverbatim */
  562. /* > */
  563. /* > \param[out] IPIV */
  564. /* > \verbatim */
  565. /* > IPIV is INTEGER array, dimension (N) */
  566. /* > Details of the interchanges and the block structure of D. */
  567. /* > */
  568. /* > If UPLO = 'U': */
  569. /* > If IPIV(k) > 0, then rows and columns k and IPIV(k) */
  570. /* > were interchanged and D(k,k) is a 1-by-1 diagonal block. */
  571. /* > */
  572. /* > If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and */
  573. /* > columns k and -IPIV(k) were interchanged and rows and */
  574. /* > columns k-1 and -IPIV(k-1) were inerchaged, */
  575. /* > D(k-1:k,k-1:k) is a 2-by-2 diagonal block. */
  576. /* > */
  577. /* > If UPLO = 'L': */
  578. /* > If IPIV(k) > 0, then rows and columns k and IPIV(k) */
  579. /* > were interchanged and D(k,k) is a 1-by-1 diagonal block. */
  580. /* > */
  581. /* > If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and */
  582. /* > columns k and -IPIV(k) were interchanged and rows and */
  583. /* > columns k+1 and -IPIV(k+1) were inerchaged, */
  584. /* > D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
  585. /* > \endverbatim */
  586. /* > */
  587. /* > \param[out] INFO */
  588. /* > \verbatim */
  589. /* > INFO is INTEGER */
  590. /* > = 0: successful exit */
  591. /* > < 0: if INFO = -k, the k-th argument had an illegal value */
  592. /* > > 0: if INFO = k, D(k,k) is exactly zero. The factorization */
  593. /* > has been completed, but the block diagonal matrix D is */
  594. /* > exactly singular, and division by zero will occur if it */
  595. /* > is used to solve a system of equations. */
  596. /* > \endverbatim */
  597. /* Authors: */
  598. /* ======== */
  599. /* > \author Univ. of Tennessee */
  600. /* > \author Univ. of California Berkeley */
  601. /* > \author Univ. of Colorado Denver */
  602. /* > \author NAG Ltd. */
  603. /* > \date November 2013 */
  604. /* > \ingroup realSYcomputational */
  605. /* > \par Further Details: */
  606. /* ===================== */
  607. /* > */
  608. /* > \verbatim */
  609. /* > */
  610. /* > If UPLO = 'U', then A = U*D*U**T, where */
  611. /* > U = P(n)*U(n)* ... *P(k)U(k)* ..., */
  612. /* > i.e., U is a product of terms P(k)*U(k), where k decreases from n to */
  613. /* > 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
  614. /* > and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as */
  615. /* > defined by IPIV(k), and U(k) is a unit upper triangular matrix, such */
  616. /* > that if the diagonal block D(k) is of order s (s = 1 or 2), then */
  617. /* > */
  618. /* > ( I v 0 ) k-s */
  619. /* > U(k) = ( 0 I 0 ) s */
  620. /* > ( 0 0 I ) n-k */
  621. /* > k-s s n-k */
  622. /* > */
  623. /* > If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k). */
  624. /* > If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k), */
  625. /* > and A(k,k), and v overwrites A(1:k-2,k-1:k). */
  626. /* > */
  627. /* > If UPLO = 'L', then A = L*D*L**T, where */
  628. /* > L = P(1)*L(1)* ... *P(k)*L(k)* ..., */
  629. /* > i.e., L is a product of terms P(k)*L(k), where k increases from 1 to */
  630. /* > n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
  631. /* > and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as */
  632. /* > defined by IPIV(k), and L(k) is a unit lower triangular matrix, such */
  633. /* > that if the diagonal block D(k) is of order s (s = 1 or 2), then */
  634. /* > */
  635. /* > ( I 0 0 ) k-1 */
  636. /* > L(k) = ( 0 I 0 ) s */
  637. /* > ( 0 v I ) n-k-s+1 */
  638. /* > k-1 s n-k-s+1 */
  639. /* > */
  640. /* > If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k). */
  641. /* > If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k), */
  642. /* > and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1). */
  643. /* > \endverbatim */
  644. /* > \par Contributors: */
  645. /* ================== */
  646. /* > */
  647. /* > \verbatim */
  648. /* > */
  649. /* > November 2013, Igor Kozachenko, */
  650. /* > Computer Science Division, */
  651. /* > University of California, Berkeley */
  652. /* > */
  653. /* > September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, */
  654. /* > School of Mathematics, */
  655. /* > University of Manchester */
  656. /* > */
  657. /* > 01-01-96 - Based on modifications by */
  658. /* > J. Lewis, Boeing Computer Services Company */
  659. /* > A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville abd , USA */
  660. /* > \endverbatim */
  661. /* ===================================================================== */
  662. /* Subroutine */ void ssytf2_rook_(char *uplo, integer *n, real *a, integer *
  663. lda, integer *ipiv, integer *info)
  664. {
  665. /* System generated locals */
  666. integer a_dim1, a_offset, i__1, i__2;
  667. real r__1;
  668. /* Local variables */
  669. logical done;
  670. integer imax, jmax;
  671. extern /* Subroutine */ void ssyr_(char *, integer *, real *, real *,
  672. integer *, real *, integer *);
  673. integer i__, j, k, p;
  674. real t, alpha;
  675. extern logical lsame_(char *, char *);
  676. extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *);
  677. real sfmin;
  678. integer itemp, kstep;
  679. real stemp;
  680. logical upper;
  681. extern /* Subroutine */ void sswap_(integer *, real *, integer *, real *,
  682. integer *);
  683. real d11, d12, d21, d22;
  684. integer ii, kk, kp;
  685. real absakk, wk;
  686. extern real slamch_(char *);
  687. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  688. extern integer isamax_(integer *, real *, integer *);
  689. real colmax, rowmax, wkm1, wkp1;
  690. /* -- LAPACK computational routine (version 3.5.0) -- */
  691. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  692. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  693. /* November 2013 */
  694. /* ===================================================================== */
  695. /* Test the input parameters. */
  696. /* Parameter adjustments */
  697. a_dim1 = *lda;
  698. a_offset = 1 + a_dim1 * 1;
  699. a -= a_offset;
  700. --ipiv;
  701. /* Function Body */
  702. *info = 0;
  703. upper = lsame_(uplo, "U");
  704. if (! upper && ! lsame_(uplo, "L")) {
  705. *info = -1;
  706. } else if (*n < 0) {
  707. *info = -2;
  708. } else if (*lda < f2cmax(1,*n)) {
  709. *info = -4;
  710. }
  711. if (*info != 0) {
  712. i__1 = -(*info);
  713. xerbla_("SSYTF2_ROOK", &i__1, (ftnlen)11);
  714. return;
  715. }
  716. /* Initialize ALPHA for use in choosing pivot block size. */
  717. alpha = (sqrt(17.f) + 1.f) / 8.f;
  718. /* Compute machine safe minimum */
  719. sfmin = slamch_("S");
  720. if (upper) {
  721. /* Factorize A as U*D*U**T using the upper triangle of A */
  722. /* K is the main loop index, decreasing from N to 1 in steps of */
  723. /* 1 or 2 */
  724. k = *n;
  725. L10:
  726. /* If K < 1, exit from loop */
  727. if (k < 1) {
  728. goto L70;
  729. }
  730. kstep = 1;
  731. p = k;
  732. /* Determine rows and columns to be interchanged and whether */
  733. /* a 1-by-1 or 2-by-2 pivot block will be used */
  734. absakk = (r__1 = a[k + k * a_dim1], abs(r__1));
  735. /* IMAX is the row-index of the largest off-diagonal element in */
  736. /* column K, and COLMAX is its absolute value. */
  737. /* Determine both COLMAX and IMAX. */
  738. if (k > 1) {
  739. i__1 = k - 1;
  740. imax = isamax_(&i__1, &a[k * a_dim1 + 1], &c__1);
  741. colmax = (r__1 = a[imax + k * a_dim1], abs(r__1));
  742. } else {
  743. colmax = 0.f;
  744. }
  745. if (f2cmax(absakk,colmax) == 0.f) {
  746. /* Column K is zero or underflow: set INFO and continue */
  747. if (*info == 0) {
  748. *info = k;
  749. }
  750. kp = k;
  751. } else {
  752. /* Test for interchange */
  753. /* Equivalent to testing for (used to handle NaN and Inf) */
  754. /* ABSAKK.GE.ALPHA*COLMAX */
  755. if (! (absakk < alpha * colmax)) {
  756. /* no interchange, */
  757. /* use 1-by-1 pivot block */
  758. kp = k;
  759. } else {
  760. done = FALSE_;
  761. /* Loop until pivot found */
  762. L12:
  763. /* Begin pivot search loop body */
  764. /* JMAX is the column-index of the largest off-diagonal */
  765. /* element in row IMAX, and ROWMAX is its absolute value. */
  766. /* Determine both ROWMAX and JMAX. */
  767. if (imax != k) {
  768. i__1 = k - imax;
  769. jmax = imax + isamax_(&i__1, &a[imax + (imax + 1) *
  770. a_dim1], lda);
  771. rowmax = (r__1 = a[imax + jmax * a_dim1], abs(r__1));
  772. } else {
  773. rowmax = 0.f;
  774. }
  775. if (imax > 1) {
  776. i__1 = imax - 1;
  777. itemp = isamax_(&i__1, &a[imax * a_dim1 + 1], &c__1);
  778. stemp = (r__1 = a[itemp + imax * a_dim1], abs(r__1));
  779. if (stemp > rowmax) {
  780. rowmax = stemp;
  781. jmax = itemp;
  782. }
  783. }
  784. /* Equivalent to testing for (used to handle NaN and Inf) */
  785. /* ABS( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX */
  786. if (! ((r__1 = a[imax + imax * a_dim1], abs(r__1)) < alpha *
  787. rowmax)) {
  788. /* interchange rows and columns K and IMAX, */
  789. /* use 1-by-1 pivot block */
  790. kp = imax;
  791. done = TRUE_;
  792. /* Equivalent to testing for ROWMAX .EQ. COLMAX, */
  793. /* used to handle NaN and Inf */
  794. } else if (p == jmax || rowmax <= colmax) {
  795. /* interchange rows and columns K+1 and IMAX, */
  796. /* use 2-by-2 pivot block */
  797. kp = imax;
  798. kstep = 2;
  799. done = TRUE_;
  800. } else {
  801. /* Pivot NOT found, set variables and repeat */
  802. p = imax;
  803. colmax = rowmax;
  804. imax = jmax;
  805. }
  806. /* End pivot search loop body */
  807. if (! done) {
  808. goto L12;
  809. }
  810. }
  811. /* Swap TWO rows and TWO columns */
  812. /* First swap */
  813. if (kstep == 2 && p != k) {
  814. /* Interchange rows and column K and P in the leading */
  815. /* submatrix A(1:k,1:k) if we have a 2-by-2 pivot */
  816. if (p > 1) {
  817. i__1 = p - 1;
  818. sswap_(&i__1, &a[k * a_dim1 + 1], &c__1, &a[p * a_dim1 +
  819. 1], &c__1);
  820. }
  821. if (p < k - 1) {
  822. i__1 = k - p - 1;
  823. sswap_(&i__1, &a[p + 1 + k * a_dim1], &c__1, &a[p + (p +
  824. 1) * a_dim1], lda);
  825. }
  826. t = a[k + k * a_dim1];
  827. a[k + k * a_dim1] = a[p + p * a_dim1];
  828. a[p + p * a_dim1] = t;
  829. }
  830. /* Second swap */
  831. kk = k - kstep + 1;
  832. if (kp != kk) {
  833. /* Interchange rows and columns KK and KP in the leading */
  834. /* submatrix A(1:k,1:k) */
  835. if (kp > 1) {
  836. i__1 = kp - 1;
  837. sswap_(&i__1, &a[kk * a_dim1 + 1], &c__1, &a[kp * a_dim1
  838. + 1], &c__1);
  839. }
  840. if (kk > 1 && kp < kk - 1) {
  841. i__1 = kk - kp - 1;
  842. sswap_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + (
  843. kp + 1) * a_dim1], lda);
  844. }
  845. t = a[kk + kk * a_dim1];
  846. a[kk + kk * a_dim1] = a[kp + kp * a_dim1];
  847. a[kp + kp * a_dim1] = t;
  848. if (kstep == 2) {
  849. t = a[k - 1 + k * a_dim1];
  850. a[k - 1 + k * a_dim1] = a[kp + k * a_dim1];
  851. a[kp + k * a_dim1] = t;
  852. }
  853. }
  854. /* Update the leading submatrix */
  855. if (kstep == 1) {
  856. /* 1-by-1 pivot block D(k): column k now holds */
  857. /* W(k) = U(k)*D(k) */
  858. /* where U(k) is the k-th column of U */
  859. if (k > 1) {
  860. /* Perform a rank-1 update of A(1:k-1,1:k-1) and */
  861. /* store U(k) in column k */
  862. if ((r__1 = a[k + k * a_dim1], abs(r__1)) >= sfmin) {
  863. /* Perform a rank-1 update of A(1:k-1,1:k-1) as */
  864. /* A := A - U(k)*D(k)*U(k)**T */
  865. /* = A - W(k)*1/D(k)*W(k)**T */
  866. d11 = 1.f / a[k + k * a_dim1];
  867. i__1 = k - 1;
  868. r__1 = -d11;
  869. ssyr_(uplo, &i__1, &r__1, &a[k * a_dim1 + 1], &c__1, &
  870. a[a_offset], lda);
  871. /* Store U(k) in column k */
  872. i__1 = k - 1;
  873. sscal_(&i__1, &d11, &a[k * a_dim1 + 1], &c__1);
  874. } else {
  875. /* Store L(k) in column K */
  876. d11 = a[k + k * a_dim1];
  877. i__1 = k - 1;
  878. for (ii = 1; ii <= i__1; ++ii) {
  879. a[ii + k * a_dim1] /= d11;
  880. /* L16: */
  881. }
  882. /* Perform a rank-1 update of A(k+1:n,k+1:n) as */
  883. /* A := A - U(k)*D(k)*U(k)**T */
  884. /* = A - W(k)*(1/D(k))*W(k)**T */
  885. /* = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T */
  886. i__1 = k - 1;
  887. r__1 = -d11;
  888. ssyr_(uplo, &i__1, &r__1, &a[k * a_dim1 + 1], &c__1, &
  889. a[a_offset], lda);
  890. }
  891. }
  892. } else {
  893. /* 2-by-2 pivot block D(k): columns k and k-1 now hold */
  894. /* ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k) */
  895. /* where U(k) and U(k-1) are the k-th and (k-1)-th columns */
  896. /* of U */
  897. /* Perform a rank-2 update of A(1:k-2,1:k-2) as */
  898. /* A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T */
  899. /* = A - ( ( A(k-1)A(k) )*inv(D(k)) ) * ( A(k-1)A(k) )**T */
  900. /* and store L(k) and L(k+1) in columns k and k+1 */
  901. if (k > 2) {
  902. d12 = a[k - 1 + k * a_dim1];
  903. d22 = a[k - 1 + (k - 1) * a_dim1] / d12;
  904. d11 = a[k + k * a_dim1] / d12;
  905. t = 1.f / (d11 * d22 - 1.f);
  906. for (j = k - 2; j >= 1; --j) {
  907. wkm1 = t * (d11 * a[j + (k - 1) * a_dim1] - a[j + k *
  908. a_dim1]);
  909. wk = t * (d22 * a[j + k * a_dim1] - a[j + (k - 1) *
  910. a_dim1]);
  911. for (i__ = j; i__ >= 1; --i__) {
  912. a[i__ + j * a_dim1] = a[i__ + j * a_dim1] - a[i__
  913. + k * a_dim1] / d12 * wk - a[i__ + (k - 1)
  914. * a_dim1] / d12 * wkm1;
  915. /* L20: */
  916. }
  917. /* Store U(k) and U(k-1) in cols k and k-1 for row J */
  918. a[j + k * a_dim1] = wk / d12;
  919. a[j + (k - 1) * a_dim1] = wkm1 / d12;
  920. /* L30: */
  921. }
  922. }
  923. }
  924. }
  925. /* Store details of the interchanges in IPIV */
  926. if (kstep == 1) {
  927. ipiv[k] = kp;
  928. } else {
  929. ipiv[k] = -p;
  930. ipiv[k - 1] = -kp;
  931. }
  932. /* Decrease K and return to the start of the main loop */
  933. k -= kstep;
  934. goto L10;
  935. } else {
  936. /* Factorize A as L*D*L**T using the lower triangle of A */
  937. /* K is the main loop index, increasing from 1 to N in steps of */
  938. /* 1 or 2 */
  939. k = 1;
  940. L40:
  941. /* If K > N, exit from loop */
  942. if (k > *n) {
  943. goto L70;
  944. }
  945. kstep = 1;
  946. p = k;
  947. /* Determine rows and columns to be interchanged and whether */
  948. /* a 1-by-1 or 2-by-2 pivot block will be used */
  949. absakk = (r__1 = a[k + k * a_dim1], abs(r__1));
  950. /* IMAX is the row-index of the largest off-diagonal element in */
  951. /* column K, and COLMAX is its absolute value. */
  952. /* Determine both COLMAX and IMAX. */
  953. if (k < *n) {
  954. i__1 = *n - k;
  955. imax = k + isamax_(&i__1, &a[k + 1 + k * a_dim1], &c__1);
  956. colmax = (r__1 = a[imax + k * a_dim1], abs(r__1));
  957. } else {
  958. colmax = 0.f;
  959. }
  960. if (f2cmax(absakk,colmax) == 0.f) {
  961. /* Column K is zero or underflow: set INFO and continue */
  962. if (*info == 0) {
  963. *info = k;
  964. }
  965. kp = k;
  966. } else {
  967. /* Test for interchange */
  968. /* Equivalent to testing for (used to handle NaN and Inf) */
  969. /* ABSAKK.GE.ALPHA*COLMAX */
  970. if (! (absakk < alpha * colmax)) {
  971. /* no interchange, use 1-by-1 pivot block */
  972. kp = k;
  973. } else {
  974. done = FALSE_;
  975. /* Loop until pivot found */
  976. L42:
  977. /* Begin pivot search loop body */
  978. /* JMAX is the column-index of the largest off-diagonal */
  979. /* element in row IMAX, and ROWMAX is its absolute value. */
  980. /* Determine both ROWMAX and JMAX. */
  981. if (imax != k) {
  982. i__1 = imax - k;
  983. jmax = k - 1 + isamax_(&i__1, &a[imax + k * a_dim1], lda);
  984. rowmax = (r__1 = a[imax + jmax * a_dim1], abs(r__1));
  985. } else {
  986. rowmax = 0.f;
  987. }
  988. if (imax < *n) {
  989. i__1 = *n - imax;
  990. itemp = imax + isamax_(&i__1, &a[imax + 1 + imax * a_dim1]
  991. , &c__1);
  992. stemp = (r__1 = a[itemp + imax * a_dim1], abs(r__1));
  993. if (stemp > rowmax) {
  994. rowmax = stemp;
  995. jmax = itemp;
  996. }
  997. }
  998. /* Equivalent to testing for (used to handle NaN and Inf) */
  999. /* ABS( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX */
  1000. if (! ((r__1 = a[imax + imax * a_dim1], abs(r__1)) < alpha *
  1001. rowmax)) {
  1002. /* interchange rows and columns K and IMAX, */
  1003. /* use 1-by-1 pivot block */
  1004. kp = imax;
  1005. done = TRUE_;
  1006. /* Equivalent to testing for ROWMAX .EQ. COLMAX, */
  1007. /* used to handle NaN and Inf */
  1008. } else if (p == jmax || rowmax <= colmax) {
  1009. /* interchange rows and columns K+1 and IMAX, */
  1010. /* use 2-by-2 pivot block */
  1011. kp = imax;
  1012. kstep = 2;
  1013. done = TRUE_;
  1014. } else {
  1015. /* Pivot NOT found, set variables and repeat */
  1016. p = imax;
  1017. colmax = rowmax;
  1018. imax = jmax;
  1019. }
  1020. /* End pivot search loop body */
  1021. if (! done) {
  1022. goto L42;
  1023. }
  1024. }
  1025. /* Swap TWO rows and TWO columns */
  1026. /* First swap */
  1027. if (kstep == 2 && p != k) {
  1028. /* Interchange rows and column K and P in the trailing */
  1029. /* submatrix A(k:n,k:n) if we have a 2-by-2 pivot */
  1030. if (p < *n) {
  1031. i__1 = *n - p;
  1032. sswap_(&i__1, &a[p + 1 + k * a_dim1], &c__1, &a[p + 1 + p
  1033. * a_dim1], &c__1);
  1034. }
  1035. if (p > k + 1) {
  1036. i__1 = p - k - 1;
  1037. sswap_(&i__1, &a[k + 1 + k * a_dim1], &c__1, &a[p + (k +
  1038. 1) * a_dim1], lda);
  1039. }
  1040. t = a[k + k * a_dim1];
  1041. a[k + k * a_dim1] = a[p + p * a_dim1];
  1042. a[p + p * a_dim1] = t;
  1043. }
  1044. /* Second swap */
  1045. kk = k + kstep - 1;
  1046. if (kp != kk) {
  1047. /* Interchange rows and columns KK and KP in the trailing */
  1048. /* submatrix A(k:n,k:n) */
  1049. if (kp < *n) {
  1050. i__1 = *n - kp;
  1051. sswap_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + 1
  1052. + kp * a_dim1], &c__1);
  1053. }
  1054. if (kk < *n && kp > kk + 1) {
  1055. i__1 = kp - kk - 1;
  1056. sswap_(&i__1, &a[kk + 1 + kk * a_dim1], &c__1, &a[kp + (
  1057. kk + 1) * a_dim1], lda);
  1058. }
  1059. t = a[kk + kk * a_dim1];
  1060. a[kk + kk * a_dim1] = a[kp + kp * a_dim1];
  1061. a[kp + kp * a_dim1] = t;
  1062. if (kstep == 2) {
  1063. t = a[k + 1 + k * a_dim1];
  1064. a[k + 1 + k * a_dim1] = a[kp + k * a_dim1];
  1065. a[kp + k * a_dim1] = t;
  1066. }
  1067. }
  1068. /* Update the trailing submatrix */
  1069. if (kstep == 1) {
  1070. /* 1-by-1 pivot block D(k): column k now holds */
  1071. /* W(k) = L(k)*D(k) */
  1072. /* where L(k) is the k-th column of L */
  1073. if (k < *n) {
  1074. /* Perform a rank-1 update of A(k+1:n,k+1:n) and */
  1075. /* store L(k) in column k */
  1076. if ((r__1 = a[k + k * a_dim1], abs(r__1)) >= sfmin) {
  1077. /* Perform a rank-1 update of A(k+1:n,k+1:n) as */
  1078. /* A := A - L(k)*D(k)*L(k)**T */
  1079. /* = A - W(k)*(1/D(k))*W(k)**T */
  1080. d11 = 1.f / a[k + k * a_dim1];
  1081. i__1 = *n - k;
  1082. r__1 = -d11;
  1083. ssyr_(uplo, &i__1, &r__1, &a[k + 1 + k * a_dim1], &
  1084. c__1, &a[k + 1 + (k + 1) * a_dim1], lda);
  1085. /* Store L(k) in column k */
  1086. i__1 = *n - k;
  1087. sscal_(&i__1, &d11, &a[k + 1 + k * a_dim1], &c__1);
  1088. } else {
  1089. /* Store L(k) in column k */
  1090. d11 = a[k + k * a_dim1];
  1091. i__1 = *n;
  1092. for (ii = k + 1; ii <= i__1; ++ii) {
  1093. a[ii + k * a_dim1] /= d11;
  1094. /* L46: */
  1095. }
  1096. /* Perform a rank-1 update of A(k+1:n,k+1:n) as */
  1097. /* A := A - L(k)*D(k)*L(k)**T */
  1098. /* = A - W(k)*(1/D(k))*W(k)**T */
  1099. /* = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T */
  1100. i__1 = *n - k;
  1101. r__1 = -d11;
  1102. ssyr_(uplo, &i__1, &r__1, &a[k + 1 + k * a_dim1], &
  1103. c__1, &a[k + 1 + (k + 1) * a_dim1], lda);
  1104. }
  1105. }
  1106. } else {
  1107. /* 2-by-2 pivot block D(k): columns k and k+1 now hold */
  1108. /* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k) */
  1109. /* where L(k) and L(k+1) are the k-th and (k+1)-th columns */
  1110. /* of L */
  1111. /* Perform a rank-2 update of A(k+2:n,k+2:n) as */
  1112. /* A := A - ( L(k) L(k+1) ) * D(k) * ( L(k) L(k+1) )**T */
  1113. /* = A - ( ( A(k)A(k+1) )*inv(D(k) ) * ( A(k)A(k+1) )**T */
  1114. /* and store L(k) and L(k+1) in columns k and k+1 */
  1115. if (k < *n - 1) {
  1116. d21 = a[k + 1 + k * a_dim1];
  1117. d11 = a[k + 1 + (k + 1) * a_dim1] / d21;
  1118. d22 = a[k + k * a_dim1] / d21;
  1119. t = 1.f / (d11 * d22 - 1.f);
  1120. i__1 = *n;
  1121. for (j = k + 2; j <= i__1; ++j) {
  1122. /* Compute D21 * ( W(k)W(k+1) ) * inv(D(k)) for row J */
  1123. wk = t * (d11 * a[j + k * a_dim1] - a[j + (k + 1) *
  1124. a_dim1]);
  1125. wkp1 = t * (d22 * a[j + (k + 1) * a_dim1] - a[j + k *
  1126. a_dim1]);
  1127. /* Perform a rank-2 update of A(k+2:n,k+2:n) */
  1128. i__2 = *n;
  1129. for (i__ = j; i__ <= i__2; ++i__) {
  1130. a[i__ + j * a_dim1] = a[i__ + j * a_dim1] - a[i__
  1131. + k * a_dim1] / d21 * wk - a[i__ + (k + 1)
  1132. * a_dim1] / d21 * wkp1;
  1133. /* L50: */
  1134. }
  1135. /* Store L(k) and L(k+1) in cols k and k+1 for row J */
  1136. a[j + k * a_dim1] = wk / d21;
  1137. a[j + (k + 1) * a_dim1] = wkp1 / d21;
  1138. /* L60: */
  1139. }
  1140. }
  1141. }
  1142. }
  1143. /* Store details of the interchanges in IPIV */
  1144. if (kstep == 1) {
  1145. ipiv[k] = kp;
  1146. } else {
  1147. ipiv[k] = -p;
  1148. ipiv[k + 1] = -kp;
  1149. }
  1150. /* Increase K and return to the start of the main loop */
  1151. k += kstep;
  1152. goto L40;
  1153. }
  1154. L70:
  1155. return;
  1156. /* End of SSYTF2_ROOK */
  1157. } /* ssytf2_rook__ */